Defining parameters
Level: | \( N \) | \(=\) | \( 5184 = 2^{6} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5184.v (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 32 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(1728\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5184, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3552 | 0 | 3552 |
Cusp forms | 3360 | 0 | 3360 |
Eisenstein series | 192 | 0 | 192 |
Decomposition of \(S_{2}^{\mathrm{old}}(5184, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2592, [\chi])\)\(^{\oplus 2}\)