Properties

Label 513.2.y.c.82.1
Level $513$
Weight $2$
Character 513.82
Analytic conductor $4.096$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(28,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.y (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,9,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 82.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 513.82
Dual form 513.2.y.c.244.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03209 + 0.866025i) q^{2} +(-0.0320889 + 0.181985i) q^{4} +(0.152704 + 0.866025i) q^{5} +(0.733956 - 1.27125i) q^{7} +(-1.47178 - 2.54920i) q^{8} +(-0.907604 - 0.761570i) q^{10} +(2.61334 + 4.52644i) q^{11} +(4.58512 - 1.66885i) q^{13} +(0.343426 + 1.94767i) q^{14} +(3.37939 + 1.23000i) q^{16} +(-5.46064 + 4.58202i) q^{17} +(0.819078 + 4.28125i) q^{19} -0.162504 q^{20} +(-6.61721 - 2.40847i) q^{22} +(0.233956 - 1.32683i) q^{23} +(3.97178 - 1.44561i) q^{25} +(-3.28699 + 5.69323i) q^{26} +(0.207796 + 0.174362i) q^{28} +(-2.17365 - 1.82391i) q^{29} +(-4.17752 + 7.23567i) q^{31} +(0.979055 - 0.356347i) q^{32} +(1.66772 - 9.45810i) q^{34} +(1.21301 + 0.441500i) q^{35} -12.0642 q^{37} +(-4.55303 - 3.70929i) q^{38} +(1.98293 - 1.66387i) q^{40} +(4.81180 + 1.75135i) q^{41} +(-0.594922 - 3.37397i) q^{43} +(-0.907604 + 0.330341i) q^{44} +(0.907604 + 1.57202i) q^{46} +(3.05303 + 2.56180i) q^{47} +(2.42262 + 4.19610i) q^{49} +(-2.84730 + 4.93166i) q^{50} +(0.156574 + 0.887975i) q^{52} +(-1.47178 + 8.34689i) q^{53} +(-3.52094 + 2.95442i) q^{55} -4.32089 q^{56} +3.82295 q^{58} +(3.28699 - 2.75811i) q^{59} +(-1.64543 + 9.33170i) q^{61} +(-1.95471 - 11.0857i) q^{62} +(-4.29813 + 7.44459i) q^{64} +(2.14543 + 3.71599i) q^{65} +(-2.03209 - 1.70513i) q^{67} +(-0.658633 - 1.14079i) q^{68} +(-1.63429 + 0.594831i) q^{70} +(-2.19207 - 12.4318i) q^{71} +(-1.09967 - 0.400247i) q^{73} +(12.4513 - 10.4479i) q^{74} +(-0.805407 + 0.0116794i) q^{76} +7.67230 q^{77} +(5.81655 + 2.11705i) q^{79} +(-0.549163 + 3.11446i) q^{80} +(-6.48293 + 2.35959i) q^{82} +(-0.520945 + 0.902302i) q^{83} +(-4.80200 - 4.02936i) q^{85} +(3.53596 + 2.96702i) q^{86} +(7.69253 - 13.3239i) q^{88} +(11.9684 - 4.35613i) q^{89} +(1.24376 - 7.05369i) q^{91} +(0.233956 + 0.0851529i) q^{92} -5.36959 q^{94} +(-3.58260 + 1.36310i) q^{95} +(8.88919 - 7.45891i) q^{97} +(-6.13429 - 2.23270i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} + 3 q^{5} + 9 q^{7} + 6 q^{8} - 9 q^{10} + 9 q^{11} + 6 q^{13} + 24 q^{14} + 9 q^{16} - 24 q^{17} - 12 q^{19} - 6 q^{20} - 9 q^{22} + 6 q^{23} + 9 q^{25} - 12 q^{26} + 42 q^{28}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03209 + 0.866025i −0.729797 + 0.612372i −0.930076 0.367366i \(-0.880260\pi\)
0.200279 + 0.979739i \(0.435815\pi\)
\(3\) 0 0
\(4\) −0.0320889 + 0.181985i −0.0160444 + 0.0909926i
\(5\) 0.152704 + 0.866025i 0.0682911 + 0.387298i 0.999726 + 0.0233912i \(0.00744633\pi\)
−0.931435 + 0.363907i \(0.881443\pi\)
\(6\) 0 0
\(7\) 0.733956 1.27125i 0.277409 0.480487i −0.693331 0.720619i \(-0.743858\pi\)
0.970740 + 0.240133i \(0.0771909\pi\)
\(8\) −1.47178 2.54920i −0.520353 0.901278i
\(9\) 0 0
\(10\) −0.907604 0.761570i −0.287010 0.240830i
\(11\) 2.61334 + 4.52644i 0.787952 + 1.36477i 0.927220 + 0.374518i \(0.122192\pi\)
−0.139268 + 0.990255i \(0.544475\pi\)
\(12\) 0 0
\(13\) 4.58512 1.66885i 1.27168 0.462855i 0.384011 0.923329i \(-0.374543\pi\)
0.887673 + 0.460473i \(0.152320\pi\)
\(14\) 0.343426 + 1.94767i 0.0917844 + 0.520535i
\(15\) 0 0
\(16\) 3.37939 + 1.23000i 0.844846 + 0.307499i
\(17\) −5.46064 + 4.58202i −1.32440 + 1.11130i −0.339047 + 0.940769i \(0.610105\pi\)
−0.985352 + 0.170533i \(0.945451\pi\)
\(18\) 0 0
\(19\) 0.819078 + 4.28125i 0.187909 + 0.982186i
\(20\) −0.162504 −0.0363370
\(21\) 0 0
\(22\) −6.61721 2.40847i −1.41079 0.513487i
\(23\) 0.233956 1.32683i 0.0487831 0.276663i −0.950652 0.310258i \(-0.899585\pi\)
0.999436 + 0.0335952i \(0.0106957\pi\)
\(24\) 0 0
\(25\) 3.97178 1.44561i 0.794356 0.289122i
\(26\) −3.28699 + 5.69323i −0.644632 + 1.11653i
\(27\) 0 0
\(28\) 0.207796 + 0.174362i 0.0392698 + 0.0329513i
\(29\) −2.17365 1.82391i −0.403636 0.338691i 0.418261 0.908327i \(-0.362640\pi\)
−0.821897 + 0.569636i \(0.807084\pi\)
\(30\) 0 0
\(31\) −4.17752 + 7.23567i −0.750304 + 1.29957i 0.197371 + 0.980329i \(0.436760\pi\)
−0.947675 + 0.319237i \(0.896574\pi\)
\(32\) 0.979055 0.356347i 0.173074 0.0629939i
\(33\) 0 0
\(34\) 1.66772 9.45810i 0.286011 1.62205i
\(35\) 1.21301 + 0.441500i 0.205036 + 0.0746271i
\(36\) 0 0
\(37\) −12.0642 −1.98334 −0.991669 0.128810i \(-0.958884\pi\)
−0.991669 + 0.128810i \(0.958884\pi\)
\(38\) −4.55303 3.70929i −0.738600 0.601726i
\(39\) 0 0
\(40\) 1.98293 1.66387i 0.313528 0.263081i
\(41\) 4.81180 + 1.75135i 0.751478 + 0.273515i 0.689227 0.724545i \(-0.257950\pi\)
0.0622502 + 0.998061i \(0.480172\pi\)
\(42\) 0 0
\(43\) −0.594922 3.37397i −0.0907248 0.514526i −0.995974 0.0896446i \(-0.971427\pi\)
0.905249 0.424881i \(-0.139684\pi\)
\(44\) −0.907604 + 0.330341i −0.136826 + 0.0498007i
\(45\) 0 0
\(46\) 0.907604 + 1.57202i 0.133819 + 0.231781i
\(47\) 3.05303 + 2.56180i 0.445331 + 0.373677i 0.837700 0.546131i \(-0.183900\pi\)
−0.392369 + 0.919808i \(0.628344\pi\)
\(48\) 0 0
\(49\) 2.42262 + 4.19610i 0.346088 + 0.599443i
\(50\) −2.84730 + 4.93166i −0.402669 + 0.697442i
\(51\) 0 0
\(52\) 0.156574 + 0.887975i 0.0217129 + 0.123140i
\(53\) −1.47178 + 8.34689i −0.202165 + 1.14653i 0.699675 + 0.714462i \(0.253328\pi\)
−0.901839 + 0.432072i \(0.857783\pi\)
\(54\) 0 0
\(55\) −3.52094 + 2.95442i −0.474764 + 0.398374i
\(56\) −4.32089 −0.577403
\(57\) 0 0
\(58\) 3.82295 0.501978
\(59\) 3.28699 2.75811i 0.427930 0.359075i −0.403240 0.915094i \(-0.632116\pi\)
0.831170 + 0.556019i \(0.187672\pi\)
\(60\) 0 0
\(61\) −1.64543 + 9.33170i −0.210676 + 1.19480i 0.677579 + 0.735450i \(0.263029\pi\)
−0.888255 + 0.459351i \(0.848082\pi\)
\(62\) −1.95471 11.0857i −0.248248 1.40788i
\(63\) 0 0
\(64\) −4.29813 + 7.44459i −0.537267 + 0.930573i
\(65\) 2.14543 + 3.71599i 0.266108 + 0.460912i
\(66\) 0 0
\(67\) −2.03209 1.70513i −0.248259 0.208314i 0.510163 0.860078i \(-0.329585\pi\)
−0.758422 + 0.651763i \(0.774029\pi\)
\(68\) −0.658633 1.14079i −0.0798710 0.138341i
\(69\) 0 0
\(70\) −1.63429 + 0.594831i −0.195334 + 0.0710959i
