Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [5184,2,Mod(1,5184)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5184, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5184.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 5184 = 2^{6} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5184.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(41.3944484078\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 162) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 5184.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 3.00000 | 1.34164 | 0.670820 | − | 0.741620i | \(-0.265942\pi\) | ||||
0.670820 | + | 0.741620i | \(0.265942\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −4.00000 | −1.51186 | −0.755929 | − | 0.654654i | \(-0.772814\pi\) | ||||
−0.755929 | + | 0.654654i | \(0.772814\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000 | 0.277350 | 0.138675 | − | 0.990338i | \(-0.455716\pi\) | ||||
0.138675 | + | 0.990338i | \(0.455716\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −3.00000 | −0.727607 | −0.363803 | − | 0.931476i | \(-0.618522\pi\) | ||||
−0.363803 | + | 0.931476i | \(0.618522\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 4.00000 | 0.800000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −9.00000 | −1.67126 | −0.835629 | − | 0.549294i | \(-0.814897\pi\) | ||||
−0.835629 | + | 0.549294i | \(0.814897\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −12.0000 | −2.02837 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 1.00000 | 0.164399 | 0.0821995 | − | 0.996616i | \(-0.473806\pi\) | ||||
0.0821995 | + | 0.996616i | \(0.473806\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000 | 0.937043 | 0.468521 | − | 0.883452i | \(-0.344787\pi\) | ||||
0.468521 | + | 0.883452i | \(0.344787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −8.00000 | −1.21999 | −0.609994 | − | 0.792406i | \(-0.708828\pi\) | ||||
−0.609994 | + | 0.792406i | \(0.708828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −12.0000 | −1.75038 | −0.875190 | − | 0.483779i | \(-0.839264\pi\) | ||||
−0.875190 | + | 0.483779i | \(0.839264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 9.00000 | 1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000 | 0.824163 | 0.412082 | − | 0.911147i | \(-0.364802\pi\) | ||||
0.412082 | + | 0.911147i | \(0.364802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 1.00000 | 0.128037 | 0.0640184 | − | 0.997949i | \(-0.479608\pi\) | ||||
0.0640184 | + | 0.997949i | \(0.479608\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 3.00000 | 0.372104 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 4.00000 | 0.488678 | 0.244339 | − | 0.969690i | \(-0.421429\pi\) | ||||
0.244339 | + | 0.969690i | \(0.421429\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −12.0000 | −1.42414 | −0.712069 | − | 0.702109i | \(-0.752242\pi\) | ||||
−0.712069 | + | 0.702109i | \(0.752242\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 11.0000 | 1.28745 | 0.643726 | − | 0.765256i | \(-0.277388\pi\) | ||||
0.643726 | + | 0.765256i | \(0.277388\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −16.0000 | −1.80014 | −0.900070 | − | 0.435745i | \(-0.856485\pi\) | ||||
−0.900070 | + | 0.435745i | \(0.856485\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000 | 1.31717 | 0.658586 | − | 0.752506i | \(-0.271155\pi\) | ||||
0.658586 | + | 0.752506i | \(0.271155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −9.00000 | −0.976187 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −3.00000 | −0.317999 | −0.159000 | − | 0.987279i | \(-0.550827\pi\) | ||||
−0.159000 | + | 0.987279i | \(0.550827\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −4.00000 | −0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 12.0000 | 1.23117 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.00000 | 0.203069 | 0.101535 | − | 0.994832i | \(-0.467625\pi\) | ||||
0.101535 | + | 0.994832i | \(0.467625\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 6.00000 | 0.597022 | 0.298511 | − | 0.954406i | \(-0.403510\pi\) | ||||
0.298511 | + | 0.954406i | \(0.403510\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −12.0000 | −1.16008 | −0.580042 | − | 0.814587i | \(-0.696964\pi\) | ||||
−0.580042 | + | 0.814587i | \(0.696964\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −11.0000 | −1.05361 | −0.526804 | − | 0.849987i | \(-0.676610\pi\) | ||||
−0.526804 | + | 0.849987i | \(0.676610\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −15.0000 | −1.41108 | −0.705541 | − | 0.708669i | \(-0.749296\pi\) | ||||
