Properties

Label 5184.2.c.g.5183.4
Level $5184$
Weight $2$
Character 5184.5183
Analytic conductor $41.394$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5184,2,Mod(5183,5184)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5184, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5184.5183");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5184 = 2^{6} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5184.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.3944484078\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 1296)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 5183.4
Root \(-1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 5184.5183
Dual form 5184.2.c.g.5183.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.34607i q^{5} +O(q^{10})\) \(q+3.34607i q^{5} +7.19615 q^{13} -4.00240i q^{17} -6.19615 q^{25} -10.6945i q^{29} +11.3923 q^{37} -12.7279i q^{41} +7.00000 q^{49} -12.7279i q^{53} +5.39230 q^{61} +24.0788i q^{65} -13.1962 q^{73} +13.3923 q^{85} -18.0430i q^{89} -8.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{13} - 4 q^{25} + 4 q^{37} + 28 q^{49} - 20 q^{61} - 32 q^{73} + 12 q^{85} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5184\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.34607i 1.49641i 0.663470 + 0.748203i \(0.269083\pi\)
−0.663470 + 0.748203i \(0.730917\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 7.19615 1.99585 0.997927 0.0643593i \(-0.0205004\pi\)
0.997927 + 0.0643593i \(0.0205004\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 4.00240i − 0.970726i −0.874313 0.485363i \(-0.838688\pi\)
0.874313 0.485363i \(-0.161312\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −6.19615 −1.23923
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 10.6945i − 1.98593i −0.118428 0.992963i \(-0.537786\pi\)
0.118428 0.992963i \(-0.462214\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.3923 1.87288 0.936442 0.350823i \(-0.114098\pi\)
0.936442 + 0.350823i \(0.114098\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 12.7279i − 1.98777i −0.110432 0.993884i \(-0.535223\pi\)
0.110432 0.993884i \(-0.464777\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 12.7279i − 1.74831i −0.485643 0.874157i \(-0.661414\pi\)
0.485643 0.874157i \(-0.338586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 5.39230 0.690414 0.345207 0.938527i \(-0.387809\pi\)
0.345207 + 0.938527i \(0.387809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 24.0788i 2.98661i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −13.1962 −1.54449 −0.772246 0.635323i \(-0.780867\pi\)
−0.772246 + 0.635323i \(0.780867\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 13.3923 1.45260
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 18.0430i − 1.91255i −0.292462 0.956277i \(-0.594474\pi\)
0.292462 0.956277i \(-0.405526\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.7279i 1.26648i 0.773957 + 0.633238i \(0.218274\pi\)
−0.773957 + 0.633238i \(0.781726\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −4.80385 −0.460125 −0.230063 0.973176i \(-0.573893\pi\)
−0.230063 + 0.973176i \(0.573893\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 9.38186i − 0.882571i −0.897367 0.441285i \(-0.854523\pi\)
0.897367 0.441285i \(-0.145477\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 4.00240i − 0.357986i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.03339i 0.173724i 0.996220 + 0.0868620i \(0.0276839\pi\)
−0.996220 + 0.0868620i \(0.972316\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 35.7846 2.97175
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.6993i 1.53191i 0.642894 + 0.765955i \(0.277733\pi\)
−0.642894 + 0.765955i \(0.722267\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.607695 −0.0484994 −0.0242497 0.999706i \(-0.507720\pi\)
−0.0242497 + 0.999706i \(0.507720\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 38.7846 2.98343
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.0788i 1.83068i 0.402685 + 0.915338i \(0.368077\pi\)
−0.402685 + 0.915338i \(0.631923\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 38.1194i 2.80259i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 13.7846 0.992238 0.496119 0.868255i \(-0.334758\pi\)
0.496119 + 0.868255i \(0.334758\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.31508i − 0.378684i −0.981911 0.189342i \(-0.939365\pi\)
0.981911 0.189342i \(-0.0606355\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 42.5885 2.97451
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 28.8019i − 1.93743i
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −23.9808 −1.58469 −0.792347 0.610071i \(-0.791141\pi\)
−0.792347 + 0.610071i \(0.791141\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 8.72552i − 0.571628i −0.958285 0.285814i \(-0.907736\pi\)
0.958285 0.285814i \(-0.0922639\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 29.9808 1.93123 0.965615 0.259975i \(-0.0837143\pi\)
0.965615 + 0.259975i \(0.0837143\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 23.4225i 1.49641i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 31.4273i 1.96038i 0.198062 + 0.980189i \(0.436535\pi\)
−0.198062 + 0.980189i \(0.563465\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 42.5885 2.61619
