Properties

Label 5184.2.f.c
Level $5184$
Weight $2$
Character orbit 5184.f
Analytic conductor $41.394$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5184,2,Mod(2591,5184)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5184, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5184.2591");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5184 = 2^{6} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5184.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.3944484078\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.7465802011608416256.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} + x^{12} + 8x^{10} - 20x^{8} + 32x^{6} + 16x^{4} - 64x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 576)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{5} - \beta_{12} q^{7} + \beta_1 q^{11} - \beta_{7} q^{13} + (\beta_{10} + \beta_{6}) q^{17} + ( - \beta_{11} - \beta_{5}) q^{19} - \beta_{14} q^{23} + ( - \beta_{2} - 1) q^{25} - \beta_{9} q^{29}+ \cdots + (2 \beta_{2} + 3) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{25} - 24 q^{49} - 56 q^{73} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - x^{14} + x^{12} + 8x^{10} - 20x^{8} + 32x^{6} + 16x^{4} - 64x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{12} + \nu^{10} - \nu^{8} + 18\nu^{6} + 4\nu^{4} - 16\nu^{2} + 80 ) / 48 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{12} - 3\nu^{10} + 3\nu^{8} + 4\nu^{6} - 12\nu^{4} + 48\nu^{2} - 64 ) / 48 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{15} - 7\nu^{13} - 9\nu^{11} + 16\nu^{9} - 44\nu^{7} - 144\nu^{5} + 80\nu^{3} - 640\nu ) / 576 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{13} + 5\nu^{11} - 9\nu^{9} + 8\nu^{7} + 8\nu^{5} - 72\nu^{3} + 192\nu ) / 96 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{12} + 5\nu^{6} - 24\nu^{4} + 24\nu^{2} + 16 ) / 24 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{14} - \nu^{12} + \nu^{10} - 8\nu^{8} - 4\nu^{6} + 16\nu^{4} - 48\nu^{2} + 96 ) / 32 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{13} + \nu^{11} + 3\nu^{9} - 4\nu^{7} + 16\nu^{5} - 24\nu^{3} ) / 32 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{12} - 2\nu^{10} + 2\nu^{8} + 3\nu^{6} - 8\nu^{4} + 32\nu^{2} - 16 ) / 24 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -\nu^{15} + 3\nu^{13} - 27\nu^{11} + 10\nu^{9} + 36\nu^{7} - 96\nu^{5} + 224\nu^{3} ) / 192 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{14} - 2\nu^{12} + 6\nu^{10} + 11\nu^{8} - 16\nu^{6} + 60\nu^{4} + 64\nu^{2} - 32 ) / 48 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -3\nu^{14} + \nu^{12} + 3\nu^{10} - 30\nu^{8} + 32\nu^{6} + 24\nu^{4} - 48\nu^{2} + 160 ) / 96 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( -7\nu^{15} + 5\nu^{13} + 3\nu^{11} - 26\nu^{9} + 172\nu^{7} - 96\nu^{5} - 64\nu^{3} - 256\nu ) / 576 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( \nu^{15} + \nu^{13} - \nu^{11} + 18\nu^{9} + 4\nu^{7} - 16\nu^{5} + 224\nu^{3} ) / 64 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( \nu^{15} + 5\nu^{9} - 8\nu^{3} ) / 32 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 3\nu^{15} - 9\nu^{13} + 9\nu^{11} - 6\nu^{9} - 36\nu^{7} + 144\nu^{5} - 96\nu^{3} ) / 64 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{15} - \beta_{14} + \beta_{13} - 6\beta_{12} + 3\beta_{9} + 3\beta_{7} + 9\beta_{4} - 3\beta_{3} ) / 24 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{11} + 3\beta_{10} + 3\beta_{8} + \beta_{6} + 3\beta_{5} + 3\beta_{2} - 3\beta _1 + 3 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{15} - 3\beta_{14} + 3\beta_{13} - 3\beta_{7} ) / 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{11} + 3\beta_{10} + 9\beta_{8} + \beta_{6} - 9\beta_{5} - 3\beta_{2} + 3\beta _1 - 3 ) / 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5\beta_{15} - 7\beta_{14} - \beta_{13} + 6\beta_{12} + 3\beta_{9} + 9\beta_{7} - 27\beta_{4} - 51\beta_{3} ) / 24 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -\beta_{8} + 3\beta_{2} + 5\beta _1 - 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 7\beta_{15} + 19\beta_{14} + 5\beta_{13} + 78\beta_{12} + 15\beta_{9} + 3\beta_{7} + 9\beta_{4} - 15\beta_{3} ) / 24 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -27\beta_{11} - 3\beta_{10} - 15\beta_{8} - 25\beta_{6} - 15\beta_{5} - 3\beta_{2} + 27\beta _1 + 69 ) / 12 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( -13\beta_{15} + 15\beta_{14} + 9\beta_{13} + 63\beta_{7} ) / 12 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 9\beta_{11} + 33\beta_{10} - 69\beta_{8} - 13\beta_{6} + 69\beta_{5} - 33\beta_{2} + 9\beta _1 - 105 ) / 12 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 17 \beta_{15} - 5 \beta_{14} + 61 \beta_{13} + 66 \beta_{12} - 183 \beta_{9} - 21 \beta_{7} + \cdots + 87 \beta_{3} ) / 24 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 29\beta_{8} - 39\beta_{2} - \beta _1 - 31 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 91 \beta_{15} + 41 \beta_{14} - 65 \beta_{13} - 150 \beta_{12} - 195 \beta_{9} + \cdots - 669 \beta_{3} ) / 24 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( -129\beta_{11} + 39\beta_{10} + 99\beta_{8} + 229\beta_{6} + 99\beta_{5} + 39\beta_{2} + 129\beta _1 - 609 ) / 12 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 73\beta_{15} + 285\beta_{14} - 21\beta_{13} - 339\beta_{7} ) / 12 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5184\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2591.1