\(71\) −2.19207 12.4318i −0.260150 1.47539i −0.782498 0.622654i \(-0.786055\pi\)
0.522347 0.852733i \(-0.325056\pi\)
\(72\) 0 0
\(73\) −1.09967 0.400247i −0.128707 0.0468454i 0.276864 0.960909i \(-0.410705\pi\)
−0.405571 + 0.914064i \(0.632927\pi\)
\(74\) 12.4513 10.4479i 1.44743 1.21454i
\(75\) 0 0
\(76\) −0.805407 + 0.0116794i −0.0923866 + 0.00133972i
\(77\) 7.67230 0.874340
\(78\) 0 0
\(79\) 5.81655 + 2.11705i 0.654413 + 0.238187i 0.647822 0.761791i \(-0.275680\pi\)
0.00659074 + 0.999978i \(0.497902\pi\)
\(80\) −0.549163 + 3.11446i −0.0613983 + 0.348207i
\(81\) 0 0
\(82\) −6.48293 + 2.35959i −0.715919 + 0.260573i
\(83\) −0.520945 + 0.902302i −0.0571811 + 0.0990406i −0.893199 0.449662i \(-0.851545\pi\)
0.836018 + 0.548702i \(0.184878\pi\)
\(84\) 0 0
\(85\) −4.80200 4.02936i −0.520850 0.437045i
\(86\) 3.53596 + 2.96702i 0.381292 + 0.319942i
\(87\) 0 0
\(88\) 7.69253 13.3239i 0.820027 1.42033i
\(89\) 11.9684 4.35613i 1.26865 0.461749i 0.381984 0.924169i \(-0.375241\pi\)
0.886661 + 0.462420i \(0.153019\pi\)
\(90\) 0 0
\(91\) 1.24376 7.05369i 0.130381 0.739428i
\(92\) 0.233956 + 0.0851529i 0.0243916 + 0.00887780i
\(93\) 0 0
\(94\) −5.36959 −0.553830
\(95\) −3.58260 + 1.36310i −0.367567 + 0.139852i
\(96\) 0 0
\(97\) 8.88919 7.45891i 0.902560 0.757338i −0.0681291 0.997677i \(-0.521703\pi\)
0.970689 + 0.240339i \(0.0772585\pi\)
\(98\) −6.13429 2.23270i −0.619656 0.225536i
\(99\) 0 0
\(100\) 0.135630 + 0.769193i 0.0135630 + 0.0769193i
\(101\) −5.24510 + 1.90906i −0.521907 + 0.189959i −0.589521 0.807753i \(-0.700684\pi\)
0.0676142 + 0.997712i \(0.478461\pi\)
\(102\) 0 0
\(103\) 1.46064 + 2.52990i 0.143921 + 0.249278i 0.928970 0.370155i \(-0.120696\pi\)
−0.785049 + 0.619434i \(0.787362\pi\)
\(104\) −11.0025 9.23222i −1.07889 0.905293i
\(105\) 0 0
\(106\) −5.70961 9.88933i −0.554566 0.960537i
\(107\) 5.36097 9.28547i 0.518264 0.897660i −0.481511 0.876440i \(-0.659912\pi\)
0.999775 0.0212197i \(-0.00675495\pi\)
\(108\) 0 0
\(109\) 0.355914 + 2.01849i 0.0340904 + 0.193336i 0.997097 0.0761414i \(-0.0242600\pi\)
−0.963007 + 0.269478i \(0.913149\pi\)
\(110\) 1.07532 6.09845i 0.102528 0.581465i
\(111\) 0 0
\(112\) 4.04395 3.39328i 0.382117 0.320634i
\(113\) 4.86484 0.457645 0.228823 0.973468i \(-0.426512\pi\)
0.228823 + 0.973468i \(0.426512\pi\)
\(114\) 0 0
\(115\) 1.18479 0.110482
\(116\) 0.401674 0.337044i 0.0372945 0.0312938i
\(117\) 0 0
\(118\) −1.00387 + 5.69323i −0.0924138 + 0.524104i
\(119\) 1.81702 + 10.3048i 0.166566 + 0.944642i
\(120\) 0 0
\(121\) −8.15910 + 14.1320i −0.741736 + 1.28473i
\(122\) −6.38326 11.0561i −0.577913 1.00097i
\(123\) 0 0
\(124\) −1.18273 0.992431i −0.106213 0.0891229i
\(125\) 4.05690 + 7.02676i 0.362861 + 0.628493i
\(126\) 0 0
\(127\) 7.17024 2.60976i 0.636256 0.231578i −0.00369577 0.999993i \(-0.501176\pi\)
0.639952 + 0.768415i \(0.278954\pi\)
\(128\) −1.64930 9.35365i −0.145779 0.826753i
\(129\) 0 0
\(130\) −5.43242 1.97724i −0.476455 0.173415i
\(131\) 9.20233 7.72167i 0.804012 0.674646i −0.145159 0.989408i \(-0.546369\pi\)
0.949170 + 0.314763i \(0.101925\pi\)
\(132\) 0 0
\(133\) 6.04370 + 2.10100i 0.524055 + 0.182180i
\(134\) 3.57398 0.308745
\(135\) 0 0
\(136\) 19.7173 + 7.17653i 1.69075 + 0.615382i
\(137\) 0.695060 3.94188i 0.0593829 0.336777i −0.940613 0.339480i \(-0.889749\pi\)
0.999996 + 0.00270222i \(0.000860146\pi\)
\(138\) 0 0
\(139\) 21.4119 7.79331i 1.81614 0.661020i 0.820086 0.572241i \(-0.193926\pi\)
0.996051 0.0887793i \(-0.0282966\pi\)
\(140\) −0.119271 + 0.206583i −0.0100802 + 0.0174594i
\(141\) 0 0
\(142\) 13.0287 + 10.9324i 1.09334 + 0.917424i
\(143\) 19.5364 + 16.3930i 1.63372 + 1.37085i
\(144\) 0 0
\(145\) 1.24763 2.16095i 0.103610 0.179457i
\(146\) 1.48158 0.539252i 0.122617 0.0446288i
\(147\) 0 0
\(148\) 0.387126 2.19550i 0.0318216 0.180469i
\(149\) −16.4217 5.97702i −1.34532 0.489657i −0.433837 0.900991i \(-0.642841\pi\)
−0.911484 + 0.411334i \(0.865063\pi\)
\(150\) 0 0
\(151\) −0.638156 −0.0519324 −0.0259662 0.999663i \(-0.508266\pi\)
−0.0259662 + 0.999663i \(0.508266\pi\)
\(152\) 9.70826 8.38906i 0.787444 0.680443i
\(153\) 0 0
\(154\) −7.91850 + 6.64441i −0.638091 + 0.535422i
\(155\) −6.90420 2.51292i −0.554559 0.201843i
\(156\) 0 0
\(157\) 0.216415 + 1.22735i 0.0172718 + 0.0979530i 0.992225 0.124457i \(-0.0397188\pi\)
−0.974953 + 0.222410i \(0.928608\pi\)
\(158\) −7.83662 + 2.85230i −0.623448 + 0.226916i
\(159\) 0 0
\(160\) 0.458111 + 0.793471i 0.0362168 + 0.0627294i
\(161\) −1.51501 1.27125i −0.119400 0.100188i
\(162\) 0 0
\(163\) −3.63176 6.29039i −0.284461 0.492701i 0.688017 0.725694i \(-0.258481\pi\)
−0.972478 + 0.232993i \(0.925148\pi\)
\(164\) −0.473126 + 0.819478i −0.0369449 + 0.0639905i
\(165\) 0 0
\(166\) −0.243756 1.38241i −0.0189191 0.107296i
\(167\) 1.92350 10.9087i 0.148845 0.844140i −0.815355 0.578961i \(-0.803458\pi\)
0.964199 0.265178i \(-0.0854307\pi\)
\(168\) 0 0
\(169\) 8.27972 6.94751i 0.636901 0.534424i
\(170\) 8.44562 0.647750
\(171\) 0 0
\(172\) 0.633103 0.0482737
\(173\) 6.11927 5.13468i 0.465240 0.390382i −0.379815 0.925062i \(-0.624012\pi\)
0.845055 + 0.534680i \(0.179568\pi\)
\(174\) 0 0
\(175\) 1.07738 6.11013i 0.0814424 0.461883i
\(176\) 3.26399 + 18.5110i 0.246032 + 1.39532i
\(177\) 0 0
\(178\) −8.57991 + 14.8608i −0.643091 + 1.11387i
\(179\) −3.61721 6.26519i −0.270363 0.468283i 0.698592 0.715520i \(-0.253810\pi\)
−0.968955 + 0.247238i \(0.920477\pi\)
\(180\) 0 0
\(181\) −15.7062 13.1791i −1.16743 0.979593i −0.167453 0.985880i \(-0.553554\pi\)
−0.999980 + 0.00628756i \(0.997999\pi\)
\(182\) 4.82501 + 8.35716i 0.357653 + 0.619474i
\(183\) 0 0
\(184\) −3.72668 + 1.35640i −0.274735 + 0.0999952i
\(185\) −1.84224 10.4479i −0.135444 0.768144i
\(186\) 0 0
\(187\) −35.0107 12.7429i −2.56024 0.931851i
\(188\) −0.564178 + 0.473401i −0.0411469 + 0.0345263i
\(189\) 0 0
\(190\) 2.51707 4.50946i 0.182608 0.327151i
\(191\) 5.78106 0.418303 0.209151 0.977883i \(-0.432930\pi\)
0.209151 + 0.977883i \(0.432930\pi\)
\(192\) 0 0
\(193\) 14.7233 + 5.35883i 1.05980 + 0.385737i 0.812355 0.583163i \(-0.198185\pi\)
0.247450 + 0.968901i \(0.420407\pi\)
\(194\) −2.71482 + 15.3965i −0.194913 + 1.10541i
\(195\) 0 0
\(196\) −0.841367 + 0.306232i −0.0600976 + 0.0218737i
\(197\) −11.8905 + 20.5950i −0.847165 + 1.46733i 0.0365624 + 0.999331i \(0.488359\pi\)