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 26.0478i − 1.58816i −0.607811 0.794082i \(-0.707952\pi\)
0.607811 0.794082i \(-0.292048\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.37705i 0.0821478i 0.999156 + 0.0410739i \(0.0130779\pi\)
−0.999156 + 0.0410739i \(0.986922\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.980762 0.0576919
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.6636i 0.739813i 0.929069 + 0.369906i \(0.120610\pi\)
−0.929069 + 0.369906i \(0.879390\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.0430i 1.03314i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 7.78461 0.440012 0.220006 0.975499i \(-0.429392\pi\)
0.220006 + 0.975499i \(0.429392\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32.7399i 1.83886i 0.393256 + 0.919429i \(0.371349\pi\)
−0.393256 + 0.919429i \(0.628651\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −44.5885 −2.47332
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −32.0000 −1.74315 −0.871576 0.490261i \(-0.836901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 12.7279i − 0.677439i −0.940887 0.338719i \(-0.890006\pi\)
0.940887 0.338719i \(-0.109994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 44.1552i − 2.31119i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 76.9595i − 3.96362i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 38.1838i 1.93599i 0.250962 + 0.967997i \(0.419253\pi\)
−0.250962 + 0.967997i \(0.580747\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 29.3923 1.47516 0.737579 0.675261i \(-0.235969\pi\)
0.737579 + 0.675261i \(0.235969\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 38.1194i − 1.90359i −0.306732 0.951796i \(-0.599236\pi\)
0.306732 0.951796i \(-0.400764\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −25.1962 −1.24587 −0.622935 0.782274i \(-0.714060\pi\)
−0.622935 + 0.782274i \(0.714060\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −11.9808 −0.583907 −0.291953 0.956433i \(-0.594305\pi\)
−0.291953 + 0.956433i \(0.594305\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 24.7995i 1.20295i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 37.7846 1.81581 0.907906 0.419173i \(-0.137680\pi\)
0.907906 + 0.419173i \(0.137680\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 60.3731 2.86196
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.1838i 1.80200i 0.433816 + 0.901002i \(0.357167\pi\)
−0.433816 + 0.901002i \(0.642833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −32.3731 −1.51435 −0.757174 0.653213i \(-0.773421\pi\)
−0.757174 + 0.653213i \(0.773421\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 12.7279i − 0.592798i −0.955064 0.296399i \(-0.904214\pi\)
0.955064 0.296399i \(-0.0957859\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 81.9808 3.73800
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 26.7685i − 1.21550i
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −42.8038 −1.92779
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −42.5885 −1.89516
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.1838i 1.69247i 0.532813 + 0.846233i \(0.321135\pi\)
−0.532813 + 0.846233i \(0.678865\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.7279i 0.557620i 0.960346 + 0.278810i \(0.0899400\pi\)
−0.960346 + 0.278810i \(0.910060\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 91.5921i − 3.96729i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 26.3731 1.13387 0.566933 0.823764i \(-0.308130\pi\)
0.566933 + 0.823764i \(0.308130\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 16.0740i − 0.688534i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.4582i 1.24819i 0.781350 + 0.624093i \(0.214531\pi\)
−0.781350 + 0.624093i \(0.785469\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 31.3923 1.32068
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 14.7613i − 0.618826i −0.950928 0.309413i \(-0.899867\pi\)
0.950928 0.309413i \(-0.100133\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −42.5692 −1.77218 −0.886090 0.463513i \(-0.846589\pi\)
−0.886090 + 0.463513i \(0.846589\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 27.3605i − 1.12356i −0.827286 0.561780i \(-0.810117\pi\)
0.827286 0.561780i \(-0.189883\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −36.5692 −1.49169 −0.745845 0.666120i \(-0.767954\pi\)
−0.745845 + 0.666120i \(0.767954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 36.8067i − 1.49641i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 34.0000 1.37325 0.686624 0.727013i \(-0.259092\pi\)
0.686624 + 0.727013i \(0.259092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.7448i 1.64032i 0.572133 + 0.820161i \(0.306116\pi\)
−0.572133 + 0.820161i \(0.693884\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17.5885 −0.703538
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 45.5966i − 1.81806i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 50.3731 1.99585
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.6684i 0.816351i 0.912903 + 0.408176i \(0.133835\pi\)
−0.912903 + 0.408176i \(0.866165\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.7279i 0.498082i 0.968493 + 0.249041i \(0.0801154\pi\)
−0.968493 + 0.249041i \(0.919885\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 35.3923 1.37660 0.688301 0.725426i \(-0.258357\pi\)