−1.18353 0.774115i
0.0786378 1.41203i
0.0786378 + 1.41203i
−1.18353 + 0.774115i
−1.37379 + 0.335728i
−0.977642 1.02187i
−0.977642 + 1.02187i
−1.37379 0.335728i
1.37379 + 0.335728i
0.977642 1.02187i
0.977642 + 1.02187i
1.37379 0.335728i
1.18353 0.774115i
−0.0786378 1.41203i
−0.0786378 + 1.41203i
1.18353 + 0.774115i
0 0 0 −2.71519 0 3.37228i 0 0 0
2591.2 0 0 0 −2.71519 0 3.37228i 0 0 0
2591.3 0 0 0 −2.71519 0 3.37228i 0 0 0
2591.4 0 0 0 −2.71519 0 3.37228i 0 0 0
2591.5 0 0 0 −1.27582 0 2.37228i 0 0 0
2591.6 0 0 0 −1.27582 0 2.37228i 0 0 0
2591.7 0 0 0 −1.27582 0 2.37228i 0 0 0
2591.8 0 0 0 −1.27582 0 2.37228i 0 0 0
2591.9 0 0 0 1.27582 0 2.37228i 0 0 0
2591.10 0 0 0 1.27582 0 2.37228i 0 0 0
2591.11 0 0 0 1.27582 0 2.37228i 0 0 0
2591.12 0 0 0 1.27582 0 2.37228i 0 0 0
2591.13 0 0 0 2.71519 0 3.37228i 0 0 0
2591.14 0 0 0 2.71519 0 3.37228i 0 0 0
2591.15 0 0 0 2.71519 0 3.37228i 0 0 0
2591.16 0 0 0 2.71519 0 3.37228i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2591.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5184.2.f.c 16
3.b odd 2 1 inner 5184.2.f.c 16
4.b odd 2 1 inner 5184.2.f.c 16
8.b even 2 1 inner 5184.2.f.c 16
8.d odd 2 1 inner 5184.2.f.c 16
9.c even 3 1 576.2.p.b 16
9.c even 3 1 1728.2.p.b 16
9.d odd 6 1 576.2.p.b 16
9.d odd 6 1 1728.2.p.b 16
12.b even 2 1 inner 5184.2.f.c 16
24.f even 2 1 inner 5184.2.f.c 16
24.h odd 2 1 inner 5184.2.f.c 16
36.f odd 6 1 576.2.p.b 16
36.f odd 6 1 1728.2.p.b 16
36.h even 6 1 576.2.p.b 16
36.h even 6 1 1728.2.p.b 16
72.j odd 6 1 576.2.p.b 16
72.j odd 6 1 1728.2.p.b 16
72.l even 6 1 576.2.p.b 16
72.l even 6 1 1728.2.p.b 16
72.n even 6 1 576.2.p.b 16
72.n even 6 1 1728.2.p.b 16
72.p odd 6 1 576.2.p.b 16
72.p odd 6 1 1728.2.p.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
576.2.p.b 16 9.c even 3 1
576.2.p.b 16 9.d odd 6 1
576.2.p.b 16 36.f odd 6 1
576.2.p.b 16 36.h even 6 1
576.2.p.b 16 72.j odd 6 1
576.2.p.b 16 72.l even 6 1
576.2.p.b 16 72.n even 6 1
576.2.p.b 16 72.p odd 6 1
1728.2.p.b 16 9.c even 3 1
1728.2.p.b 16 9.d odd 6 1
1728.2.p.b 16 36.f odd 6 1
1728.2.p.b 16 36.h even 6 1
1728.2.p.b 16 72.j odd 6 1
1728.2.p.b 16 72.l even 6 1
1728.2.p.b 16 72.n even 6 1
1728.2.p.b 16 72.p odd 6 1
5184.2.f.c 16 1.a even 1 1 trivial
5184.2.f.c 16 3.b odd 2 1 inner
5184.2.f.c 16 4.b odd 2 1 inner
5184.2.f.c 16 8.b even 2 1 inner
5184.2.f.c 16 8.d odd 2 1 inner
5184.2.f.c 16 12.b even 2 1 inner
5184.2.f.c 16 24.f even 2 1 inner
5184.2.f.c 16 24.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5184, [\chi])\):

\( T_{5}^{4} - 9T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{19}^{4} - 45T_{19}^{2} + 432 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{4} - 9 T^{2} + 12)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 17 T^{2} + 64)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + 12 T^{2} + 3)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 27 T^{2} + 108)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 63 T^{2} + 324)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} - 45 T^{2} + 432)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} - 63 T^{2} + 324)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} - 45 T^{2} + 432)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 17 T^{2} + 64)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 144 T^{2} + 432)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 27)^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} - 180 T^{2} + 7803)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 63 T^{2} + 324)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} - 240 T^{2} + 12288)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 180 T^{2} + 7803)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 135 T^{2} + 3888)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 108 T^{2} + 243)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 108)^{8} \) Copy content Toggle raw display
$73$ \( (T^{2} + 7 T + 4)^{8} \) Copy content Toggle raw display
$79$ \( (T^{4} + 173 T^{2} + 3844)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 177 T^{2} + 3468)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} + 252 T^{2} + 5184)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 4 T - 29)^{8} \) Copy content Toggle raw display
show more
show less