−0.705541 | + | 0.708669i | \(0.749296\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 12.0000 | 1.10004 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −3.00000 | −0.268328 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −16.0000 | −1.41977 | −0.709885 | − | 0.704317i | \(-0.751253\pi\) | ||||
−0.709885 | + | 0.704317i | \(0.751253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −16.0000 | −1.38738 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 9.00000 | 0.768922 | 0.384461 | − | 0.923141i | \(-0.374387\pi\) | ||||
0.384461 | + | 0.923141i | \(0.374387\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −20.0000 | −1.69638 | −0.848189 | − | 0.529694i | \(-0.822307\pi\) | ||||
−0.848189 | + | 0.529694i | \(0.822307\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −27.0000 | −2.24223 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −9.00000 | −0.737309 | −0.368654 | − | 0.929567i | \(-0.620181\pi\) | ||||
−0.368654 | + | 0.929567i | \(0.620181\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −12.0000 | −0.963863 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 13.0000 | 1.03751 | 0.518756 | − | 0.854922i | \(-0.326395\pi\) | ||||
0.518756 | + | 0.854922i | \(0.326395\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −8.00000 | −0.626608 | −0.313304 | − | 0.949653i | \(-0.601436\pi\) | ||||
−0.313304 | + | 0.949653i | \(0.601436\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 12.0000 | 0.928588 | 0.464294 | − | 0.885681i | \(-0.346308\pi\) | ||||
0.464294 | + | 0.885681i | \(0.346308\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −12.0000 | −0.923077 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 3.00000 | 0.228086 | 0.114043 | − | 0.993476i | \(-0.463620\pi\) | ||||
0.114043 | + | 0.993476i | \(0.463620\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −16.0000 | −1.20949 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 10.0000 | 0.743294 | 0.371647 | − | 0.928374i | \(-0.378793\pi\) | ||||
0.371647 | + | 0.928374i | \(0.378793\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 3.00000 | 0.220564 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 12.0000 | 0.868290 | 0.434145 | − | 0.900843i | \(-0.357051\pi\) | ||||
0.434145 | + | 0.900843i | \(0.357051\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −13.0000 | −0.935760 | −0.467880 | − | 0.883792i | \(-0.654982\pi\) | ||||
−0.467880 | + | 0.883792i | \(0.654982\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 3.00000 | 0.213741 | 0.106871 | − | 0.994273i | \(-0.465917\pi\) | ||||
0.106871 | + | 0.994273i | \(0.465917\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −4.00000 | −0.283552 | −0.141776 | − | 0.989899i | \(-0.545281\pi\) | ||||
−0.141776 | + | 0.989899i | \(0.545281\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 36.0000 | 2.52670 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 18.0000 | 1.25717 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −8.00000 | −0.550743 | −0.275371 | − | 0.961338i | \(-0.588801\pi\) | ||||
−0.275371 | + | 0.961338i | \(0.588801\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −24.0000 | −1.63679 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 16.0000 | 1.08615 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −3.00000 | −0.201802 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 8.00000 | 0.535720 | 0.267860 | − | 0.963458i | \(-0.413684\pi\) | ||||
0.267860 | + | 0.963458i | \(0.413684\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000 | 0.796468 | 0.398234 | − | 0.917284i | \(-0.369623\pi\) | ||||
0.398234 | + | 0.917284i | \(0.369623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −23.0000 | −1.51988 | −0.759941 | − | 0.649992i | \(-0.774772\pi\) | ||||
−0.759941 | + | 0.649992i | \(0.774772\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 21.0000 | 1.37576 | 0.687878 | − | 0.725826i | \(-0.258542\pi\) | ||||
0.687878 | + | 0.725826i | \(0.258542\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −36.0000 | −2.34838 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 12.0000 | 0.776215 | 0.388108 | − | 0.921614i | \(-0.373129\pi\) | ||||
0.388108 | + | 0.921614i | \(0.373129\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −13.0000 | −0.837404 | −0.418702 | − | 0.908124i | \(-0.637515\pi\) | ||||
−0.418702 | + | 0.908124i | \(0.637515\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 27.0000 | 1.72497 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 4.00000 | 0.254514 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 24.0000 | 1.51487 | 0.757433 | − | 0.652913i | \(-0.226453\pi\) | ||||
