Defining parameters
Level: | \( N \) | \(=\) | \( 5184 = 2^{6} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5184.z (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 144 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Sturm bound: | \(1728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5184, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3648 | 392 | 3256 |
Cusp forms | 3264 | 376 | 2888 |
Eisenstein series | 384 | 16 | 368 |
Decomposition of \(S_{2}^{\mathrm{new}}(5184, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5184, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1728, [\chi])\)\(^{\oplus 2}\)