# Properties

 Label 5184.2.a.bk Level $5184$ Weight $2$ Character orbit 5184.a Self dual yes Analytic conductor $41.394$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$5184 = 2^{6} \cdot 3^{4}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5184.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$41.3944484078$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{6})$$ Defining polynomial: $$x^{2} - 6$$ x^2 - 6 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 2592) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 2\sqrt{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{5} - \beta q^{7} +O(q^{10})$$ q - q^5 - b * q^7 $$q - q^{5} - \beta q^{7} + \beta q^{11} - 3 q^{13} + 5 q^{17} - \beta q^{19} - \beta q^{23} - 4 q^{25} - 5 q^{29} + \beta q^{35} + 5 q^{37} - 2 q^{41} - \beta q^{43} + 2 \beta q^{47} + 17 q^{49} - 2 q^{53} - \beta q^{55} - 2 \beta q^{59} + 13 q^{61} + 3 q^{65} - \beta q^{67} + \beta q^{71} + 3 q^{73} - 24 q^{77} + 3 \beta q^{79} - 2 \beta q^{83} - 5 q^{85} + 13 q^{89} + 3 \beta q^{91} + \beta q^{95} - 6 q^{97} +O(q^{100})$$ q - q^5 - b * q^7 + b * q^11 - 3 * q^13 + 5 * q^17 - b * q^19 - b * q^23 - 4 * q^25 - 5 * q^29 + b * q^35 + 5 * q^37 - 2 * q^41 - b * q^43 + 2*b * q^47 + 17 * q^49 - 2 * q^53 - b * q^55 - 2*b * q^59 + 13 * q^61 + 3 * q^65 - b * q^67 + b * q^71 + 3 * q^73 - 24 * q^77 + 3*b * q^79 - 2*b * q^83 - 5 * q^85 + 13 * q^89 + 3*b * q^91 + b * q^95 - 6 * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{5}+O(q^{10})$$ 2 * q - 2 * q^5 $$2 q - 2 q^{5} - 6 q^{13} + 10 q^{17} - 8 q^{25} - 10 q^{29} + 10 q^{37} - 4 q^{41} + 34 q^{49} - 4 q^{53} + 26 q^{61} + 6 q^{65} + 6 q^{73} - 48 q^{77} - 10 q^{85} + 26 q^{89} - 12 q^{97}+O(q^{100})$$ 2 * q - 2 * q^5 - 6 * q^13 + 10 * q^17 - 8 * q^25 - 10 * q^29 + 10 * q^37 - 4 * q^41 + 34 * q^49 - 4 * q^53 + 26 * q^61 + 6 * q^65 + 6 * q^73 - 48 * q^77 - 10 * q^85 + 26 * q^89 - 12 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.44949 −2.44949
0 0 0 −1.00000 0 −4.89898 0 0 0
1.2 0 0 0 −1.00000 0 4.89898 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5184.2.a.bk 2
3.b odd 2 1 5184.2.a.bv 2
4.b odd 2 1 inner 5184.2.a.bk 2
8.b even 2 1 2592.2.a.r yes 2
8.d odd 2 1 2592.2.a.r yes 2
12.b even 2 1 5184.2.a.bv 2
24.f even 2 1 2592.2.a.m 2
24.h odd 2 1 2592.2.a.m 2
72.j odd 6 2 2592.2.i.bd 4
72.l even 6 2 2592.2.i.bd 4
72.n even 6 2 2592.2.i.z 4
72.p odd 6 2 2592.2.i.z 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2592.2.a.m 2 24.f even 2 1
2592.2.a.m 2 24.h odd 2 1
2592.2.a.r yes 2 8.b even 2 1
2592.2.a.r yes 2 8.d odd 2 1
2592.2.i.z 4 72.n even 6 2
2592.2.i.z 4 72.p odd 6 2
2592.2.i.bd 4 72.j odd 6 2
2592.2.i.bd 4 72.l even 6 2
5184.2.a.bk 2 1.a even 1 1 trivial
5184.2.a.bk 2 4.b odd 2 1 inner
5184.2.a.bv 2 3.b odd 2 1
5184.2.a.bv 2 12.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5184))$$:

 $$T_{5} + 1$$ T5 + 1 $$T_{7}^{2} - 24$$ T7^2 - 24 $$T_{11}^{2} - 24$$ T11^2 - 24

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$(T + 1)^{2}$$
$7$ $$T^{2} - 24$$
$11$ $$T^{2} - 24$$
$13$ $$(T + 3)^{2}$$
$17$ $$(T - 5)^{2}$$
$19$ $$T^{2} - 24$$
$23$ $$T^{2} - 24$$
$29$ $$(T + 5)^{2}$$
$31$ $$T^{2}$$
$37$ $$(T - 5)^{2}$$
$41$ $$(T + 2)^{2}$$
$43$ $$T^{2} - 24$$
$47$ $$T^{2} - 96$$
$53$ $$(T + 2)^{2}$$
$59$ $$T^{2} - 96$$
$61$ $$(T - 13)^{2}$$
$67$ $$T^{2} - 24$$
$71$ $$T^{2} - 24$$
$73$ $$(T - 3)^{2}$$
$79$ $$T^{2} - 216$$
$83$ $$T^{2} - 96$$
$89$ $$(T - 13)^{2}$$
$97$ $$(T + 6)^{2}$$