0.757433 | + | 0.652913i | \(0.226453\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −15.0000 | −0.935674 | −0.467837 | − | 0.883815i | \(-0.654967\pi\) | ||||
−0.467837 | + | 0.883815i | \(0.654967\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −4.00000 | −0.248548 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 12.0000 | 0.739952 | 0.369976 | − | 0.929041i | \(-0.379366\pi\) | ||||
0.369976 | + | 0.929041i | \(0.379366\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 18.0000 | 1.10573 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −21.0000 | −1.28039 | −0.640196 | − | 0.768211i | \(-0.721147\pi\) | ||||
−0.640196 | + | 0.768211i | \(0.721147\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −16.0000 | −0.971931 | −0.485965 | − | 0.873978i | \(-0.661532\pi\) | ||||
−0.485965 | + | 0.873978i | \(0.661532\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 10.0000 | 0.600842 | 0.300421 | − | 0.953807i | \(-0.402873\pi\) | ||||
0.300421 | + | 0.953807i | \(0.402873\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −27.0000 | −1.61068 | −0.805342 | − | 0.592810i | \(-0.798019\pi\) | ||||
−0.805342 | + | 0.592810i | \(0.798019\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000 | 0.237775 | 0.118888 | − | 0.992908i | \(-0.462067\pi\) | ||||
0.118888 | + | 0.992908i | \(0.462067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −24.0000 | −1.41668 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −8.00000 | −0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −9.00000 | −0.525786 | −0.262893 | − | 0.964825i | \(-0.584677\pi\) | ||||
−0.262893 | + | 0.964825i | \(0.584677\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 32.0000 | 1.84445 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 3.00000 | 0.171780 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −20.0000 | −1.14146 | −0.570730 | − | 0.821138i | \(-0.693340\pi\) | ||||
−0.570730 | + | 0.821138i | \(0.693340\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 24.0000 | 1.36092 | 0.680458 | − | 0.732787i | \(-0.261781\pi\) | ||||
0.680458 | + | 0.732787i | \(0.261781\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 23.0000 | 1.30004 | 0.650018 | − | 0.759918i | \(-0.274761\pi\) | ||||
0.650018 | + | 0.759918i | \(0.274761\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −21.0000 | −1.17948 | −0.589739 | − | 0.807594i | \(-0.700769\pi\) | ||||
−0.589739 | + | 0.807594i | \(0.700769\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −12.0000 | −0.667698 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 4.00000 | 0.221880 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 48.0000 | 2.64633 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −20.0000 | −1.09930 | −0.549650 | − | 0.835395i | \(-0.685239\pi\) | ||||
−0.549650 | + | 0.835395i | \(0.685239\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 12.0000 | 0.655630 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 2.00000 | 0.108947 | 0.0544735 | − | 0.998515i | \(-0.482652\pi\) | ||||
0.0544735 | + | 0.998515i | \(0.482652\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −8.00000 | −0.431959 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −12.0000 | −0.644194 | −0.322097 | − | 0.946707i | \(-0.604388\pi\) | ||||
−0.322097 | + | 0.946707i | \(0.604388\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −14.0000 | −0.749403 | −0.374701 | − | 0.927146i | \(-0.622255\pi\) | ||||
−0.374701 | + | 0.927146i | \(0.622255\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −18.0000 | −0.958043 | −0.479022 | − | 0.877803i | \(-0.659008\pi\) | ||||
−0.479022 | + | 0.877803i | \(0.659008\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −36.0000 | −1.91068 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 33.0000 | 1.72730 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 8.00000 | 0.417597 | 0.208798 | − | 0.977959i | \(-0.433045\pi\) | ||||
0.208798 | + | 0.977959i | \(0.433045\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −24.0000 | −1.24602 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 10.0000 | 0.517780 | 0.258890 | − | 0.965907i | \(-0.416643\pi\) | ||||
0.258890 | + | 0.965907i | \(0.416643\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −9.00000 | −0.463524 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 28.0000 | 1.43826 | 0.719132 | − | 0.694874i | \(-0.244540\pi\) | ||||
0.719132 | + | 0.694874i | \(0.244540\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −12.0000 | −0.613171 | −0.306586 | − | 0.951843i | \(-0.599187\pi\) | ||||