−0.883728 + 0.468002i \(0.844974\pi\)
\(198\) 0 0
\(199\) −11.4816 9.63419i −0.813908 0.682950i 0.137629 0.990484i \(-0.456052\pi\)
−0.951537 + 0.307534i \(0.900496\pi\)
\(200\) −9.53074 7.99724i −0.673925 0.565491i
\(201\) 0 0
\(202\) 3.76011 6.51271i 0.264561 0.458233i
\(203\) −3.91400 + 1.42458i −0.274709 + 0.0999859i
\(204\) 0 0
\(205\) −0.781937 + 4.43458i −0.0546128 + 0.309725i
\(206\) −3.69846 1.34613i −0.257684 0.0937894i
\(207\) 0 0
\(208\) 17.5476 1.21671
\(209\) −17.2383 + 14.8959i −1.19240 + 1.03037i
\(210\) 0 0
\(211\) −6.93036 + 5.81526i −0.477106 + 0.400339i −0.849379 0.527784i \(-0.823023\pi\)
0.372273 + 0.928123i \(0.378579\pi\)
\(212\) −1.47178 0.535685i −0.101082 0.0367910i
\(213\) 0 0
\(214\) 2.50846 + 14.2262i 0.171475 + 0.972480i
\(215\) 2.83110 1.03044i 0.193079 0.0702751i
\(216\) 0 0
\(217\) 6.13223 + 10.6213i 0.416283 + 0.721023i
\(218\) −2.11540 1.77503i −0.143273 0.120220i
\(219\) 0 0
\(220\) −0.424678 0.735564i −0.0286318 0.0495917i
\(221\) −17.3910 + 30.1221i −1.16985 + 2.02623i
\(222\) 0 0
\(223\) −0.721629 4.09256i −0.0483239 0.274058i 0.951066 0.308988i \(-0.0999903\pi\)
−0.999390 + 0.0349299i \(0.988879\pi\)
\(224\) 0.265578 1.50617i 0.0177447 0.100635i
\(225\) 0 0
\(226\) −5.02094 + 4.21307i −0.333988 + 0.280249i
\(227\) 23.7050 1.57336 0.786679 0.617363i \(-0.211799\pi\)
0.786679 + 0.617363i \(0.211799\pi\)
\(228\) 0 0
\(229\) −19.5175 −1.28976 −0.644878 0.764286i \(-0.723092\pi\)
−0.644878 + 0.764286i \(0.723092\pi\)
\(230\) −1.22281 + 1.02606i −0.0806298 + 0.0676564i
\(231\) 0 0
\(232\) −1.45037 + 8.22546i −0.0952215 + 0.540028i
\(233\) −0.662666 3.75817i −0.0434127 0.246206i 0.955377 0.295389i \(-0.0954492\pi\)
−0.998790 + 0.0491834i \(0.984338\pi\)
\(234\) 0 0
\(235\) −1.75237 + 3.03520i −0.114312 + 0.197995i
\(236\) 0.396459 + 0.686688i 0.0258073 + 0.0446996i
\(237\) 0 0
\(238\) −10.7996 9.06191i −0.700032 0.587396i
\(239\) −0.411474 0.712694i −0.0266160 0.0461003i 0.852411 0.522873i \(-0.175140\pi\)
−0.879027 + 0.476773i \(0.841806\pi\)
\(240\) 0 0
\(241\) 8.13088 2.95940i 0.523756 0.190632i −0.0665921 0.997780i \(-0.521213\pi\)
0.590348 + 0.807149i \(0.298990\pi\)
\(242\) −3.81773 21.6514i −0.245413 1.39181i
\(243\) 0 0
\(244\) −1.64543 0.598887i −0.105338 0.0383398i
\(245\) −3.26399 + 2.73881i −0.208528 + 0.174976i
\(246\) 0 0
\(247\) 10.9003 + 18.2631i 0.693571 + 1.16206i
\(248\) 24.5936 1.56169
\(249\) 0 0
\(250\) −10.2724 3.73886i −0.649686 0.236466i
\(251\) −1.23261 + 6.99049i −0.0778017 + 0.441236i 0.920877 + 0.389853i \(0.127474\pi\)
−0.998679 + 0.0513830i \(0.983637\pi\)
\(252\) 0 0
\(253\) 6.61721 2.40847i 0.416021 0.151419i
\(254\) −5.14022 + 8.90311i −0.322526 + 0.558631i
\(255\) 0 0
\(256\) −3.36753 2.82569i −0.210470 0.176606i
\(257\) −13.9795 11.7302i −0.872019 0.731711i 0.0925035 0.995712i \(-0.470513\pi\)
−0.964522 + 0.264002i \(0.914957\pi\)
\(258\) 0 0
\(259\) −8.85457 + 15.3366i −0.550196 + 0.952968i
\(260\) −0.745100 + 0.271194i −0.0462091 + 0.0168187i
\(261\) 0 0
\(262\) −2.81046 + 15.9389i −0.173631 + 0.984709i
\(263\) −12.0312 4.37900i −0.741876 0.270021i −0.0566931 0.998392i \(-0.518056\pi\)
−0.685183 + 0.728371i \(0.740278\pi\)
\(264\) 0 0
\(265\) −7.45336 −0.457856
\(266\) −8.05715 + 3.06558i −0.494016 + 0.187963i
\(267\) 0 0
\(268\) 0.375515 0.315094i 0.0229382 0.0192475i
\(269\) 9.42989 + 3.43220i 0.574951 + 0.209265i 0.613098 0.790007i \(-0.289923\pi\)
−0.0381469 + 0.999272i \(0.512145\pi\)
\(270\) 0 0
\(271\) −2.40033 13.6129i −0.145810 0.826928i −0.966714 0.255861i \(-0.917641\pi\)
0.820904 0.571066i \(-0.193470\pi\)
\(272\) −24.0895 + 8.76785i −1.46064 + 0.531629i
\(273\) 0 0
\(274\) 2.69640 + 4.67031i 0.162896 + 0.282144i
\(275\) 16.9231 + 14.2002i 1.02050 + 0.856302i
\(276\) 0 0
\(277\) 9.04189 + 15.6610i 0.543274 + 0.940979i 0.998713 + 0.0507119i \(0.0161490\pi\)
−0.455439 + 0.890267i \(0.650518\pi\)
\(278\) −15.3498 + 26.5867i −0.920621 + 1.59456i
\(279\) 0 0
\(280\) −0.659815 3.74200i −0.0394315 0.223627i
\(281\) −3.21853 + 18.2532i −0.192001 + 1.08889i 0.724623 + 0.689145i \(0.242014\pi\)
−0.916625 + 0.399749i \(0.869097\pi\)
\(282\) 0 0
\(283\) 3.86824 3.24584i 0.229943 0.192945i −0.520535 0.853840i \(-0.674268\pi\)
0.750478 + 0.660895i \(0.229823\pi\)
\(284\) 2.33275 0.138423
\(285\) 0 0
\(286\) −34.3601 −2.03175
\(287\) 5.75806 4.83158i 0.339887 0.285199i
\(288\) 0 0
\(289\) 5.87164 33.2998i 0.345391 1.95881i
\(290\) 0.583778 + 3.31077i 0.0342806 + 0.194415i
\(291\) 0 0
\(292\) 0.108126 0.187280i 0.00632761 0.0109597i
\(293\) −5.92855 10.2685i −0.346349 0.599895i 0.639248 0.769000i \(-0.279246\pi\)
−0.985598 + 0.169105i \(0.945912\pi\)
\(294\) 0 0
\(295\) 2.89053 + 2.42544i 0.168293 + 0.141215i
\(296\) 17.7558 + 30.7540i 1.03204 + 1.78754i
\(297\) 0 0
\(298\) 22.1250 8.05282i 1.28166 0.466488i
\(299\) −1.14156 6.47410i −0.0660181 0.374407i
\(300\) 0 0
\(301\) −4.72580 1.72005i −0.272391 0.0991422i
\(302\) 0.658633 0.552659i 0.0379001 0.0318020i
\(303\) 0 0
\(304\) −2.49794 + 15.4755i −0.143267 + 0.887578i
\(305\) −8.33275 −0.477132
\(306\) 0 0
\(307\) 4.87211 + 1.77330i 0.278066 + 0.101208i 0.477289 0.878746i \(-0.341620\pi\)
−0.199223 + 0.979954i \(0.563842\pi\)
\(308\) −0.246196 + 1.39625i −0.0140283 + 0.0795585i
\(309\) 0 0
\(310\) 9.30200 3.38565i 0.528318 0.192292i
\(311\) 4.11334 7.12452i 0.233246 0.403994i −0.725515 0.688206i \(-0.758399\pi\)
0.958762 + 0.284212i \(0.0917319\pi\)
\(312\) 0 0
\(313\) −25.6006 21.4815i −1.44703 1.21420i −0.934711 0.355410i \(-0.884341\pi\)
−0.512321 0.858794i \(-0.671214\pi\)
\(314\) −1.28627 1.07931i −0.0725886 0.0609091i
\(315\) 0 0
\(316\) −0.571919 + 0.990592i −0.0321729 + 0.0557252i
\(317\) 19.1532 6.97118i 1.07575 0.391541i 0.257425 0.966298i \(-0.417126\pi\)
0.818324 + 0.574757i \(0.194904\pi\)
\(318\) 0 0
\(319\) 2.57532 14.6054i 0.144190 0.817744i
\(320\) −7.10354 2.58548i −0.397100 0.144533i
\(321\) 0 0
\(322\) 2.66456 0.148490
\(323\) −24.0895 19.6253i −1.34037 1.09198i
\(324\) 0 0
\(325\) 15.7986 13.2566i 0.876349 0.735344i
\(326\) 9.19594 + 3.34705i 0.509316 + 0.185376i
\(327\) 0 0
\(328\) −2.61737 14.8439i −0.144520 0.819615i
\(329\) 5.49747 2.00092i 0.303086 0.110314i
\(330\) 0 0
\(331\) 8.48932 + 14.7039i 0.466615 + 0.808202i 0.999273 0.0381294i \(-0.0121399\pi\)
