Properties

Label 5184.2.a.br
Level $5184$
Weight $2$
Character orbit 5184.a
Self dual yes
Analytic conductor $41.394$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5184 = 2^{6} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5184.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(41.3944484078\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Defining polynomial: \(x^{2} - 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} + 2 q^{7} +O(q^{10})\) \( q + \beta q^{5} + 2 q^{7} + 2 \beta q^{11} + q^{13} + 3 \beta q^{17} -2 q^{19} + 2 \beta q^{23} -2 q^{25} -\beta q^{29} + 8 q^{31} + 2 \beta q^{35} + 7 q^{37} -4 \beta q^{41} -2 q^{43} + 4 \beta q^{47} -3 q^{49} + 6 q^{55} -8 \beta q^{59} + 7 q^{61} + \beta q^{65} + 10 q^{67} -6 \beta q^{71} -7 q^{73} + 4 \beta q^{77} + 2 q^{79} + 8 \beta q^{83} + 9 q^{85} -3 \beta q^{89} + 2 q^{91} -2 \beta q^{95} + 2 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{7} + O(q^{10}) \) \( 2 q + 4 q^{7} + 2 q^{13} - 4 q^{19} - 4 q^{25} + 16 q^{31} + 14 q^{37} - 4 q^{43} - 6 q^{49} + 12 q^{55} + 14 q^{61} + 20 q^{67} - 14 q^{73} + 4 q^{79} + 18 q^{85} + 4 q^{91} + 4 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −1.73205 0 2.00000 0 0 0
1.2 0 0 0 1.73205 0 2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5184.2.a.br 2
3.b odd 2 1 inner 5184.2.a.br 2
4.b odd 2 1 5184.2.a.bq 2
8.b even 2 1 81.2.a.a 2
8.d odd 2 1 1296.2.a.o 2
12.b even 2 1 5184.2.a.bq 2
24.f even 2 1 1296.2.a.o 2
24.h odd 2 1 81.2.a.a 2
40.f even 2 1 2025.2.a.j 2
40.i odd 4 2 2025.2.b.k 4
56.h odd 2 1 3969.2.a.i 2
72.j odd 6 2 81.2.c.b 4
72.l even 6 2 1296.2.i.s 4
72.n even 6 2 81.2.c.b 4
72.p odd 6 2 1296.2.i.s 4
88.b odd 2 1 9801.2.a.v 2
120.i odd 2 1 2025.2.a.j 2
120.w even 4 2 2025.2.b.k 4
168.i even 2 1 3969.2.a.i 2
216.t even 18 6 729.2.e.o 12
216.x odd 18 6 729.2.e.o 12
264.m even 2 1 9801.2.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.2.a.a 2 8.b even 2 1
81.2.a.a 2 24.h odd 2 1
81.2.c.b 4 72.j odd 6 2
81.2.c.b 4 72.n even 6 2
729.2.e.o 12 216.t even 18 6
729.2.e.o 12 216.x odd 18 6
1296.2.a.o 2 8.d odd 2 1
1296.2.a.o 2 24.f even 2 1
1296.2.i.s 4 72.l even 6 2
1296.2.i.s 4 72.p odd 6 2
2025.2.a.j 2 40.f even 2 1
2025.2.a.j 2 120.i odd 2 1
2025.2.b.k 4 40.i odd 4 2
2025.2.b.k 4 120.w even 4 2
3969.2.a.i 2 56.h odd 2 1
3969.2.a.i 2 168.i even 2 1
5184.2.a.bq 2 4.b odd 2 1
5184.2.a.bq 2 12.b even 2 1
5184.2.a.br 2 1.a even 1 1 trivial
5184.2.a.br 2 3.b odd 2 1 inner
9801.2.a.v 2 88.b odd 2 1
9801.2.a.v 2 264.m even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5184))\):

\( T_{5}^{2} - 3 \)
\( T_{7} - 2 \)
\( T_{11}^{2} - 12 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( -3 + T^{2} \)
$7$ \( ( -2 + T )^{2} \)
$11$ \( -12 + T^{2} \)
$13$ \( ( -1 + T )^{2} \)
$17$ \( -27 + T^{2} \)
$19$ \( ( 2 + T )^{2} \)
$23$ \( -12 + T^{2} \)
$29$ \( -3 + T^{2} \)
$31$ \( ( -8 + T )^{2} \)
$37$ \( ( -7 + T )^{2} \)
$41$ \( -48 + T^{2} \)
$43$ \( ( 2 + T )^{2} \)
$47$ \( -48 + T^{2} \)
$53$ \( T^{2} \)
$59$ \( -192 + T^{2} \)
$61$ \( ( -7 + T )^{2} \)
$67$ \( ( -10 + T )^{2} \)
$71$ \( -108 + T^{2} \)
$73$ \( ( 7 + T )^{2} \)
$79$ \( ( -2 + T )^{2} \)
$83$ \( -192 + T^{2} \)
$89$ \( -27 + T^{2} \)
$97$ \( ( -2 + T )^{2} \)
show more
show less