−0.306586 | + | 0.951843i | \(0.599187\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −48.0000 | −2.41514 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 25.0000 | 1.25471 | 0.627357 | − | 0.778732i | \(-0.284137\pi\) | ||||
0.627357 | + | 0.778732i | \(0.284137\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −3.00000 | −0.149813 | −0.0749064 | − | 0.997191i | \(-0.523866\pi\) | ||||
−0.0749064 | + | 0.997191i | \(0.523866\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −4.00000 | −0.199254 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −25.0000 | −1.23617 | −0.618085 | − | 0.786111i | \(-0.712091\pi\) | ||||
−0.618085 | + | 0.786111i | \(0.712091\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 36.0000 | 1.76717 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 24.0000 | 1.17248 | 0.586238 | − | 0.810139i | \(-0.300608\pi\) | ||||
0.586238 | + | 0.810139i | \(0.300608\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 13.0000 | 0.633581 | 0.316791 | − | 0.948495i | \(-0.397395\pi\) | ||||
0.316791 | + | 0.948495i | \(0.397395\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −12.0000 | −0.582086 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −4.00000 | −0.193574 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −12.0000 | −0.578020 | −0.289010 | − | 0.957326i | \(-0.593326\pi\) | ||||
−0.289010 | + | 0.957326i | \(0.593326\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 11.0000 | 0.528626 | 0.264313 | − | 0.964437i | \(-0.414855\pi\) | ||||
0.264313 | + | 0.964437i | \(0.414855\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −28.0000 | −1.33637 | −0.668184 | − | 0.743996i | \(-0.732928\pi\) | ||||
−0.668184 | + | 0.743996i | \(0.732928\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 12.0000 | 0.570137 | 0.285069 | − | 0.958507i | \(-0.407984\pi\) | ||||
0.285069 | + | 0.958507i | \(0.407984\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −9.00000 | −0.426641 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −18.0000 | −0.849473 | −0.424736 | − | 0.905317i | \(-0.639633\pi\) | ||||
−0.424736 | + | 0.905317i | \(0.639633\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −12.0000 | −0.562569 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −1.00000 | −0.0467780 | −0.0233890 | − | 0.999726i | \(-0.507446\pi\) | ||||
−0.0233890 | + | 0.999726i | \(0.507446\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −18.0000 | −0.838344 | −0.419172 | − | 0.907907i | \(-0.637680\pi\) | ||||
−0.419172 | + | 0.907907i | \(0.637680\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 8.00000 | 0.371792 | 0.185896 | − | 0.982569i | \(-0.440481\pi\) | ||||
0.185896 | + | 0.982569i | \(0.440481\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 24.0000 | 1.11059 | 0.555294 | − | 0.831654i | \(-0.312606\pi\) | ||||
0.555294 | + | 0.831654i | \(0.312606\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −16.0000 | −0.738811 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 16.0000 | 0.734130 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −12.0000 | −0.548294 | −0.274147 | − | 0.961688i | \(-0.588395\pi\) | ||||
−0.274147 | + | 0.961688i | \(0.588395\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 1.00000 | 0.0455961 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 6.00000 | 0.272446 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −4.00000 | −0.181257 | −0.0906287 | − | 0.995885i | \(-0.528888\pi\) | ||||
−0.0906287 | + | 0.995885i | \(0.528888\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 27.0000 | 1.21602 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 48.0000 | 2.15309 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 40.0000 | 1.79065 | 0.895323 | − | 0.445418i | \(-0.146945\pi\) | ||||
0.895323 | + | 0.445418i | \(0.146945\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 18.0000 | 0.800989 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 30.0000 | 1.32973 | 0.664863 | − | 0.746965i | \(-0.268490\pi\) | ||||
0.664863 | + | 0.746965i | \(0.268490\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −44.0000 | −1.94645 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −12.0000 | −0.528783 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 6.00000 | 0.262865 | 0.131432 | − | 0.991325i | \(-0.458042\pi\) | ||||
0.131432 | + | 0.991325i | \(0.458042\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 16.0000 | 0.699631 | 0.349816 | − | 0.936819i | \(-0.386244\pi\) | ||||
