Defining parameters
Level: | \( N \) | \(=\) | \( 5184 = 2^{6} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5184.bs (of order \(27\) and degree \(18\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 81 \) |
Character field: | \(\Q(\zeta_{27})\) | ||
Sturm bound: | \(1728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5184, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 15768 | 3924 | 11844 |
Cusp forms | 15336 | 3852 | 11484 |
Eisenstein series | 432 | 72 | 360 |
Decomposition of \(S_{2}^{\mathrm{new}}(5184, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5184, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(648, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2592, [\chi])\)\(^{\oplus 2}\)