−0.532657 + 0.846331i \(0.678807\pi\)
\(332\) −0.147489 0.123758i −0.00809451 0.00679210i
\(333\) 0 0
\(334\) 7.46198 + 12.9245i 0.408301 + 0.707199i
\(335\) 1.16637 2.02022i 0.0637258 0.110376i
\(336\) 0 0
\(337\) 4.23349 + 24.0093i 0.230613 + 1.30787i 0.851659 + 0.524096i \(0.175597\pi\)
−0.621046 + 0.783774i \(0.713292\pi\)
\(338\) −2.52869 + 14.3409i −0.137542 + 0.780041i
\(339\) 0 0
\(340\) 0.887374 0.744596i 0.0481246 0.0403814i
\(341\) −43.6691 −2.36482
\(342\) 0 0
\(343\) 17.3878 0.938851
\(344\) −7.72534 + 6.48233i −0.416522 + 0.349504i
\(345\) 0 0
\(346\) −1.86887 + 10.5989i −0.100471 + 0.569800i
\(347\) 1.39734 + 7.92469i 0.0750130 + 0.425420i 0.999068 + 0.0431606i \(0.0137427\pi\)
−0.924055 + 0.382259i \(0.875146\pi\)
\(348\) 0 0
\(349\) −3.12701 + 5.41614i −0.167385 + 0.289919i −0.937500 0.347986i \(-0.886866\pi\)
0.770115 + 0.637906i \(0.220199\pi\)
\(350\) 4.17958 + 7.23924i 0.223408 + 0.386954i
\(351\) 0 0
\(352\) 4.17159 + 3.50038i 0.222346 + 0.186571i
\(353\) −1.76558 3.05807i −0.0939722 0.162765i 0.815207 0.579170i \(-0.196623\pi\)
−0.909179 + 0.416405i \(0.863290\pi\)
\(354\) 0 0
\(355\) 10.4315 3.79677i 0.553649 0.201512i
\(356\) 0.408700 + 2.31785i 0.0216610 + 0.122846i
\(357\) 0 0
\(358\) 9.15910 + 3.33364i 0.484073 + 0.176188i
\(359\) 15.5043 13.0097i 0.818288 0.686625i −0.134283 0.990943i \(-0.542873\pi\)
0.952570 + 0.304318i \(0.0984286\pi\)
\(360\) 0 0
\(361\) −17.6582 + 7.01336i −0.929380 + 0.369124i
\(362\) 27.6236 1.45186
\(363\) 0 0
\(364\) 1.24376 + 0.452690i 0.0651905 + 0.0237274i
\(365\) 0.178701 1.01346i 0.00935362 0.0530470i
\(366\) 0 0
\(367\) −1.52734 + 0.555907i −0.0797266 + 0.0290181i −0.381576 0.924338i \(-0.624618\pi\)
0.301849 + 0.953356i \(0.402396\pi\)
\(368\) 2.42262 4.19610i 0.126288 0.218737i
\(369\) 0 0
\(370\) 10.9495 + 9.18772i 0.569237 + 0.477647i
\(371\) 9.53074 + 7.99724i 0.494812 + 0.415196i
\(372\) 0 0
\(373\) 16.9782 29.4071i 0.879097 1.52264i 0.0267631 0.999642i \(-0.491480\pi\)
0.852334 0.522998i \(-0.175187\pi\)
\(374\) 47.1698 17.1684i 2.43909 0.887758i
\(375\) 0 0
\(376\) 2.03714 11.5532i 0.105058 0.595811i
\(377\) −13.0103 4.73535i −0.670063 0.243883i
\(378\) 0 0
\(379\) −16.0300 −0.823407 −0.411704 0.911318i \(-0.635066\pi\)
−0.411704 + 0.911318i \(0.635066\pi\)
\(380\) −0.133103 0.695720i −0.00682805 0.0356897i
\(381\) 0 0
\(382\) −5.96657 + 5.00654i −0.305276 + 0.256157i
\(383\) −9.01501 3.28120i −0.460646 0.167661i 0.101265 0.994860i \(-0.467711\pi\)
−0.561910 + 0.827198i \(0.689933\pi\)
\(384\) 0 0
\(385\) 1.17159 + 6.64441i 0.0597097 + 0.338630i
\(386\) −19.8366 + 7.21994i −1.00966 + 0.367485i
\(387\) 0 0
\(388\) 1.07217 + 1.85705i 0.0544310 + 0.0942773i
\(389\) −8.48886 7.12300i −0.430402 0.361150i 0.401701 0.915771i \(-0.368419\pi\)
−0.832103 + 0.554621i \(0.812863\pi\)
\(390\) 0 0
\(391\) 4.80200 + 8.31731i 0.242848 + 0.420625i
\(392\) 7.13113 12.3515i 0.360176 0.623844i
\(393\) 0 0
\(394\) −5.56371 31.5534i −0.280296 1.58964i
\(395\) −0.945212 + 5.36056i −0.0475588 + 0.269719i
\(396\) 0 0
\(397\) 13.2233 11.0956i 0.663657 0.556875i −0.247523 0.968882i \(-0.579617\pi\)
0.911181 + 0.412007i \(0.135172\pi\)
\(398\) 20.1935 1.01221
\(399\) 0 0
\(400\) 15.2003 0.760014
\(401\) −29.1104 + 24.4265i −1.45370 + 1.21980i −0.523883 + 0.851790i \(0.675517\pi\)
−0.929821 + 0.368013i \(0.880038\pi\)
\(402\) 0 0
\(403\) −7.07919 + 40.1481i −0.352640 + 1.99992i
\(404\) −0.179111 1.01579i −0.00891111 0.0505374i
\(405\) 0 0
\(406\) 2.80587 4.85992i 0.139253 0.241194i
\(407\) −31.5278 54.6078i −1.56278 2.70681i
\(408\) 0 0
\(409\) 0.103541 + 0.0868809i 0.00511975 + 0.00429598i 0.645344 0.763892i \(-0.276714\pi\)
−0.640224 + 0.768188i \(0.721159\pi\)
\(410\) −3.03343 5.25406i −0.149811 0.259480i
\(411\) 0 0
\(412\) −0.507274 + 0.184633i −0.0249916 + 0.00909620i
\(413\) −1.09374 6.20291i −0.0538194 0.305225i
\(414\) 0 0
\(415\) −0.860967 0.313366i −0.0422632 0.0153825i
\(416\) 3.89440 3.26779i 0.190939 0.160217i
\(417\) 0 0
\(418\) 4.89124 30.3027i 0.239239 1.48215i
\(419\) 39.7965 1.94419 0.972094 0.234591i \(-0.0753751\pi\)
0.972094 + 0.234591i \(0.0753751\pi\)
\(420\) 0 0
\(421\) −21.1604 7.70177i −1.03130 0.375361i −0.229722 0.973256i \(-0.573782\pi\)
−0.801575 + 0.597895i \(0.796004\pi\)
\(422\) 2.11658 12.0037i 0.103034 0.584333i
\(423\) 0 0
\(424\) 23.4440 8.53293i 1.13854 0.414396i
\(425\) −15.0646 + 26.0927i −0.730743 + 1.26568i
\(426\) 0 0
\(427\) 10.6552 + 8.94080i 0.515643 + 0.432676i
\(428\) 1.51779 + 1.27358i 0.0733651 + 0.0615606i
\(429\) 0 0
\(430\) −2.02956 + 3.51531i −0.0978742 + 0.169523i
\(431\) 3.68644 1.34175i 0.177570 0.0646301i −0.251705 0.967804i \(-0.580991\pi\)
0.429275 + 0.903174i \(0.358769\pi\)
\(432\) 0 0
\(433\) 2.76991 15.7090i 0.133114 0.754925i −0.843041 0.537849i \(-0.819237\pi\)
0.976155 0.217076i \(-0.0696519\pi\)
\(434\) −15.5273 5.65149i −0.745336 0.271280i
\(435\) 0 0
\(436\) −0.378756 −0.0181391
\(437\) 5.87211 0.0851529i 0.280901 0.00407341i
\(438\) 0 0
\(439\) 3.60607 3.02585i 0.172108 0.144416i −0.552665 0.833404i \(-0.686389\pi\)
0.724773 + 0.688988i \(0.241945\pi\)
\(440\) 12.7135 + 4.62733i 0.606091 + 0.220599i
\(441\) 0 0
\(442\) −8.13744 46.1497i −0.387059 2.19512i
\(443\) 27.4513 9.99146i 1.30425 0.474708i 0.405872 0.913930i \(-0.366968\pi\)
0.898379 + 0.439221i \(0.144746\pi\)
\(444\) 0 0
\(445\) 5.60014 + 9.69972i 0.265472 + 0.459811i
\(446\) 4.28905 + 3.59894i 0.203092 + 0.170415i
\(447\) 0 0
\(448\) 6.30928 + 10.9280i 0.298085 + 0.516299i
\(449\) 7.39053 12.8008i 0.348781 0.604106i −0.637252 0.770655i \(-0.719929\pi\)
0.986033 + 0.166549i \(0.0532625\pi\)
\(450\) 0 0
\(451\) 4.64749 + 26.3572i 0.218842 + 1.24111i
\(452\) −0.156107 + 0.885328i −0.00734267 + 0.0416423i
\(453\) 0 0
\(454\) −24.4657 + 20.5292i −1.14823 + 0.963481i
\(455\) 6.29860 0.295283
\(456\) 0 0
\(457\) −9.71782 −0.454580 −0.227290 0.973827i \(-0.572987\pi\)
−0.227290 + 0.973827i \(0.572987\pi\)
\(458\) 20.1438 16.9027i 0.941260 0.789811i
\(459\) 0 0
\(460\) −0.0380187 + 0.215615i −0.00177263 + 0.0100531i
\(461\) 2.44521 + 13.8675i 0.113885 + 0.645873i 0.987296 + 0.158890i \(0.0507916\pi\)
−0.873411 + 0.486983i \(0.838097\pi\)
\(462\) 0 0