0.349816 | + | 0.936819i | \(0.386244\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 12.0000 | 0.522728 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 6.00000 | 0.259889 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −36.0000 | −1.55642 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 1.00000 | 0.0429934 | 0.0214967 | − | 0.999769i | \(-0.493157\pi\) | ||||
0.0214967 | + | 0.999769i | \(0.493157\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −33.0000 | −1.41356 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −44.0000 | −1.88130 | −0.940652 | − | 0.339372i | \(-0.889785\pi\) | ||||
−0.940652 | + | 0.339372i | \(0.889785\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −36.0000 | −1.53365 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 64.0000 | 2.72156 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 3.00000 | 0.127114 | 0.0635570 | − | 0.997978i | \(-0.479756\pi\) | ||||
0.0635570 | + | 0.997978i | \(0.479756\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −12.0000 | −0.505740 | −0.252870 | − | 0.967500i | \(-0.581374\pi\) | ||||
−0.252870 | + | 0.967500i | \(0.581374\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −45.0000 | −1.89316 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −15.0000 | −0.628833 | −0.314416 | − | 0.949285i | \(-0.601809\pi\) | ||||
−0.314416 | + | 0.949285i | \(0.601809\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 16.0000 | 0.669579 | 0.334790 | − | 0.942293i | \(-0.391335\pi\) | ||||
0.334790 | + | 0.942293i | \(0.391335\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −25.0000 | −1.04076 | −0.520382 | − | 0.853934i | \(-0.674210\pi\) | ||||
−0.520382 | + | 0.853934i | \(0.674210\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −48.0000 | −1.99138 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 24.0000 | 0.990586 | 0.495293 | − | 0.868726i | \(-0.335061\pi\) | ||||
0.495293 | + | 0.868726i | \(0.335061\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −16.0000 | −0.659269 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 33.0000 | 1.35515 | 0.677574 | − | 0.735455i | \(-0.263031\pi\) | ||||
0.677574 | + | 0.735455i | \(0.263031\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 36.0000 | 1.47586 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −36.0000 | −1.47092 | −0.735460 | − | 0.677568i | \(-0.763034\pi\) | ||||
−0.735460 | + | 0.677568i | \(0.763034\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 35.0000 | 1.42768 | 0.713840 | − | 0.700309i | \(-0.246954\pi\) | ||||
0.713840 | + | 0.700309i | \(0.246954\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −33.0000 | −1.34164 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 20.0000 | 0.811775 | 0.405887 | − | 0.913923i | \(-0.366962\pi\) | ||||
0.405887 | + | 0.913923i | \(0.366962\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −12.0000 | −0.485468 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −38.0000 | −1.53481 | −0.767403 | − | 0.641165i | \(-0.778451\pi\) | ||||
−0.767403 | + | 0.641165i | \(0.778451\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −3.00000 | −0.120775 | −0.0603877 | − | 0.998175i | \(-0.519234\pi\) | ||||
−0.0603877 | + | 0.998175i | \(0.519234\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −8.00000 | −0.321547 | −0.160774 | − | 0.986991i | \(-0.551399\pi\) | ||||
−0.160774 | + | 0.986991i | \(0.551399\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 12.0000 | 0.480770 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −29.0000 | −1.16000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −3.00000 | −0.119618 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 8.00000 | 0.318475 | 0.159237 | − | 0.987240i | \(-0.449096\pi\) | ||||
0.159237 | + | 0.987240i | \(0.449096\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −48.0000 | −1.90482 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 9.00000 | 0.356593 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 45.0000 | 1.77739 | 0.888697 | − | 0.458496i | \(-0.151612\pi\) | ||||
0.888697 | + | 0.458496i | \(0.151612\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 4.00000 | 0.157745 | 0.0788723 | − | 0.996885i | \(-0.474868\pi\) | ||||
0.0788723 | + | 0.996885i | \(0.474868\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 36.0000 | 1.41531 | 0.707653 | − | 0.706560i | \(-0.249754\pi\) | ||||
0.707653 | + | 0.706560i | \(0.249754\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −18.0000 | −0.704394 | −0.352197 | − | 0.935926i | \(-0.614565\pi\) | ||||
