Properties

Label 5184.2.a.bh.1.2
Level $5184$
Weight $2$
Character 5184.1
Self dual yes
Analytic conductor $41.394$
Analytic rank $1$
Dimension $2$
CM discriminant -4
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5184,2,Mod(1,5184)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5184, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5184.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5184 = 2^{6} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5184.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3944484078\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2592)
Fricke sign: \(1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 5184.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.267949 q^{5} +O(q^{10})\) \(q-0.267949 q^{5} +0.464102 q^{13} +2.26795 q^{17} -4.92820 q^{25} -6.66025 q^{29} -11.3923 q^{37} +8.00000 q^{41} -7.00000 q^{49} -4.00000 q^{53} +5.39230 q^{61} -0.124356 q^{65} +10.8564 q^{73} -0.607695 q^{85} +16.6603 q^{89} -18.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{5} - 6 q^{13} + 8 q^{17} + 4 q^{25} + 4 q^{29} - 2 q^{37} + 16 q^{41} - 14 q^{49} - 8 q^{53} - 10 q^{61} + 24 q^{65} - 6 q^{73} - 22 q^{85} + 16 q^{89} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.267949 −0.119831 −0.0599153 0.998203i \(-0.519083\pi\)
−0.0599153 + 0.998203i \(0.519083\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0.464102 0.128719 0.0643593 0.997927i \(-0.479500\pi\)
0.0643593 + 0.997927i \(0.479500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.26795 0.550058 0.275029 0.961436i \(-0.411312\pi\)
0.275029 + 0.961436i \(0.411312\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −4.92820 −0.985641
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.66025 −1.23678 −0.618389 0.785872i \(-0.712214\pi\)
−0.618389 + 0.785872i \(0.712214\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −11.3923 −1.87288 −0.936442 0.350823i \(-0.885902\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 5.39230 0.690414 0.345207 0.938527i \(-0.387809\pi\)
0.345207 + 0.938527i \(0.387809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.124356 −0.0154244
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 10.8564 1.27065 0.635323 0.772246i \(-0.280867\pi\)
0.635323 + 0.772246i \(0.280867\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −0.607695 −0.0659138
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.6603 1.76598 0.882992 0.469389i \(-0.155526\pi\)
0.882992 + 0.469389i \(0.155526\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.0000 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −20.0000 −1.99007 −0.995037 0.0995037i \(-0.968274\pi\)
−0.995037 + 0.0995037i \(0.968274\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −20.3205 −1.94635 −0.973176 0.230063i \(-0.926107\pi\)
−0.973176 + 0.230063i \(0.926107\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.1244 1.89314 0.946570 0.322498i \(-0.104523\pi\)
0.946570 + 0.322498i \(0.104523\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.66025 0.237940
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.0526 −1.28603 −0.643013 0.765855i \(-0.722316\pi\)
−0.643013 + 0.765855i \(0.722316\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.78461 0.148204
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.12436 0.174034 0.0870170 0.996207i \(-0.472267\pi\)
0.0870170 + 0.996207i \(0.472267\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.607695 0.0484994 0.0242497 0.999706i \(-0.492280\pi\)
0.0242497 + 0.999706i \(0.492280\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −12.7846 −0.983432
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −24.5167 −1.86397 −0.931984 0.362500i \(-0.881923\pi\)
−0.931984 + 0.362500i \(0.881923\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.05256 0.224429
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −13.7846 −0.992238 −0.496119 0.868255i \(-0.665242\pi\)
−0.496119 + 0.868255i \(0.665242\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.7321 −1.12086 −0.560431 0.828201i \(-0.689365\pi\)
−0.560431 + 0.828201i \(0.689365\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.14359 −0.149715
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.05256 0.0708028
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −18.4641 −1.22014 −0.610071 0.792347i \(-0.708859\pi\)
−0.610071 + 0.792347i \(0.708859\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.5167 0.951018 0.475509 0.879711i \(-0.342264\pi\)
0.475509 + 0.879711i \(0.342264\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −8.07180 −0.519950 −0.259975 0.965615i \(-0.583714\pi\)
−0.259975 + 0.965615i \(0.583714\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.87564 0.119831
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.7321 1.10609 0.553047 0.833150i \(-0.313465\pi\)
0.553047 + 0.833150i \(0.313465\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 1.07180 0.0658400
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 32.5167 1.98258 0.991288 0.131713i \(-0.0420477\pi\)