\(463\) 13.8255 23.9464i 0.642524 1.11288i −0.342343 0.939575i \(-0.611221\pi\)
0.984867 0.173310i \(-0.0554462\pi\)
\(464\) −5.10220 8.83726i −0.236864 0.410260i
\(465\) 0 0
\(466\) 3.93860 + 3.30488i 0.182452 + 0.153095i
\(467\) 6.92380 + 11.9924i 0.320395 + 0.554941i 0.980570 0.196172i \(-0.0628509\pi\)
−0.660174 + 0.751112i \(0.729518\pi\)
\(468\) 0 0
\(469\) −3.65910 + 1.33180i −0.168962 + 0.0614970i
\(470\) −0.819955 4.65020i −0.0378217 0.214498i
\(471\) 0 0
\(472\) −11.8687 4.31986i −0.546302 0.198838i
\(473\) 13.7173 11.5102i 0.630724 0.529241i
\(474\) 0 0
\(475\) 9.44222 + 15.8201i 0.433239 + 0.725877i
\(476\) −1.93363 −0.0886278
\(477\) 0 0
\(478\) 1.04189 + 0.379217i 0.0476549 + 0.0173450i
\(479\) 3.33022 18.8866i 0.152162 0.862952i −0.809173 0.587570i \(-0.800085\pi\)
0.961335 0.275382i \(-0.0888043\pi\)
\(480\) 0 0
\(481\) −55.3157 + 20.1333i −2.52218 + 0.917999i
\(482\) −5.82888 + 10.0959i −0.265498 + 0.459856i
\(483\) 0 0
\(484\) −2.30999 1.93831i −0.105000 0.0881052i
\(485\) 7.81702 + 6.55926i 0.354953 + 0.297841i
\(486\) 0 0
\(487\) −2.80659 + 4.86116i −0.127179 + 0.220280i −0.922582 0.385800i \(-0.873926\pi\)
0.795404 + 0.606080i \(0.207259\pi\)
\(488\) 26.2101 9.53969i 1.18647 0.431841i
\(489\) 0 0
\(490\) 0.996845 5.65339i 0.0450329 0.255394i
\(491\) 16.3709 + 5.95853i 0.738810 + 0.268905i 0.683889 0.729586i \(-0.260287\pi\)
0.0549206 + 0.998491i \(0.482509\pi\)
\(492\) 0 0
\(493\) 20.2267 0.910964
\(494\) −27.0665 9.40923i −1.21778 0.423341i
\(495\) 0 0
\(496\) −23.0173 + 19.3138i −1.03351 + 0.867215i
\(497\) −17.4128 6.33775i −0.781072 0.284287i
\(498\) 0 0
\(499\) 3.06434 + 17.3787i 0.137179 + 0.777979i 0.973318 + 0.229461i \(0.0736965\pi\)
−0.836139 + 0.548518i \(0.815192\pi\)
\(500\) −1.40895 + 0.512815i −0.0630101 + 0.0229338i
\(501\) 0 0
\(502\) −4.78177 8.28228i −0.213421 0.369656i
\(503\) −28.9709 24.3095i −1.29175 1.08391i −0.991508 0.130042i \(-0.958489\pi\)
−0.300240 0.953864i \(-0.597067\pi\)
\(504\) 0 0
\(505\) −2.45424 4.25087i −0.109212 0.189161i
\(506\) −4.74376 + 8.21643i −0.210886 + 0.365265i
\(507\) 0 0
\(508\) 0.244852 + 1.38862i 0.0108635 + 0.0616101i
\(509\) 4.43036 25.1258i 0.196372 1.11368i −0.714079 0.700065i \(-0.753154\pi\)
0.910451 0.413617i \(-0.135735\pi\)
\(510\) 0 0
\(511\) −1.31592 + 1.10419i −0.0582130 + 0.0488465i
\(512\) 24.9186 1.10126
\(513\) 0 0
\(514\) 24.5868 1.08448
\(515\) −1.96791 + 1.65127i −0.0867165 + 0.0727638i
\(516\) 0 0
\(517\) −3.61721 + 20.5142i −0.159085 + 0.902215i
\(518\) −4.14315 23.4970i −0.182040 1.03240i
\(519\) 0 0
\(520\) 6.31521 10.9383i 0.276940 0.479674i
\(521\) 2.74763 + 4.75903i 0.120376 + 0.208497i 0.919916 0.392116i \(-0.128257\pi\)
−0.799540 + 0.600613i \(0.794923\pi\)
\(522\) 0 0
\(523\) −21.6400 18.1581i −0.946250 0.793998i 0.0324123 0.999475i \(-0.489681\pi\)
−0.978662 + 0.205477i \(0.934125\pi\)
\(524\) 1.10994 + 1.92247i 0.0484878 + 0.0839834i
\(525\) 0 0
\(526\) 16.2096 5.89981i 0.706772 0.257244i
\(527\) −10.3421 58.6529i −0.450508 2.55496i
\(528\) 0 0
\(529\) 19.9072 + 7.24563i 0.865530 + 0.315027i
\(530\) 7.69253 6.45480i 0.334142 0.280379i
\(531\) 0 0
\(532\) −0.576286 + 1.03244i −0.0249852 + 0.0447622i
\(533\) 24.9855 1.08224
\(534\) 0 0
\(535\) 8.86009 + 3.22481i 0.383055 + 0.139421i
\(536\) −1.35591 + 7.68977i −0.0585666 + 0.332148i
\(537\) 0 0
\(538\) −12.7049 + 4.62419i −0.547745 + 0.199363i
\(539\) −12.6623 + 21.9317i −0.545402 + 0.944664i
\(540\) 0 0
\(541\) 11.5556 + 9.69627i 0.496812 + 0.416875i 0.856460 0.516213i \(-0.172659\pi\)
−0.359648 + 0.933088i \(0.617103\pi\)
\(542\) 14.2665 + 11.9710i 0.612799 + 0.514200i
\(543\) 0 0
\(544\) −3.71348 + 6.43193i −0.159214 + 0.275767i
\(545\) −1.69372 + 0.616462i −0.0725508 + 0.0264063i
\(546\) 0 0
\(547\) 3.21482 18.2322i 0.137456 0.779551i −0.835662 0.549244i \(-0.814916\pi\)
0.973118 0.230307i \(-0.0739731\pi\)
\(548\) 0.695060 + 0.252981i 0.0296915 + 0.0108068i
\(549\) 0 0
\(550\) −29.7638 −1.26913
\(551\) 6.02822 10.7999i 0.256811 0.460089i
\(552\) 0 0
\(553\) 6.96039 5.84046i 0.295986 0.248362i
\(554\) −22.8949 8.33305i −0.972710 0.354037i
\(555\) 0 0
\(556\) 0.731181 + 4.14673i 0.0310090 + 0.175861i
\(557\) −20.2263 + 7.36176i −0.857015 + 0.311928i −0.732897 0.680340i \(-0.761832\pi\)
−0.124118 + 0.992268i \(0.539610\pi\)
\(558\) 0 0
\(559\) −8.35844 14.4772i −0.353524 0.612322i
\(560\) 3.55619 + 2.98400i 0.150276 + 0.126097i
\(561\) 0 0
\(562\) −12.4859 21.6262i −0.526687 0.912248i
\(563\) −16.8648 + 29.2108i −0.710768 + 1.23109i 0.253801 + 0.967256i \(0.418319\pi\)
−0.964569 + 0.263830i \(0.915014\pi\)
\(564\) 0 0
\(565\) 0.742878 + 4.21307i 0.0312531 + 0.177245i
\(566\) −1.18139 + 6.69999i −0.0496575 + 0.281622i
\(567\) 0 0
\(568\) −28.4650 + 23.8849i −1.19436 + 1.00219i
\(569\) −15.7469 −0.660145 −0.330072 0.943956i \(-0.607073\pi\)
−0.330072 + 0.943956i \(0.607073\pi\)
\(570\) 0 0
\(571\) 42.6391 1.78439 0.892195 0.451650i \(-0.149164\pi\)
0.892195 + 0.451650i \(0.149164\pi\)
\(572\) −3.61019 + 3.02931i −0.150949 + 0.126662i
\(573\) 0 0
\(574\) −1.75855 + 9.97324i −0.0734005 + 0.416275i
\(575\) −0.988856 5.60808i −0.0412381 0.233873i
\(576\) 0 0
\(577\) −9.75624 + 16.8983i −0.406158 + 0.703486i −0.994455 0.105159i \(-0.966465\pi\)
0.588298 + 0.808644i \(0.299798\pi\)
\(578\) 22.7784 + 39.4533i 0.947455 + 1.64104i
\(579\) 0 0
\(580\) 0.353226 + 0.296392i 0.0146669 + 0.0123070i
\(581\) 0.764700 + 1.32450i 0.0317251 + 0.0549495i
\(582\) 0 0
\(583\) −41.6279 + 15.1513i −1.72405 + 0.627504i
\(584\) 0.598164 + 3.39236i 0.0247522 + 0.140377i
\(585\) 0 0
\(586\) 15.0116 + 5.46378i 0.620124 + 0.225707i
\(587\) −9.09808 + 7.63419i −0.375518 + 0.315097i −0.810940 0.585130i \(-0.801044\pi\)
0.435422 + 0.900226i \(0.356599\pi\)
\(588\) 0 0
\(589\) −34.3995 11.9584i −1.41740 0.492738i
\(590\) −5.08378 −0.209296
\(591\) 0 0
\(592\) −40.7695 14.8389i −1.67562 0.609874i
\(593\) 0.245567 1.39268i 0.0100842 0.0571904i −0.979350 0.202170i \(-0.935201\pi\)
0.989435 + 0.144980i \(0.0463117\pi\)
\(594\) 0 0
\(595\) −8.64677 + 3.14717i −0.354483 + 0.129021i
\(596\) 1.61468 2.79672i 0.0661401 0.114558i
\(597\) 0 0
\(598\) 6.78493 + 5.69323i 0.277456 + 0.232814i
\(599\) −19.1682 16.0840i −0.783191 0.657175i 0.160859 0.986977i \(-0.448573\pi\)
−0.944050 + 0.329802i \(0.893018\pi\)