−0.352197 | + | 0.935926i | \(0.614565\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 36.0000 | 1.40664 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −12.0000 | −0.467454 | −0.233727 | − | 0.972302i | \(-0.575092\pi\) | ||||
−0.233727 | + | 0.972302i | \(0.575092\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −23.0000 | −0.894596 | −0.447298 | − | 0.894385i | \(-0.647614\pi\) | ||||
−0.447298 | + | 0.894385i | \(0.647614\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | −48.0000 | −1.86136 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 11.0000 | 0.424019 | 0.212009 | − | 0.977268i | \(-0.431999\pi\) | ||||
0.212009 | + | 0.977268i | \(0.431999\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 6.00000 | 0.230599 | 0.115299 | − | 0.993331i | \(-0.463217\pi\) | ||||
0.115299 | + | 0.993331i | \(0.463217\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −8.00000 | −0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −36.0000 | −1.37750 | −0.688751 | − | 0.724998i | \(-0.741841\pi\) | ||||
−0.688751 | + | 0.724998i | \(0.741841\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 27.0000 | 1.03162 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 6.00000 | 0.228582 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 28.0000 | 1.06517 | 0.532585 | − | 0.846376i | \(-0.321221\pi\) | ||||
0.532585 | + | 0.846376i | \(0.321221\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −60.0000 | −2.27593 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −18.0000 | −0.681799 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 51.0000 | 1.92624 | 0.963122 | − | 0.269066i | \(-0.0867150\pi\) | ||||
0.963122 | + | 0.269066i | \(0.0867150\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 4.00000 | 0.150863 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −24.0000 | −0.902613 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −47.0000 | −1.76512 | −0.882561 | − | 0.470198i | \(-0.844183\pi\) | ||||
−0.882561 | + | 0.470198i | \(0.844183\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 16.0000 | 0.595871 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −36.0000 | −1.33701 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −28.0000 | −1.03846 | −0.519231 | − | 0.854634i | \(-0.673782\pi\) | ||||
−0.519231 | + | 0.854634i | \(0.673782\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 24.0000 | 0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −14.0000 | −0.517102 | −0.258551 | − | 0.965998i | \(-0.583245\pi\) | ||||
−0.258551 | + | 0.965998i | \(0.583245\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −20.0000 | −0.735712 | −0.367856 | − | 0.929883i | \(-0.619908\pi\) | ||||
−0.367856 | + | 0.929883i | \(0.619908\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 12.0000 | 0.440237 | 0.220119 | − | 0.975473i | \(-0.429356\pi\) | ||||
0.220119 | + | 0.975473i | \(0.429356\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −27.0000 | −0.989203 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 48.0000 | 1.75388 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 20.0000 | 0.729810 | 0.364905 | − | 0.931045i | \(-0.381101\pi\) | ||||
0.364905 | + | 0.931045i | \(0.381101\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 24.0000 | 0.873449 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −38.0000 | −1.38113 | −0.690567 | − | 0.723269i | \(-0.742639\pi\) | ||||
−0.690567 | + | 0.723269i | \(0.742639\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −15.0000 | −0.543750 | −0.271875 | − | 0.962333i | \(-0.587644\pi\) | ||||
−0.271875 | + | 0.962333i | \(0.587644\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 44.0000 | 1.59291 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −37.0000 | −1.33425 | −0.667127 | − | 0.744944i | \(-0.732476\pi\) | ||||
−0.667127 | + | 0.744944i | \(0.732476\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 27.0000 | 0.971123 | 0.485561 | − | 0.874203i | \(-0.338615\pi\) | ||||
0.485561 | + | 0.874203i | \(0.338615\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −16.0000 | −0.574737 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 24.0000 | 0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 39.0000 | 1.39197 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −32.0000 | −1.14068 | −0.570338 | − | 0.821410i | \(-0.693188\pi\) | ||||
−0.570338 | + | 0.821410i | \(0.693188\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 60.0000 | 2.13335 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 1.00000 | 0.0355110 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 51.0000 | 1.80651 | 0.903256 | − | 0.429101i | \(-0.141170\pi\) | ||||
