Defining parameters
Level: | \( N \) | \(=\) | \( 5184 = 2^{6} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5184.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(1728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5184, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1872 | 192 | 1680 |
Cusp forms | 1584 | 192 | 1392 |
Eisenstein series | 288 | 0 | 288 |
Decomposition of \(S_{2}^{\mathrm{new}}(5184, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5184, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(648, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1728, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2592, [\chi])\)\(^{\oplus 2}\)