\(600\) 0 0
\(601\) 6.92649 11.9970i 0.282537 0.489369i −0.689472 0.724313i \(-0.742157\pi\)
0.972009 + 0.234944i \(0.0754905\pi\)
\(602\) 6.36706 2.31742i 0.259502 0.0944510i
\(603\) 0 0
\(604\) 0.0204777 0.116135i 0.000833226 0.00472546i
\(605\) −13.4846 4.90798i −0.548226 0.199538i
\(606\) 0 0
\(607\) 1.59089 0.0645722 0.0322861 0.999479i \(-0.489721\pi\)
0.0322861 + 0.999479i \(0.489721\pi\)
\(608\) 2.32753 + 3.89971i 0.0943940 + 0.158154i
\(609\) 0 0
\(610\) 8.60014 7.21637i 0.348209 0.292182i
\(611\) 18.2738 + 6.65111i 0.739278 + 0.269075i
\(612\) 0 0
\(613\) 4.65317 + 26.3894i 0.187940 + 1.06586i 0.922120 + 0.386905i \(0.126456\pi\)
−0.734180 + 0.678955i \(0.762433\pi\)
\(614\) −6.56418 + 2.38917i −0.264909 + 0.0964189i
\(615\) 0 0
\(616\) −11.2920 19.5582i −0.454966 0.788024i
\(617\) 27.1523 + 22.7835i 1.09311 + 0.917228i 0.996943 0.0781368i \(-0.0248971\pi\)
0.0961675 + 0.995365i \(0.469342\pi\)
\(618\) 0 0
\(619\) −19.9538 34.5610i −0.802012 1.38913i −0.918290 0.395909i \(-0.870430\pi\)
0.116278 0.993217i \(-0.462904\pi\)
\(620\) 0.678863 1.17582i 0.0272638 0.0472223i
\(621\) 0 0
\(622\) 1.92468 + 10.9154i 0.0771726 + 0.437667i
\(623\) 3.24653 18.4120i 0.130069 0.737661i
\(624\) 0 0
\(625\) 10.7233 8.99790i 0.428931 0.359916i
\(626\) 45.0256 1.79958
\(627\) 0 0
\(628\) −0.230304 −0.00919011
\(629\) 65.8781 55.2783i 2.62673 2.20409i
\(630\) 0 0
\(631\) −2.28905 + 12.9818i −0.0911256 + 0.516799i 0.904740 + 0.425963i \(0.140065\pi\)
−0.995866 + 0.0908353i \(0.971046\pi\)
\(632\) −3.16390 17.9434i −0.125853 0.713750i
\(633\) 0 0
\(634\) −13.7306 + 23.7820i −0.545310 + 0.944504i
\(635\) 3.35504 + 5.81109i 0.133141 + 0.230606i
\(636\) 0 0
\(637\) 18.1107 + 15.1966i 0.717570 + 0.602113i
\(638\) 9.99067 + 17.3043i 0.395534 + 0.685085i
\(639\) 0 0
\(640\) 7.84864 2.85667i 0.310245 0.112920i
\(641\) −7.66250 43.4562i −0.302651 1.71642i −0.634362 0.773036i \(-0.718737\pi\)
0.331711 0.943381i \(-0.392374\pi\)
\(642\) 0 0
\(643\) −10.2674 3.73702i −0.404906 0.147374i 0.131535 0.991312i \(-0.458009\pi\)
−0.536441 + 0.843938i \(0.680232\pi\)
\(644\) 0.279963 0.234917i 0.0110321 0.00925703i
\(645\) 0 0
\(646\) 41.8585 0.607000i 1.64690 0.0238821i
\(647\) −3.20170 −0.125872 −0.0629360 0.998018i \(-0.520046\pi\)
−0.0629360 + 0.998018i \(0.520046\pi\)
\(648\) 0 0
\(649\) 21.0744 + 7.67047i 0.827244 + 0.301092i
\(650\) −4.82501 + 27.3640i −0.189252 + 1.07330i
\(651\) 0 0
\(652\) 1.26130 0.459074i 0.0493962 0.0179787i
\(653\) −12.5620 + 21.7579i −0.491587 + 0.851454i −0.999953 0.00968702i \(-0.996916\pi\)
0.508366 + 0.861141i \(0.330250\pi\)
\(654\) 0 0
\(655\) 8.09240 + 6.79033i 0.316196 + 0.265320i
\(656\) 14.1068 + 11.8370i 0.550777 + 0.462157i
\(657\) 0 0
\(658\) −3.94104 + 6.82608i −0.153638 + 0.266108i
\(659\) −28.9111 + 10.5228i −1.12622 + 0.409909i −0.836917 0.547330i \(-0.815644\pi\)
−0.289298 + 0.957239i \(0.593422\pi\)
\(660\) 0 0
\(661\) −1.60978 + 9.12949i −0.0626130 + 0.355096i 0.937364 + 0.348351i \(0.113258\pi\)
−0.999977 + 0.00674518i \(0.997853\pi\)
\(662\) −21.4957 7.82380i −0.835455 0.304081i
\(663\) 0 0
\(664\) 3.06687 0.119017
\(665\) −0.896622 + 5.55483i −0.0347695 + 0.215407i
\(666\) 0 0
\(667\) −2.92855 + 2.45734i −0.113394 + 0.0951487i
\(668\) 1.92350 + 0.700095i 0.0744223 + 0.0270875i
\(669\) 0 0
\(670\) 0.545759 + 3.09516i 0.0210845 + 0.119576i
\(671\) −46.5394 + 16.9390i −1.79663 + 0.653921i
\(672\) 0 0
\(673\) 4.74644 + 8.22108i 0.182962 + 0.316899i 0.942888 0.333110i \(-0.108098\pi\)
−0.759926 + 0.650010i \(0.774765\pi\)
\(674\) −25.1620 21.1134i −0.969204 0.813259i
\(675\) 0 0
\(676\) 0.998656 + 1.72972i 0.0384098 + 0.0665278i
\(677\) −9.50774 + 16.4679i −0.365412 + 0.632912i −0.988842 0.148967i \(-0.952405\pi\)
0.623430 + 0.781879i \(0.285739\pi\)
\(678\) 0 0
\(679\) −2.95786 16.7749i −0.113512 0.643761i
\(680\) −3.20414 + 18.1716i −0.122873 + 0.696849i
\(681\) 0 0
\(682\) 45.0704 37.8186i 1.72584 1.44815i
\(683\) −6.58677 −0.252036 −0.126018 0.992028i \(-0.540220\pi\)
−0.126018 + 0.992028i \(0.540220\pi\)
\(684\) 0 0
\(685\) 3.51991 0.134489
\(686\) −17.9457 + 15.0582i −0.685170 + 0.574926i
\(687\) 0 0
\(688\) 2.13950 12.1337i 0.0815677 0.462593i
\(689\) 7.18139 + 40.7277i 0.273589 + 1.55160i
\(690\) 0 0
\(691\) 21.3525 36.9836i 0.812288 1.40692i −0.0989713 0.995090i \(-0.531555\pi\)
0.911259 0.411833i \(-0.135111\pi\)
\(692\) 0.738074 + 1.27838i 0.0280574 + 0.0485968i
\(693\) 0 0
\(694\) −8.30516 6.96886i −0.315260 0.264534i
\(695\) 10.0189 + 17.3532i 0.380038 + 0.658245i
\(696\) 0 0
\(697\) −34.3002 + 12.4843i −1.29921 + 0.472875i
\(698\) −1.46316 8.29801i −0.0553816 0.314084i
\(699\) 0 0
\(700\) 1.07738 + 0.392135i 0.0407212 + 0.0148213i
\(701\) −4.64227 + 3.89533i −0.175336 + 0.147125i −0.726233 0.687449i \(-0.758730\pi\)
0.550896 + 0.834574i \(0.314286\pi\)
\(702\) 0 0
\(703\) −9.88150 51.6498i −0.372688 1.94801i
\(704\) −44.9299 −1.69336
\(705\) 0 0
\(706\) 4.47060 + 1.62717i 0.168253 + 0.0612392i
\(707\) −1.42278 + 8.06899i −0.0535092 + 0.303466i
\(708\) 0 0
\(709\) 19.5937 7.13154i 0.735858 0.267831i 0.0532159 0.998583i \(-0.483053\pi\)
0.682643 + 0.730752i \(0.260831\pi\)
\(710\) −7.47818 + 12.9526i −0.280651 + 0.486102i
\(711\) 0 0
\(712\) −28.7195 24.0985i −1.07631 0.903130i
\(713\) 8.62314 + 7.23567i 0.322939 + 0.270978i
\(714\) 0 0
\(715\) −11.2135 + 19.4223i −0.419360 + 0.726353i
\(716\) 1.25624 0.457236i 0.0469481 0.0170877i
\(717\) 0 0
\(718\) −4.73514 + 26.8543i −0.176714 + 1.00219i
\(719\) 38.0540 + 13.8505i 1.41917 + 0.516537i 0.933808 0.357774i \(-0.116464\pi\)
0.485365 + 0.874311i \(0.338687\pi\)
\(720\) 0 0
\(721\) 4.28817 0.159700
\(722\) 12.1511 22.5309i 0.452218 0.838512i
\(723\) 0 0
\(724\) 2.90239 2.43539i 0.107866 0.0905107i
\(725\) −11.2699 4.10191i −0.418554 0.152341i
\(726\) 0 0
\(727\) 2.18913 + 12.4152i 0.0811903 + 0.460453i 0.998114 + 0.0613902i \(0.0195534\pi\)
−0.916924 + 0.399063i \(0.869335\pi\)
\(728\) −19.8118 + 7.21091i −0.734274 + 0.267254i
\(729\) 0 0
\(730\) 0.693249 + 1.20074i 0.0256583 + 0.0444414i
\(731\) 18.7083 + 15.6981i 0.691950 + 0.580615i
\(732\) 0 0
\(733\) 9.05350 + 15.6811i 0.334399 + 0.579195i 0.983369 0.181618i \(-0.0581335\pi\)
−0.648970 + 0.760814i \(0.724800\pi\)
\(734\) 1.09492 1.89646i 0.0404143 0.0699997i