0.903256 | + | 0.429101i | \(0.141170\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 36.0000 | 1.27359 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −39.0000 | −1.37117 | −0.685583 | − | 0.727994i | \(-0.740453\pi\) | ||||
−0.685583 | + | 0.727994i | \(0.740453\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 16.0000 | 0.561836 | 0.280918 | − | 0.959732i | \(-0.409361\pi\) | ||||
0.280918 | + | 0.959732i | \(0.409361\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −24.0000 | −0.840683 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −32.0000 | −1.11954 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 15.0000 | 0.523504 | 0.261752 | − | 0.965135i | \(-0.415700\pi\) | ||||
0.261752 | + | 0.965135i | \(0.415700\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 44.0000 | 1.53374 | 0.766872 | − | 0.641800i | \(-0.221812\pi\) | ||||
0.766872 | + | 0.641800i | \(0.221812\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 48.0000 | 1.66912 | 0.834562 | − | 0.550914i | \(-0.185721\pi\) | ||||
0.834562 | + | 0.550914i | \(0.185721\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −14.0000 | −0.486240 | −0.243120 | − | 0.969996i | \(-0.578171\pi\) | ||||
−0.243120 | + | 0.969996i | \(0.578171\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −27.0000 | −0.935495 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 36.0000 | 1.24583 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 24.0000 | 0.828572 | 0.414286 | − | 0.910147i | \(-0.364031\pi\) | ||||
0.414286 | + | 0.910147i | \(0.364031\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 52.0000 | 1.79310 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −36.0000 | −1.23844 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 44.0000 | 1.51186 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 10.0000 | 0.342393 | 0.171197 | − | 0.985237i | \(-0.445237\pi\) | ||||
0.171197 | + | 0.985237i | \(0.445237\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −39.0000 | −1.33221 | −0.666107 | − | 0.745856i | \(-0.732041\pi\) | ||||
−0.666107 | + | 0.745856i | \(0.732041\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 52.0000 | 1.77422 | 0.887109 | − | 0.461561i | \(-0.152710\pi\) | ||||
0.887109 | + | 0.461561i | \(0.152710\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000 | 0.816970 | 0.408485 | − | 0.912765i | \(-0.366057\pi\) | ||||
0.408485 | + | 0.912765i | \(0.366057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 9.00000 | 0.306009 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 4.00000 | 0.135535 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 12.0000 | 0.405674 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 25.0000 | 0.844190 | 0.422095 | − | 0.906552i | \(-0.361295\pi\) | ||||
0.422095 | + | 0.906552i | \(0.361295\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 30.0000 | 1.01073 | 0.505363 | − | 0.862907i | \(-0.331359\pi\) | ||||
0.505363 | + | 0.862907i | \(0.331359\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 4.00000 | 0.134611 | 0.0673054 | − | 0.997732i | \(-0.478560\pi\) | ||||
0.0673054 | + | 0.997732i | \(0.478560\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 24.0000 | 0.805841 | 0.402921 | − | 0.915235i | \(-0.367995\pi\) | ||||
0.402921 | + | 0.915235i | \(0.367995\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 64.0000 | 2.14649 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −48.0000 | −1.60626 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −36.0000 | −1.20335 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 36.0000 | 1.20067 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −18.0000 | −0.599667 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 30.0000 | 0.997234 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 16.0000 | 0.531271 | 0.265636 | − | 0.964073i | \(-0.414418\pi\) | ||||
0.265636 | + | 0.964073i | \(0.414418\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 24.0000 | 0.795155 | 0.397578 | − | 0.917568i | \(-0.369851\pi\) | ||||
0.397578 | + | 0.917568i | \(0.369851\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −48.0000 | −1.58510 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −16.0000 | −0.527791 | −0.263896 | − | 0.964551i | \(-0.585007\pi\) | ||||
−0.263896 | + | 0.964551i | \(0.585007\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −12.0000 | −0.394985 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 4.00000 | 0.131519 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −3.00000 | −0.0984268 | −0.0492134 | − | 0.998788i | \(-0.515671\pi\) | ||||