0.688301 + 0.725426i \(0.258357\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 43.7846 1.68777 0.843886 0.536522i \(-0.180262\pi\)
0.843886 + 0.536522i \(0.180262\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 38.1838i − 1.46752i −0.679408 0.733761i \(-0.737763\pi\)
0.679408 0.733761i \(-0.262237\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) −6.80385 −0.259962
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 91.5921i − 3.48938i
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −50.9423 −1.92958
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 52.8163i 1.99485i 0.0717494 + 0.997423i \(0.477142\pi\)
−0.0717494 + 0.997423i \(0.522858\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −47.9808 −1.80196 −0.900978 0.433865i \(-0.857149\pi\)
−0.900978 + 0.433865i \(0.857149\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 66.2650i 2.46102i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −62.5692 −2.29236
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −52.0000 −1.88997 −0.944986 0.327111i \(-0.893925\pi\)
−0.944986 + 0.327111i \(0.893925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 28.8019i − 1.04407i −0.852925 0.522034i \(-0.825173\pi\)
0.852925 0.522034i \(-0.174827\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −4.21539 −0.152011 −0.0760054 0.997107i \(-0.524217\pi\)
−0.0760054 + 0.997107i \(0.524217\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 21.4534i − 0.771627i −0.922577 0.385813i \(-0.873921\pi\)
0.922577 0.385813i \(-0.126079\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 2.03339i − 0.0725747i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 38.8038 1.37797
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 34.7090i − 1.22945i −0.788740 0.614727i \(-0.789266\pi\)
0.788740 0.614727i \(-0.210734\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 51.5037i 1.81077i 0.424589 + 0.905386i \(0.360418\pi\)
−0.424589 + 0.905386i \(0.639582\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.1050i 0.492267i 0.969236 + 0.246133i \(0.0791601\pi\)
−0.969236 + 0.246133i \(0.920840\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 28.0168i − 0.970726i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −85.3731 −2.94390
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 129.776i 4.46442i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 7.28410i − 0.248820i −0.992231 0.124410i \(-0.960296\pi\)
0.992231 0.124410i \(-0.0397038\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −80.5692 −2.73944
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.6077 −0.628337 −0.314169 0.949367i \(-0.601726\pi\)
−0.314169 + 0.949367i \(0.601726\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.7279i 0.428815i 0.976744 + 0.214407i \(0.0687820\pi\)
−0.976744 + 0.214407i \(0.931218\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −50.9423 −1.69713
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 66.9213i 2.22454i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −70.5885 −2.32093
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 54.7853i 1.79745i 0.438514 + 0.898725i \(0.355505\pi\)
−0.438514 + 0.898725i \(0.644495\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −60.5692 −1.97871 −0.989355 0.145522i \(-0.953514\pi\)
−0.989355 + 0.145522i \(0.953514\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 50.8473i − 1.65758i −0.559563 0.828788i \(-0.689031\pi\)
0.559563 0.828788i \(-0.310969\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −94.9615 −3.08258
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 60.8211i 1.97019i 0.172011 + 0.985095i \(0.444974\pi\)
−0.172011 + 0.985095i \(0.555026\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 46.1242i 1.48479i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 38.1838i 1.22161i 0.791782 + 0.610803i \(0.209153\pi\)
−0.791782 + 0.610803i \(0.790847\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 17.7846 0.566665
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 41.3923 1.31091 0.655454 0.755235i \(-0.272477\pi\)
0.655454 + 0.755235i \(0.272477\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5184.2.c.g.5183.4 4
3.2 odd 2 inner 5184.2.c.g.5183.1 4
4.3 odd 2 CM 5184.2.c.g.5183.4 4
8.3 odd 2 1296.2.c.e.1295.1 4
8.5 even 2 1296.2.c.e.1295.1 4
12.11 even 2 inner 5184.2.c.g.5183.1 4
24.5 odd 2 1296.2.c.e.1295.4 yes 4
24.11 even 2 1296.2.c.e.1295.4 yes 4
72.5 odd 6 1296.2.s.k.431.4 8
72.11 even 6 1296.2.s.k.863.1 8
72.13 even 6 1296.2.s.k.431.1 8
72.29 odd 6 1296.2.s.k.863.1 8
72.43 odd 6 1296.2.s.k.863.4 8
72.59 even 6 1296.2.s.k.431.4 8
72.61 even 6 1296.2.s.k.863.4 8
72.67 odd 6 1296.2.s.k.431.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1296.2.c.e.1295.1 4 8.3 odd 2
1296.2.c.e.1295.1 4 8.5 even 2
1296.2.c.e.1295.4 yes 4 24.5 odd 2
1296.2.c.e.1295.4 yes 4 24.11 even 2
1296.2.s.k.431.1 8 72.13 even 6
1296.2.s.k.431.1 8 72.67 odd 6
1296.2.s.k.431.4 8 72.5 odd 6
1296.2.s.k.431.4 8 72.59 even 6
1296.2.s.k.863.1 8 72.11 even 6
1296.2.s.k.863.1 8 72.29 odd 6
1296.2.s.k.863.4 8 72.43 odd 6
1296.2.s.k.863.4 8 72.61 even 6
5184.2.c.g.5183.1 4 3.2 odd 2 inner
5184.2.c.g.5183.1 4 12.11 even 2 inner
5184.2.c.g.5183.4 4 1.1 even 1 trivial
5184.2.c.g.5183.4 4 4.3 odd 2 CM