Properties

Label 5184.2.a.bx
Level $5184$
Weight $2$
Character orbit 5184.a
Self dual yes
Analytic conductor $41.394$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5184 = 2^{6} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5184.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(41.3944484078\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Defining polynomial: \(x^{2} - 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 288)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{5} + \beta q^{7} +O(q^{10})\) \( q + q^{5} + \beta q^{7} + \beta q^{11} + 3 q^{13} + 4 q^{17} + 4 \beta q^{19} + 5 \beta q^{23} -4 q^{25} - q^{29} -3 \beta q^{31} + \beta q^{35} + 8 q^{37} + 5 q^{41} -5 \beta q^{43} -7 \beta q^{47} -4 q^{49} + 8 q^{53} + \beta q^{55} + \beta q^{59} + 7 q^{61} + 3 q^{65} -5 \beta q^{67} -2 \beta q^{71} -12 q^{73} + 3 q^{77} + 3 \beta q^{79} -5 \beta q^{83} + 4 q^{85} -4 q^{89} + 3 \beta q^{91} + 4 \beta q^{95} -3 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + O(q^{10}) \) \( 2 q + 2 q^{5} + 6 q^{13} + 8 q^{17} - 8 q^{25} - 2 q^{29} + 16 q^{37} + 10 q^{41} - 8 q^{49} + 16 q^{53} + 14 q^{61} + 6 q^{65} - 24 q^{73} + 6 q^{77} + 8 q^{85} - 8 q^{89} - 6 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 1.00000 0 −1.73205 0 0 0
1.2 0 0 0 1.00000 0 1.73205 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5184.2.a.bx 2
3.b odd 2 1 5184.2.a.bl 2
4.b odd 2 1 inner 5184.2.a.bx 2
8.b even 2 1 2592.2.a.l 2
8.d odd 2 1 2592.2.a.l 2
9.c even 3 2 576.2.i.k 4
9.d odd 6 2 1728.2.i.l 4
12.b even 2 1 5184.2.a.bl 2
24.f even 2 1 2592.2.a.p 2
24.h odd 2 1 2592.2.a.p 2
36.f odd 6 2 576.2.i.k 4
36.h even 6 2 1728.2.i.l 4
72.j odd 6 2 864.2.i.d 4
72.l even 6 2 864.2.i.d 4
72.n even 6 2 288.2.i.d 4
72.p odd 6 2 288.2.i.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
288.2.i.d 4 72.n even 6 2
288.2.i.d 4 72.p odd 6 2
576.2.i.k 4 9.c even 3 2
576.2.i.k 4 36.f odd 6 2
864.2.i.d 4 72.j odd 6 2
864.2.i.d 4 72.l even 6 2
1728.2.i.l 4 9.d odd 6 2
1728.2.i.l 4 36.h even 6 2
2592.2.a.l 2 8.b even 2 1
2592.2.a.l 2 8.d odd 2 1
2592.2.a.p 2 24.f even 2 1
2592.2.a.p 2 24.h odd 2 1
5184.2.a.bl 2 3.b odd 2 1
5184.2.a.bl 2 12.b even 2 1
5184.2.a.bx 2 1.a even 1 1 trivial
5184.2.a.bx 2 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5184))\):

\( T_{5} - 1 \)
\( T_{7}^{2} - 3 \)
\( T_{11}^{2} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( ( -1 + T )^{2} \)
$7$ \( -3 + T^{2} \)
$11$ \( -3 + T^{2} \)
$13$ \( ( -3 + T )^{2} \)
$17$ \( ( -4 + T )^{2} \)
$19$ \( -48 + T^{2} \)
$23$ \( -75 + T^{2} \)
$29$ \( ( 1 + T )^{2} \)
$31$ \( -27 + T^{2} \)
$37$ \( ( -8 + T )^{2} \)
$41$ \( ( -5 + T )^{2} \)
$43$ \( -75 + T^{2} \)
$47$ \( -147 + T^{2} \)
$53$ \( ( -8 + T )^{2} \)
$59$ \( -3 + T^{2} \)
$61$ \( ( -7 + T )^{2} \)
$67$ \( -75 + T^{2} \)
$71$ \( -12 + T^{2} \)
$73$ \( ( 12 + T )^{2} \)
$79$ \( -27 + T^{2} \)
$83$ \( -75 + T^{2} \)
$89$ \( ( 4 + T )^{2} \)
$97$ \( ( 3 + T )^{2} \)
show more
show less