0.991288 + 0.131713i \(0.0420477\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −18.0000 −1.08152 −0.540758 0.841178i \(-0.681862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −24.6603 −1.47111 −0.735554 0.677466i \(-0.763078\pi\)
−0.735554 + 0.677466i \(0.763078\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −11.8564 −0.697436
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 31.4449 1.83703 0.918514 0.395388i \(-0.129390\pi\)
0.918514 + 0.395388i \(0.129390\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.44486 −0.0827327
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 7.78461 0.440012 0.220006 0.975499i \(-0.429392\pi\)
0.220006 + 0.975499i \(0.429392\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −33.0526 −1.85642 −0.928208 0.372061i \(-0.878651\pi\)
−0.928208 + 0.372061i \(0.878651\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −2.28719 −0.126870
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.90897 −0.152262
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.09103 −0.159196
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.0000 1.01404 0.507020 0.861934i \(-0.330747\pi\)
0.507020 + 0.861934i \(0.330747\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 29.3923 1.47516 0.737579 0.675261i \(-0.235969\pi\)
0.737579 + 0.675261i \(0.235969\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.2679 −0.912258 −0.456129 0.889914i \(-0.650764\pi\)
−0.456129 + 0.889914i \(0.650764\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 31.6410 1.56455 0.782274 0.622935i \(-0.214060\pi\)
0.782274 + 0.622935i \(0.214060\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −39.2487 −1.91287 −0.956433 0.291953i \(-0.905695\pi\)
−0.956433 + 0.291953i \(0.905695\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11.1769 −0.542160
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −37.7846 −1.81581 −0.907906 0.419173i \(-0.862320\pi\)
−0.907906 + 0.419173i \(0.862320\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −4.46410 −0.211619
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −40.0000 −1.88772 −0.943858 0.330350i \(-0.892833\pi\)
−0.943858 + 0.330350i \(0.892833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.9282 1.30643 0.653213 0.757174i \(-0.273421\pi\)
0.653213 + 0.757174i \(0.273421\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.0000 0.931493 0.465746 0.884918i \(-0.345786\pi\)
0.465746 + 0.884918i \(0.345786\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −5.28719 −0.241075
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.82309 0.219005
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −15.1051 −0.680300
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 5.35898 0.238472
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 44.0000 1.95027 0.975133 0.221621i \(-0.0711348\pi\)
0.975133 + 0.221621i \(0.0711348\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 40.0000 1.75243 0.876216 0.481919i \(-0.160060\pi\)
0.876216 + 0.481919i \(0.160060\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.71281 0.160820
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 38.3205 1.64753 0.823764 0.566933i \(-0.191870\pi\)
0.823764 + 0.566933i \(0.191870\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.44486 0.233232
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 46.9090 1.98760 0.993798 0.111198i \(-0.0354686\pi\)
0.993798 + 0.111198i \(0.0354686\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) −5.39230 −0.226856
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −42.5167 −1.78239 −0.891196 0.453619i \(-0.850133\pi\)
−0.891196 + 0.453619i \(0.850133\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −42.5692 −1.77218 −0.886090 0.463513i \(-0.846589\pi\)
−0.886090 + 0.463513i \(0.846589\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −47.8372 −1.96444 −0.982219 0.187741i \(-0.939883\pi\)
−0.982219 + 0.187741i \(0.939883\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 36.5692 1.49169 0.745845 0.666120i \(-0.232046\pi\)
0.745845 + 0.666120i \(0.232046\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.94744 0.119831
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 34.0000 1.37325 0.686624 0.727013i \(-0.259092\pi\)
0.686624 + 0.727013i \(0.259092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −48.9090 −1.96900 −0.984500 0.175382i \(-0.943884\pi\)
−0.984500 + 0.175382i \(0.943884\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −25.8372 −1.03020
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.24871 −0.128719
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 47.3013 1.86829 0.934144 0.356897i \(-0.116165\pi\)
0.934144 + 0.356897i \(0.116165\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −44.0000 −1.72185 −0.860927 0.508729i \(-0.830115\pi\)
−0.860927 + 0.508729i \(0.830115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −35.3923 −1.37660 −0.688301 0.725426i \(-0.741643\pi\)
−0.688301 + 0.725426i \(0.741643\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 43.7846 1.68777 0.843886 0.536522i \(-0.180262\pi\)