\(735\) 0 0
\(736\) −0.243756 1.38241i −0.00898496 0.0509562i
\(737\) 2.40760 13.6542i 0.0886852 0.502959i
\(738\) 0 0
\(739\) −16.8425 + 14.1326i −0.619563 + 0.519875i −0.897666 0.440676i \(-0.854739\pi\)
0.278103 + 0.960551i \(0.410294\pi\)
\(740\) 1.96048 0.0720685
\(741\) 0 0
\(742\) −16.7624 −0.615367
\(743\) −22.9939 + 19.2942i −0.843565 + 0.707835i −0.958363 0.285554i \(-0.907822\pi\)
0.114798 + 0.993389i \(0.463378\pi\)
\(744\) 0 0
\(745\) 2.66860 15.1344i 0.0977698 0.554480i
\(746\) 7.94428 + 45.0542i 0.290861 + 1.64955i
\(747\) 0 0
\(748\) 3.44247 5.96253i 0.125869 0.218012i
\(749\) −7.86942 13.6302i −0.287542 0.498038i
\(750\) 0 0
\(751\) 23.8241 + 19.9908i 0.869355 + 0.729475i 0.963962 0.266039i \(-0.0857151\pi\)
−0.0946073 + 0.995515i \(0.530160\pi\)
\(752\) 7.16637 + 12.4125i 0.261331 + 0.452638i
\(753\) 0 0
\(754\) 17.5287 6.37992i 0.638357 0.232343i
\(755\) −0.0974487 0.552659i −0.00354652 0.0201133i
\(756\) 0 0
\(757\) 17.7481 + 6.45978i 0.645065 + 0.234785i 0.643775 0.765215i \(-0.277367\pi\)
0.00129008 + 0.999999i \(0.499589\pi\)
\(758\) 16.5444 13.8824i 0.600920 0.504232i
\(759\) 0 0
\(760\) 8.74763 + 7.12656i 0.317310 + 0.258508i
\(761\) 5.65539 0.205008 0.102504 0.994733i \(-0.467315\pi\)
0.102504 + 0.994733i \(0.467315\pi\)
\(762\) 0 0
\(763\) 2.82723 + 1.02903i 0.102353 + 0.0372533i
\(764\) −0.185508 + 1.05207i −0.00671143 + 0.0380624i
\(765\) 0 0
\(766\) 12.1459 4.42074i 0.438849 0.159728i
\(767\) 10.4684 18.1318i 0.377991 0.654700i
\(768\) 0 0
\(769\) −6.03596 5.06477i −0.217662 0.182640i 0.527437 0.849594i \(-0.323153\pi\)
−0.745099 + 0.666954i \(0.767598\pi\)
\(770\) −6.96341 5.84300i −0.250944 0.210567i
\(771\) 0 0
\(772\) −1.44768 + 2.50746i −0.0521032 + 0.0902454i
\(773\) −21.5043 + 7.82694i −0.773457 + 0.281515i −0.698442 0.715667i \(-0.746123\pi\)
−0.0750155 + 0.997182i \(0.523901\pi\)
\(774\) 0 0
\(775\) −6.13223 + 34.7776i −0.220276 + 1.24925i
\(776\) −32.0972 11.6824i −1.15222 0.419375i
\(777\) 0 0
\(778\) 14.9299 0.535265
\(779\) −3.55674 + 22.0350i −0.127433 + 0.789487i
\(780\) 0 0
\(781\) 50.5433 42.4109i 1.80858 1.51758i
\(782\) −12.1591 4.42555i −0.434809 0.158257i
\(783\) 0 0
\(784\) 3.02578 + 17.1600i 0.108064 + 0.612859i
\(785\) −1.02987 + 0.374841i −0.0367575 + 0.0133787i
\(786\) 0 0
\(787\) −18.6844 32.3623i −0.666026 1.15359i −0.979006 0.203832i \(-0.934661\pi\)
0.312980 0.949760i \(-0.398673\pi\)
\(788\) −3.36643 2.82477i −0.119924 0.100628i
\(789\) 0 0
\(790\) −3.66684 6.35115i −0.130460 0.225964i
\(791\) 3.57057 6.18442i 0.126955 0.219893i
\(792\) 0 0
\(793\) 8.02869 + 45.5329i 0.285107 + 1.61692i
\(794\) −4.03849 + 22.9034i −0.143320 + 0.812811i
\(795\) 0 0
\(796\) 2.12171 1.78033i 0.0752020 0.0631020i
\(797\) −39.0324 −1.38260 −0.691299 0.722569i \(-0.742961\pi\)
−0.691299 + 0.722569i \(0.742961\pi\)
\(798\) 0 0
\(799\) −28.4097 −1.00506
\(800\) 3.37346 2.83067i 0.119270 0.100079i
\(801\) 0 0
\(802\) 8.89053 50.4207i 0.313936 1.78042i
\(803\) −1.06212 6.02357i −0.0374813 0.212567i
\(804\) 0 0
\(805\) 0.869585 1.50617i 0.0306488 0.0530854i
\(806\) −27.4629 47.5672i −0.967340 1.67548i
\(807\) 0 0
\(808\) 12.5862 + 10.5611i 0.442782 + 0.371538i
\(809\) 19.9829 + 34.6114i 0.702562 + 1.21687i 0.967564 + 0.252626i \(0.0812941\pi\)
−0.265002 + 0.964248i \(0.585373\pi\)
\(810\) 0 0
\(811\) 8.21213 2.98897i 0.288367 0.104957i −0.193787 0.981044i \(-0.562077\pi\)
0.482154 + 0.876087i \(0.339855\pi\)
\(812\) −0.133656 0.758003i −0.00469042 0.0266007i
\(813\) 0 0
\(814\) 79.8312 + 29.0562i 2.79808 + 1.01842i
\(815\) 4.89306 4.10576i 0.171396 0.143819i
\(816\) 0 0
\(817\) 13.9575 5.31056i 0.488312 0.185793i
\(818\) −0.182104 −0.00636712
\(819\) 0 0
\(820\) −0.781937 0.284602i −0.0273064 0.00993872i
\(821\) −6.66607 + 37.8052i −0.232647 + 1.31941i 0.614864 + 0.788633i \(0.289211\pi\)
−0.847512 + 0.530776i \(0.821900\pi\)
\(822\) 0 0
\(823\) 11.3084 4.11592i 0.394186 0.143472i −0.137319 0.990527i \(-0.543849\pi\)
0.531506 + 0.847055i \(0.321626\pi\)
\(824\) 4.29948 7.44691i 0.149779 0.259426i
\(825\) 0 0
\(826\) 6.50072 + 5.45475i 0.226189 + 0.189795i
\(827\) 29.6111 + 24.8467i 1.02968 + 0.864004i 0.990813 0.135241i \(-0.0431808\pi\)
0.0388667 + 0.999244i \(0.487625\pi\)
\(828\) 0 0
\(829\) −16.6680 + 28.8699i −0.578904 + 1.00269i 0.416701 + 0.909044i \(0.363186\pi\)
−0.995605 + 0.0936482i \(0.970147\pi\)
\(830\) 1.15998 0.422197i 0.0402634 0.0146547i
\(831\) 0 0
\(832\) −7.28359 + 41.3073i −0.252513 + 1.43207i
\(833\) −32.4556 11.8129i −1.12452 0.409292i
\(834\) 0 0
\(835\) 9.74092 0.337099
\(836\) −2.15767 3.61510i −0.0746246 0.125031i
\(837\) 0 0
\(838\) −41.0736 + 34.4648i −1.41886 + 1.19057i
\(839\) 27.8854 + 10.1494i 0.962710 + 0.350398i 0.775095 0.631845i \(-0.217702\pi\)
0.187615 + 0.982243i \(0.439924\pi\)
\(840\) 0 0
\(841\) −3.63769 20.6304i −0.125438 0.711392i
\(842\) 28.5094 10.3766i 0.982498 0.357600i
\(843\) 0 0
\(844\) −0.835904 1.44783i −0.0287730 0.0498363i
\(845\) 7.28106 + 6.10953i 0.250476 + 0.210174i
\(846\) 0 0
\(847\) 11.9768 + 20.7445i 0.411529 + 0.712789i
\(848\) −15.2404 + 26.3971i −0.523356 + 0.906479i
\(849\) 0 0
\(850\) −7.04891 39.9764i −0.241776 1.37118i
\(851\) −2.82248 + 16.0071i −0.0967534 + 0.548716i
\(852\) 0 0
\(853\) 15.0541 12.6319i 0.515444 0.432509i −0.347596 0.937644i \(-0.613002\pi\)
0.863040 + 0.505136i \(0.168558\pi\)
\(854\) −18.7401 −0.641273
\(855\) 0 0
\(856\) −31.5607 −1.07872
\(857\) 15.3544 12.8839i 0.524497 0.440105i −0.341699 0.939809i \(-0.611002\pi\)
0.866196 + 0.499704i \(0.166558\pi\)
\(858\) 0 0
\(859\) 8.28699 46.9978i 0.282748 1.60355i −0.430471 0.902605i \(-0.641652\pi\)
0.713219 0.700941i \(-0.247237\pi\)
\(860\) 0.0966772 + 0.548284i 0.00329666 + 0.0186963i
\(861\) 0 0
\(862\) −2.64274 + 4.57736i −0.0900121 + 0.155906i
\(863\) −0.260992 0.452051i −0.00888427 0.0153880i 0.861549 0.507674i \(-0.169495\pi\)
−0.870433 + 0.492286i \(0.836161\pi\)
\(864\) 0 0
\(865\) 5.38120 + 4.51536i 0.182966 + 0.153527i
\(866\) 10.7456 + 18.6119i 0.365149 + 0.632457i
\(867\) 0 0
\(868\) −2.12970 + 0.775147i −0.0722867 + 0.0263102i
\(869\) 5.61793 + 31.8608i 0.190575 + 1.08081i
\(870\) 0 0
\(871\) −12.1630 4.42696i −0.412127 0.150002i
\(872\) 4.62171 3.87808i 0.156511 0.131328i
\(873\) 0 0
