Properties

Label 5184.2.c.h
Level $5184$
Weight $2$
Character orbit 5184.c
Analytic conductor $41.394$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5184,2,Mod(5183,5184)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5184, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5184.5183");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5184 = 2^{6} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5184.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.3944484078\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 1296)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{5} + \beta_{4} q^{7} + \beta_{2} q^{11} - q^{13} - \beta_{3} q^{17} + (\beta_{5} - \beta_{4}) q^{19} + \beta_{7} q^{23} + (\beta_1 - 1) q^{25} + \beta_{6} q^{29} + ( - \beta_{5} + 2 \beta_{4}) q^{31}+ \cdots + (2 \beta_1 + 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{13} - 8 q^{25} + 32 q^{37} - 40 q^{49} - 16 q^{61} + 32 q^{73} - 48 q^{85} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( -3\zeta_{24}^{6} + 6\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -3\zeta_{24}^{5} + 3\zeta_{24}^{3} + 3\zeta_{24} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{7} - \zeta_{24}^{5} - 2\zeta_{24}^{3} + 2\zeta_{24} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 3\zeta_{24}^{6} - 2\zeta_{24}^{4} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -4\zeta_{24}^{4} + 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -5\zeta_{24}^{7} - 4\zeta_{24}^{5} + \zeta_{24}^{3} - \zeta_{24} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -6\zeta_{24}^{7} + 3\zeta_{24}^{5} + 3\zeta_{24}^{3} + 3\zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( 3\beta_{7} - 2\beta_{6} + 8\beta_{3} + 3\beta_{2} ) / 36 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( -\beta_{5} + 2\beta_{4} + 2\beta_1 ) / 12 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( -\beta_{6} - 5\beta_{3} + 3\beta_{2} ) / 18 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( ( -\beta_{5} + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( 3\beta_{7} - 4\beta_{6} - 2\beta_{3} - 3\beta_{2} ) / 36 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( ( -\beta_{5} + 2\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -3\beta_{7} - 4\beta_{6} - 2\beta_{3} + 3\beta_{2} ) / 36 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5184\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5183.1
−0.258819 + 0.965926i
0.258819 + 0.965926i
0.965926 0.258819i
−0.965926 0.258819i
−0.965926 + 0.258819i
0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 0.965926i
0 0 0 3.34607i 0 4.73205i 0 0 0
5183.2 0 0 0 3.34607i 0 4.73205i 0 0 0
5183.3 0 0 0 0.896575i 0 1.26795i 0 0 0
5183.4 0 0 0 0.896575i 0 1.26795i 0 0 0
5183.5 0 0 0 0.896575i 0 1.26795i 0 0 0
5183.6 0 0 0 0.896575i 0 1.26795i 0 0 0
5183.7 0 0 0 3.34607i 0 4.73205i 0 0 0
5183.8 0 0 0 3.34607i 0 4.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5183.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5184.2.c.h 8
3.b odd 2 1 inner 5184.2.c.h 8
4.b odd 2 1 inner 5184.2.c.h 8
8.b even 2 1 1296.2.c.g 8
8.d odd 2 1 1296.2.c.g 8
12.b even 2 1 inner 5184.2.c.h 8
24.f even 2 1 1296.2.c.g 8
24.h odd 2 1 1296.2.c.g 8
72.j odd 6 1 1296.2.s.j 8
72.j odd 6 1 1296.2.s.l 8
72.l even 6 1 1296.2.s.j 8
72.l even 6 1 1296.2.s.l 8
72.n even 6 1 1296.2.s.j 8
72.n even 6 1 1296.2.s.l 8
72.p odd 6 1 1296.2.s.j 8
72.p odd 6 1 1296.2.s.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1296.2.c.g 8 8.b even 2 1
1296.2.c.g 8 8.d odd 2 1
1296.2.c.g 8 24.f even 2 1
1296.2.c.g 8 24.h odd 2 1
1296.2.s.j 8 72.j odd 6 1
1296.2.s.j 8 72.l even 6 1
1296.2.s.j 8 72.n even 6 1
1296.2.s.j 8 72.p odd 6 1
1296.2.s.l 8 72.j odd 6 1
1296.2.s.l 8 72.l even 6 1
1296.2.s.l 8 72.n even 6 1
1296.2.s.l 8 72.p odd 6 1
5184.2.c.h 8 1.a even 1 1 trivial
5184.2.c.h 8 3.b odd 2 1 inner
5184.2.c.h 8 4.b odd 2 1 inner
5184.2.c.h 8 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5184, [\chi])\):

\( T_{5}^{4} + 12T_{5}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{4} + 24T_{7}^{2} + 36 \) Copy content Toggle raw display
\( T_{11}^{2} - 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 12 T^{2} + 9)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 24 T^{2} + 36)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 18)^{4} \) Copy content Toggle raw display
$13$ \( (T + 1)^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} + 12 T^{2} + 9)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 24 T^{2} + 36)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 54)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 84 T^{2} + 1089)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 36)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 8 T - 11)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 54)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 72 T^{2} + 324)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 144 T^{2} + 1296)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 54)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} - 144 T^{2} + 1296)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 4 T - 23)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 168 T^{2} + 6084)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 252 T^{2} + 324)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 8 T - 11)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + 24 T^{2} + 36)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 72)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} + 228 T^{2} + 12321)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 8 T - 92)^{4} \) Copy content Toggle raw display
show more
show less