−0.0492134 | + | 0.998788i | \(0.515671\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 36.0000 | 1.17985 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −37.0000 | −1.20874 | −0.604369 | − | 0.796705i | \(-0.706575\pi\) | ||||
−0.604369 | + | 0.796705i | \(0.706575\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 27.0000 | 0.880175 | 0.440087 | − | 0.897955i | \(-0.354947\pi\) | ||||
0.440087 | + | 0.897955i | \(0.354947\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 12.0000 | 0.389948 | 0.194974 | − | 0.980808i | \(-0.437538\pi\) | ||||
0.194974 | + | 0.980808i | \(0.437538\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 11.0000 | 0.357075 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 9.00000 | 0.291539 | 0.145769 | − | 0.989319i | \(-0.453434\pi\) | ||||
0.145769 | + | 0.989319i | \(0.453434\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 36.0000 | 1.16493 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −36.0000 | −1.16250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −39.0000 | −1.25545 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −4.00000 | −0.128631 | −0.0643157 | − | 0.997930i | \(-0.520486\pi\) | ||||
−0.0643157 | + | 0.997930i | \(0.520486\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 36.0000 | 1.15529 | 0.577647 | − | 0.816286i | \(-0.303971\pi\) | ||||
0.577647 | + | 0.816286i | \(0.303971\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 80.0000 | 2.56468 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −18.0000 | −0.575871 | −0.287936 | − | 0.957650i | \(-0.592969\pi\) | ||||
−0.287936 | + | 0.957650i | \(0.592969\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 48.0000 | 1.53096 | 0.765481 | − | 0.643458i | \(-0.222501\pi\) | ||||
0.765481 | + | 0.643458i | \(0.222501\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 9.00000 | 0.286764 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −52.0000 | −1.65183 | −0.825917 | − | 0.563791i | \(-0.809342\pi\) | ||||
−0.825917 | + | 0.563791i | \(0.809342\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −12.0000 | −0.380426 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 37.0000 | 1.17180 | 0.585901 | − | 0.810383i | \(-0.300741\pi\) | ||||
0.585901 | + | 0.810383i | \(0.300741\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 5184.2.a.y.1.1 | 1 | ||
3.2 | odd | 2 | 5184.2.a.c.1.1 | 1 | |||
4.3 | odd | 2 | 5184.2.a.bd.1.1 | 1 | |||
8.3 | odd | 2 | 1296.2.a.c.1.1 | 1 | |||
8.5 | even | 2 | 162.2.a.a.1.1 | ✓ | 1 | ||
12.11 | even | 2 | 5184.2.a.h.1.1 | 1 | |||
24.5 | odd | 2 | 162.2.a.d.1.1 | yes | 1 | ||
24.11 | even | 2 | 1296.2.a.l.1.1 | 1 | |||
40.13 | odd | 4 | 4050.2.c.g.649.2 | 2 | |||
40.29 | even | 2 | 4050.2.a.bh.1.1 | 1 | |||
40.37 | odd | 4 | 4050.2.c.g.649.1 | 2 | |||
56.13 | odd | 2 | 7938.2.a.n.1.1 | 1 | |||
72.5 | odd | 6 | 162.2.c.a.55.1 | 2 | |||
72.11 | even | 6 | 1296.2.i.b.433.1 | 2 | |||
72.13 | even | 6 | 162.2.c.d.55.1 | 2 | |||
72.29 | odd | 6 | 162.2.c.a.109.1 | 2 | |||
72.43 | odd | 6 | 1296.2.i.n.433.1 | 2 | |||
72.59 | even | 6 | 1296.2.i.b.865.1 | 2 | |||
72.61 | even | 6 | 162.2.c.d.109.1 | 2 | |||
72.67 | odd | 6 | 1296.2.i.n.865.1 | 2 | |||
120.29 | odd | 2 | 4050.2.a.r.1.1 | 1 | |||
120.53 | even | 4 | 4050.2.c.n.649.1 | 2 | |||
120.77 | even | 4 | 4050.2.c.n.649.2 | 2 | |||
168.125 | even | 2 | 7938.2.a.s.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
162.2.a.a.1.1 | ✓ | 1 | 8.5 | even | 2 | ||
162.2.a.d.1.1 | yes | 1 | 24.5 | odd | 2 | ||
162.2.c.a.55.1 | 2 | 72.5 | odd | 6 | |||
162.2.c.a.109.1 | 2 | 72.29 | odd | 6 | |||
162.2.c.d.55.1 | 2 | 72.13 | even | 6 | |||
162.2.c.d.109.1 | 2 | 72.61 | even | 6 | |||
1296.2.a.c.1.1 | 1 | 8.3 | odd | 2 | |||
1296.2.a.l.1.1 | 1 | 24.11 | even | 2 | |||
1296.2.i.b.433.1 | 2 | 72.11 | even | 6 | |||
1296.2.i.b.865.1 | 2 | 72.59 | even | 6 | |||
1296.2.i.n.433.1 | 2 | 72.43 | odd | 6 | |||
1296.2.i.n.865.1 | 2 | 72.67 | odd | 6 | |||
4050.2.a.r.1.1 | 1 | 120.29 | odd | 2 | |||
4050.2.a.bh.1.1 | 1 | 40.29 | even | 2 | |||
4050.2.c.g.649.1 | 2 | 40.37 | odd | 4 | |||
4050.2.c.g.649.2 | 2 | 40.13 | odd | 4 | |||
4050.2.c.n.649.1 | 2 | 120.53 | even | 4 | |||
4050.2.c.n.649.2 | 2 | 120.77 | even | 4 | |||
5184.2.a.c.1.1 | 1 | 3.2 | odd | 2 | |||
5184.2.a.h.1.1 | 1 | 12.11 | even | 2 | |||
5184.2.a.y.1.1 | 1 | 1.1 | even | 1 | trivial | ||
5184.2.a.bd.1.1 | 1 | 4.3 | odd | 2 | |||
7938.2.a.n.1.1 | 1 | 56.13 | odd | 2 | |||
7938.2.a.s.1.1 | 1 | 168.125 | even | 2 |