0.843886 + 0.536522i \(0.180262\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 52.0000 1.99852 0.999261 0.0384331i \(-0.0122367\pi\)
0.999261 + 0.0384331i \(0.0122367\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 4.03332 0.154105
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.85641 −0.0707235
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.1436 0.687238
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 34.6603 1.30910 0.654550 0.756019i \(-0.272858\pi\)
0.654550 + 0.756019i \(0.272858\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.1051 0.867731 0.433865 0.900978i \(-0.357149\pi\)
0.433865 + 0.900978i \(0.357149\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 32.8231 1.21902
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 54.0000 1.99454 0.997268 0.0738717i \(-0.0235355\pi\)
0.997268 + 0.0738717i \(0.0235355\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −0.569219 −0.0208546
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.9090 −0.467950 −0.233975 0.972243i \(-0.575173\pi\)
−0.233975 + 0.972243i \(0.575173\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −4.21539 −0.152011 −0.0760054 0.997107i \(-0.524217\pi\)
−0.0760054 + 0.997107i \(0.524217\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −51.4449 −1.85034 −0.925172 0.379549i \(-0.876079\pi\)
−0.925172 + 0.379549i \(0.876079\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.162831 −0.00581170
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.50258 0.0888691
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.94744 −0.246091 −0.123045 0.992401i \(-0.539266\pi\)
−0.123045 + 0.992401i \(0.539266\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −19.3397 −0.679949 −0.339975 0.940435i \(-0.610418\pi\)
−0.339975 + 0.940435i \(0.610418\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29.3013 1.02262 0.511311 0.859396i \(-0.329160\pi\)
0.511311 + 0.859396i \(0.329160\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 54.0000 1.87550 0.937749 0.347314i \(-0.112906\pi\)
0.937749 + 0.347314i \(0.112906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −15.8756 −0.550058
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 15.3590 0.529620
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.42563 0.117845
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.2295 1.57917 0.789584 0.613642i \(-0.210296\pi\)
0.789584 + 0.613642i \(0.210296\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 6.56922 0.223360
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.6077 −0.628337 −0.314169 0.949367i \(-0.601726\pi\)
−0.314169 + 0.949367i \(0.601726\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −32.0000 −1.07811 −0.539054 0.842271i \(-0.681218\pi\)
−0.539054 + 0.842271i \(0.681218\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −9.07180 −0.302225
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.82309 0.160325
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 56.1436 1.84599
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 19.8372 0.650836 0.325418 0.945570i \(-0.394495\pi\)
0.325418 + 0.945570i \(0.394495\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 60.5692 1.97871 0.989355 0.145522i \(-0.0464860\pi\)
0.989355 + 0.145522i \(0.0464860\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −60.2295 −1.96342 −0.981712 0.190370i \(-0.939031\pi\)
−0.981712 + 0.190370i \(0.939031\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 5.03848 0.163556
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 50.5167 1.63640 0.818198 0.574937i \(-0.194974\pi\)
0.818198 + 0.574937i \(0.194974\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.69358 0.118900
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.00000 0.255943 0.127971 0.991778i \(-0.459153\pi\)
0.127971 + 0.991778i \(0.459153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 4.21539 0.134314
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 41.3923 1.31091 0.655454 0.755235i \(-0.272477\pi\)
0.655454 + 0.755235i \(0.272477\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5184.2.a.bh.1.2 2
3.2 odd 2 5184.2.a.ca.1.1 2
4.3 odd 2 CM 5184.2.a.bh.1.2 2
8.3 odd 2 2592.2.a.t.1.1 yes 2
8.5 even 2 2592.2.a.t.1.1 yes 2
12.11 even 2 5184.2.a.ca.1.1 2
24.5 odd 2 2592.2.a.i.1.2 2
24.11 even 2 2592.2.a.i.1.2 2
72.5 odd 6 2592.2.i.bf.865.1 4
72.11 even 6 2592.2.i.bf.1729.1 4
72.13 even 6 2592.2.i.y.865.2 4
72.29 odd 6 2592.2.i.bf.1729.1 4
72.43 odd 6 2592.2.i.y.1729.2 4
72.59 even 6 2592.2.i.bf.865.1 4
72.61 even 6 2592.2.i.y.1729.2 4
72.67 odd 6 2592.2.i.y.865.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2592.2.a.i.1.2 2 24.5 odd 2
2592.2.a.i.1.2 2 24.11 even 2
2592.2.a.t.1.1 yes 2 8.3 odd 2
2592.2.a.t.1.1 yes 2 8.5 even 2
2592.2.i.y.865.2 4 72.13 even 6
2592.2.i.y.865.2 4 72.67 odd 6
2592.2.i.y.1729.2 4 72.43 odd 6
2592.2.i.y.1729.2 4 72.61 even 6
2592.2.i.bf.865.1 4 72.5 odd 6
2592.2.i.bf.865.1 4 72.59 even 6
2592.2.i.bf.1729.1 4 72.11 even 6
2592.2.i.bf.1729.1 4 72.29 odd 6
5184.2.a.bh.1.2 2 1.1 even 1 trivial
5184.2.a.bh.1.2 2 4.3 odd 2 CM
5184.2.a.ca.1.1 2 3.2 odd 2
5184.2.a.ca.1.1 2 12.11 even 2