\(874\) −5.98680 + 5.17328i −0.202506 + 0.174989i
\(875\) 11.9103 0.402643
\(876\) 0 0
\(877\) 9.37851 + 3.41350i 0.316690 + 0.115266i 0.495474 0.868623i \(-0.334994\pi\)
−0.178785 + 0.983888i \(0.557217\pi\)
\(878\) −1.10132 + 6.24589i −0.0371677 + 0.210789i
\(879\) 0 0
\(880\) −15.5326 + 5.65339i −0.523602 + 0.190576i
\(881\) −21.7515 + 37.6747i −0.732827 + 1.26929i 0.222844 + 0.974854i \(0.428466\pi\)
−0.955670 + 0.294439i \(0.904867\pi\)
\(882\) 0 0
\(883\) −18.4008 15.4401i −0.619236 0.519601i 0.278327 0.960486i \(-0.410220\pi\)
−0.897563 + 0.440886i \(0.854664\pi\)
\(884\) −4.92371 4.13149i −0.165602 0.138957i
\(885\) 0 0
\(886\) −19.6793 + 34.0856i −0.661140 + 1.14513i
\(887\) 27.0398 9.84169i 0.907909 0.330452i 0.154491 0.987994i \(-0.450626\pi\)
0.753417 + 0.657542i \(0.228404\pi\)
\(888\) 0 0
\(889\) 1.94499 11.0306i 0.0652330 0.369955i
\(890\) −14.1800 5.16111i −0.475316 0.173001i
\(891\) 0 0
\(892\) 0.767942 0.0257126
\(893\) −8.46703 + 15.1691i −0.283338 + 0.507615i
\(894\) 0 0
\(895\) 4.87346 4.08931i 0.162902 0.136691i
\(896\) −13.1013 4.76849i −0.437684 0.159304i
\(897\) 0 0
\(898\) 3.45811 + 19.6119i 0.115399 + 0.654458i
\(899\) 22.2777 8.10840i 0.743001 0.270430i
\(900\) 0 0
\(901\) −30.2087 52.3231i −1.00640 1.74313i
\(902\) −27.6226 23.1782i −0.919733 0.771748i
\(903\) 0 0
\(904\) −7.15998 12.4014i −0.238137 0.412466i
\(905\) 9.01501 15.6145i 0.299669 0.519042i
\(906\) 0 0
\(907\) −7.94625 45.0654i −0.263851 1.49637i −0.772287 0.635273i \(-0.780887\pi\)
0.508436 0.861100i \(-0.330224\pi\)
\(908\) −0.760668 + 4.31396i −0.0252436 + 0.143164i
\(909\) 0 0
\(910\) −6.50072 + 5.45475i −0.215497 + 0.180823i
\(911\) −26.9067 −0.891460 −0.445730 0.895168i \(-0.647056\pi\)
−0.445730 + 0.895168i \(0.647056\pi\)
\(912\) 0 0
\(913\) −5.44562 −0.180224
\(914\) 10.0296 8.41587i 0.331751 0.278372i
\(915\) 0 0
\(916\) 0.626296 3.55190i 0.0206934 0.117358i
\(917\) −3.06206 17.3658i −0.101118 0.573470i
\(918\) 0 0
\(919\) 8.96064 15.5203i 0.295584 0.511967i −0.679536 0.733642i \(-0.737819\pi\)
0.975121 + 0.221675i \(0.0711524\pi\)
\(920\) −1.74376 3.02027i −0.0574899 0.0995755i
\(921\) 0 0
\(922\) −14.5333 12.1949i −0.478628 0.401616i
\(923\) −30.7977 53.3432i −1.01372 1.75581i
\(924\) 0 0
\(925\) −47.9163 + 17.4401i −1.57548 + 0.573427i
\(926\) 6.46909 + 36.6881i 0.212588 + 1.20564i
\(927\) 0 0
\(928\) −2.77807 1.01113i −0.0911945 0.0331921i
\(929\) 3.93763 3.30407i 0.129190 0.108403i −0.575904 0.817518i \(-0.695350\pi\)
0.705093 + 0.709115i \(0.250905\pi\)
\(930\) 0 0
\(931\) −15.9802 + 13.8088i −0.523731 + 0.452564i
\(932\) 0.705194 0.0230994
\(933\) 0 0
\(934\) −17.5317 6.38101i −0.573654 0.208793i
\(935\) 5.68938 32.2661i 0.186063 1.05521i
\(936\) 0 0
\(937\) −26.4522 + 9.62781i −0.864155 + 0.314527i −0.735798 0.677201i \(-0.763193\pi\)
−0.128357 + 0.991728i \(0.540970\pi\)
\(938\) 2.62314 4.54341i 0.0856486 0.148348i
\(939\) 0 0
\(940\) −0.496130 0.416302i −0.0161820 0.0135783i
\(941\) 25.9893 + 21.8076i 0.847228 + 0.710908i 0.959177 0.282805i \(-0.0912651\pi\)
−0.111950 + 0.993714i \(0.535710\pi\)
\(942\) 0 0
\(943\) 3.44949 5.97470i 0.112331 0.194563i
\(944\) 14.5005 5.27774i 0.471950 0.171776i
\(945\) 0 0
\(946\) −4.18938 + 23.7591i −0.136208 + 0.772476i
\(947\) 37.9577 + 13.8155i 1.23346 + 0.448943i 0.874781 0.484519i \(-0.161005\pi\)
0.358679 + 0.933461i \(0.383227\pi\)
\(948\) 0 0
\(949\) −5.71007 −0.185357
\(950\) −23.4458 8.15058i −0.760684 0.264440i
\(951\) 0 0
\(952\) 23.5948 19.7984i 0.764712 0.641670i
\(953\) −34.2028 12.4488i −1.10794 0.403256i −0.277701 0.960668i \(-0.589572\pi\)
−0.830236 + 0.557411i \(0.811795\pi\)
\(954\) 0 0
\(955\) 0.882789 + 5.00654i 0.0285664 + 0.162008i
\(956\) 0.142903 0.0520126i 0.00462183 0.00168221i
\(957\) 0 0
\(958\) 12.9192 + 22.3767i 0.417401 + 0.722960i
\(959\) −4.50096 3.77676i −0.145344 0.121958i
\(960\) 0 0
\(961\) −19.4033 33.6075i −0.625914 1.08411i
\(962\) 39.6548 68.6842i 1.27852 2.21447i
\(963\) 0 0
\(964\) 0.277656 + 1.57466i 0.00894269 + 0.0507165i
\(965\) −2.39259 + 13.5690i −0.0770202 + 0.436803i
\(966\) 0 0
\(967\) −9.60195 + 8.05699i −0.308778 + 0.259095i −0.783987 0.620778i \(-0.786817\pi\)
0.475209 + 0.879873i \(0.342373\pi\)
\(968\) 48.0337 1.54386
\(969\) 0 0
\(970\) −13.7483 −0.441433
\(971\) 9.94222 8.34251i 0.319061 0.267724i −0.469164 0.883111i \(-0.655445\pi\)
0.788225 + 0.615387i \(0.211000\pi\)
\(972\) 0 0
\(973\) 5.80818 32.9398i 0.186202 1.05600i
\(974\) −1.31323 7.44772i −0.0420787 0.238640i
\(975\) 0 0
\(976\) −17.0385 + 29.5115i −0.545389 + 0.944641i
\(977\) 18.8610 + 32.6682i 0.603416 + 1.04515i 0.992300 + 0.123860i \(0.0395274\pi\)
−0.388884 + 0.921287i \(0.627139\pi\)
\(978\) 0 0
\(979\) 50.9952 + 42.7901i 1.62981 + 1.36758i
\(980\) −0.393685 0.681882i −0.0125758 0.0217819i
\(981\) 0 0
\(982\) −22.0565 + 8.02791i −0.703851 + 0.256181i
\(983\) −1.21002 6.86235i −0.0385936 0.218875i 0.959411 0.282010i \(-0.0910012\pi\)
−0.998005 + 0.0631351i \(0.979890\pi\)
\(984\) 0 0
\(985\) −19.6515 7.15257i −0.626150 0.227900i
\(986\) −20.8757 + 17.5168i −0.664819 + 0.557849i
\(987\) 0 0
\(988\) −3.67340 + 1.39765i −0.116866 + 0.0444653i
\(989\) −4.61587 −0.146776
\(990\) 0 0
\(991\) 19.0205 + 6.92291i 0.604207 + 0.219913i 0.625967 0.779850i \(-0.284705\pi\)
−0.0217595 + 0.999763i \(0.506927\pi\)
\(992\) −1.51161 + 8.57277i −0.0479937 + 0.272186i
\(993\) 0 0
\(994\) 23.4602 8.53882i 0.744113 0.270835i
\(995\) 6.59017 11.4145i 0.208923 0.361865i
\(996\) 0 0
\(997\) 26.3350 + 22.0977i 0.834039 + 0.699842i 0.956214 0.292667i \(-0.0945427\pi\)
−0.122176 + 0.992508i \(0.538987\pi\)
\(998\) −18.2131 15.2826i −0.576526 0.483762i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.y.c.82.1 yes 6
3.2 odd 2 513.2.y.a.82.1 6
19.4 even 9 9747.2.a.u.1.2 3
19.15 odd 18 9747.2.a.bb.1.2 3
19.16 even 9 inner 513.2.y.c.244.1 yes 6
57.23 odd 18 9747.2.a.bd.1.2 3
57.35 odd 18 513.2.y.a.244.1 yes 6
57.53 even 18 9747.2.a.v.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.y.a.82.1 6 3.2 odd 2
513.2.y.a.244.1 yes 6 57.35 odd 18
513.2.y.c.82.1 yes 6 1.1 even 1 trivial
513.2.y.c.244.1 yes 6 19.16 even 9 inner
9747.2.a.u.1.2 3 19.4 even 9
9747.2.a.v.1.2 3 57.53 even 18
9747.2.a.bb.1.2 3 19.15 odd 18
9747.2.a.bd.1.2 3 57.23 odd 18