Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [5184,2,Mod(5183,5184)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5184, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5184.5183");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 5184 = 2^{6} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5184.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(41.3944484078\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 288) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5183.1 | 0 | 0 | 0 | − | 3.93668i | 0 | − | 1.11004i | 0 | 0 | 0 | ||||||||||||||||
5183.2 | 0 | 0 | 0 | − | 3.93668i | 0 | 1.11004i | 0 | 0 | 0 | |||||||||||||||||
5183.3 | 0 | 0 | 0 | − | 3.47695i | 0 | − | 3.60624i | 0 | 0 | 0 | ||||||||||||||||
5183.4 | 0 | 0 | 0 | − | 3.47695i | 0 | 3.60624i | 0 | 0 | 0 | |||||||||||||||||
5183.5 | 0 | 0 | 0 | − | 2.09855i | 0 | − | 0.165946i | 0 | 0 | 0 | ||||||||||||||||
5183.6 | 0 | 0 | 0 | − | 2.09855i | 0 | 0.165946i | 0 | 0 | 0 | |||||||||||||||||
5183.7 | 0 | 0 | 0 | − | 1.94263i | 0 | − | 3.01875i | 0 | 0 | 0 | ||||||||||||||||
5183.8 | 0 | 0 | 0 | − | 1.94263i | 0 | 3.01875i | 0 | 0 | 0 | |||||||||||||||||
5183.9 | 0 | 0 | 0 | − | 0.459724i | 0 | − | 4.94568i | 0 | 0 | 0 | ||||||||||||||||
5183.10 | 0 | 0 | 0 | − | 0.459724i | 0 | 4.94568i | 0 | 0 | 0 | |||||||||||||||||
5183.11 | 0 | 0 | 0 | − | 0.155928i | 0 | − | 0.403315i | 0 | 0 | 0 | ||||||||||||||||
5183.12 | 0 | 0 | 0 | − | 0.155928i | 0 | 0.403315i | 0 | 0 | 0 | |||||||||||||||||
5183.13 | 0 | 0 | 0 | 0.155928i | 0 | − | 0.403315i | 0 | 0 | 0 | |||||||||||||||||
5183.14 | 0 | 0 | 0 | 0.155928i | 0 | 0.403315i | 0 | 0 | 0 | ||||||||||||||||||
5183.15 | 0 | 0 | 0 | 0.459724i | 0 | − | 4.94568i | 0 | 0 | 0 | |||||||||||||||||
5183.16 | 0 | 0 | 0 | 0.459724i | 0 | 4.94568i | 0 | 0 | 0 | ||||||||||||||||||
5183.17 | 0 | 0 | 0 | 1.94263i | 0 | − | 3.01875i | 0 | 0 | 0 | |||||||||||||||||
5183.18 | 0 | 0 | 0 | 1.94263i | 0 | 3.01875i | 0 | 0 | 0 | ||||||||||||||||||
5183.19 | 0 | 0 | 0 | 2.09855i | 0 | − | 0.165946i | 0 | 0 | 0 | |||||||||||||||||
5183.20 | 0 | 0 | 0 | 2.09855i | 0 | 0.165946i | 0 | 0 | 0 | ||||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 5184.2.c.m | 24 | |
3.b | odd | 2 | 1 | inner | 5184.2.c.m | 24 | |
4.b | odd | 2 | 1 | inner | 5184.2.c.m | 24 | |
8.b | even | 2 | 1 | 2592.2.c.c | 24 | ||
8.d | odd | 2 | 1 | 2592.2.c.c | 24 | ||
9.c | even | 3 | 1 | 576.2.s.g | 24 | ||
9.c | even | 3 | 1 | 1728.2.s.g | 24 | ||
9.d | odd | 6 | 1 | 576.2.s.g | 24 | ||
9.d | odd | 6 | 1 | 1728.2.s.g | 24 | ||
12.b | even | 2 | 1 | inner | 5184.2.c.m | 24 | |
24.f | even | 2 | 1 | 2592.2.c.c | 24 | ||
24.h | odd | 2 | 1 | 2592.2.c.c | 24 | ||
36.f | odd | 6 | 1 | 576.2.s.g | 24 | ||
36.f | odd | 6 | 1 | 1728.2.s.g | 24 | ||
36.h | even | 6 | 1 | 576.2.s.g | 24 | ||
36.h | even | 6 | 1 | 1728.2.s.g | 24 | ||
72.j | odd | 6 | 1 | 288.2.s.a | ✓ | 24 | |
72.j | odd | 6 | 1 | 864.2.s.a | 24 | ||
72.l | even | 6 | 1 | 288.2.s.a | ✓ | 24 | |
72.l | even | 6 | 1 | 864.2.s.a | 24 | ||
72.n | even | 6 | 1 | 288.2.s.a | ✓ | 24 | |
72.n | even | 6 | 1 | 864.2.s.a | 24 | ||
72.p | odd | 6 | 1 | 288.2.s.a | ✓ | 24 | |
72.p | odd | 6 | 1 | 864.2.s.a | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
288.2.s.a | ✓ | 24 | 72.j | odd | 6 | 1 | |
288.2.s.a | ✓ | 24 | 72.l | even | 6 | 1 | |
288.2.s.a | ✓ | 24 | 72.n | even | 6 | 1 | |
288.2.s.a | ✓ | 24 | 72.p | odd | 6 | 1 | |
576.2.s.g | 24 | 9.c | even | 3 | 1 | ||
576.2.s.g | 24 | 9.d | odd | 6 | 1 | ||
576.2.s.g | 24 | 36.f | odd | 6 | 1 | ||
576.2.s.g | 24 | 36.h | even | 6 | 1 | ||
864.2.s.a | 24 | 72.j | odd | 6 | 1 | ||
864.2.s.a | 24 | 72.l | even | 6 | 1 | ||
864.2.s.a | 24 | 72.n | even | 6 | 1 | ||
864.2.s.a | 24 | 72.p | odd | 6 | 1 | ||
1728.2.s.g | 24 | 9.c | even | 3 | 1 | ||
1728.2.s.g | 24 | 9.d | odd | 6 | 1 | ||
1728.2.s.g | 24 | 36.f | odd | 6 | 1 | ||
1728.2.s.g | 24 | 36.h | even | 6 | 1 | ||
2592.2.c.c | 24 | 8.b | even | 2 | 1 | ||
2592.2.c.c | 24 | 8.d | odd | 2 | 1 | ||
2592.2.c.c | 24 | 24.f | even | 2 | 1 | ||
2592.2.c.c | 24 | 24.h | odd | 2 | 1 | ||
5184.2.c.m | 24 | 1.a | even | 1 | 1 | trivial | |
5184.2.c.m | 24 | 3.b | odd | 2 | 1 | inner | |
5184.2.c.m | 24 | 4.b | odd | 2 | 1 | inner | |
5184.2.c.m | 24 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5184, [\chi])\):
\( T_{5}^{12} + 36T_{5}^{10} + 438T_{5}^{8} + 2092T_{5}^{6} + 3585T_{5}^{4} + 744T_{5}^{2} + 16 \)
|
\( T_{7}^{12} + 48T_{7}^{10} + 726T_{7}^{8} + 3848T_{7}^{6} + 4281T_{7}^{4} + 696T_{7}^{2} + 16 \)
|
\( T_{11}^{12} - 66T_{11}^{10} + 1671T_{11}^{8} - 20524T_{11}^{6} + 128079T_{11}^{4} - 381426T_{11}^{2} + 413449 \)
|