Properties

Label 513.2.m.d.107.1
Level $513$
Weight $2$
Character 513.107
Analytic conductor $4.096$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(107,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 14x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.1
Root \(-3.24037 - 1.87083i\) of defining polynomial
Character \(\chi\) \(=\) 513.107
Dual form 513.2.m.d.350.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{4} +(-3.24037 + 1.87083i) q^{5} +2.00000 q^{7} -3.74166i q^{11} +(4.50000 + 2.59808i) q^{13} +(-2.00000 - 3.46410i) q^{16} +(6.48074 - 3.74166i) q^{17} +(-3.50000 - 2.59808i) q^{19} +7.48331i q^{20} +(3.24037 + 1.87083i) q^{23} +(4.50000 - 7.79423i) q^{25} +(2.00000 - 3.46410i) q^{28} +(3.24037 - 5.61249i) q^{29} +1.73205i q^{31} +(-6.48074 + 3.74166i) q^{35} +5.19615i q^{37} +(-3.24037 - 5.61249i) q^{41} +(-2.50000 - 4.33013i) q^{43} +(-6.48074 - 3.74166i) q^{44} +(3.24037 + 1.87083i) q^{47} -3.00000 q^{49} +(9.00000 - 5.19615i) q^{52} +(-3.24037 + 5.61249i) q^{53} +(7.00000 + 12.1244i) q^{55} +(6.48074 + 11.2250i) q^{59} +(3.50000 - 6.06218i) q^{61} -8.00000 q^{64} -19.4422 q^{65} -14.9666i q^{68} +(3.24037 + 5.61249i) q^{71} +(2.00000 + 3.46410i) q^{73} +(-8.00000 + 3.46410i) q^{76} -7.48331i q^{77} +(-4.50000 + 2.59808i) q^{79} +(12.9615 + 7.48331i) q^{80} +7.48331i q^{83} +(-14.0000 + 24.2487i) q^{85} +(6.48074 - 11.2250i) q^{89} +(9.00000 + 5.19615i) q^{91} +(6.48074 - 3.74166i) q^{92} +(16.2019 + 1.87083i) q^{95} +(4.50000 - 2.59808i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 8 q^{7} + 18 q^{13} - 8 q^{16} - 14 q^{19} + 18 q^{25} + 8 q^{28} - 10 q^{43} - 12 q^{49} + 36 q^{52} + 28 q^{55} + 14 q^{61} - 32 q^{64} + 8 q^{73} - 32 q^{76} - 18 q^{79} - 56 q^{85} + 36 q^{91}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) −3.24037 + 1.87083i −1.44914 + 0.836660i −0.998430 0.0560116i \(-0.982162\pi\)
−0.450708 + 0.892672i \(0.648828\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.74166i 1.12815i −0.825723 0.564076i \(-0.809232\pi\)
0.825723 0.564076i \(-0.190768\pi\)
\(12\) 0 0
\(13\) 4.50000 + 2.59808i 1.24808 + 0.720577i 0.970725 0.240192i \(-0.0772105\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 6.48074 3.74166i 1.57181 0.907485i 0.575863 0.817546i \(-0.304666\pi\)
0.995947 0.0899392i \(-0.0286673\pi\)
\(18\) 0 0
\(19\) −3.50000 2.59808i −0.802955 0.596040i
\(20\) 7.48331i 1.67332i
\(21\) 0 0
\(22\) 0 0
\(23\) 3.24037 + 1.87083i 0.675664 + 0.390095i 0.798219 0.602367i \(-0.205776\pi\)
−0.122555 + 0.992462i \(0.539109\pi\)
\(24\) 0 0
\(25\) 4.50000 7.79423i 0.900000 1.55885i
\(26\) 0 0
\(27\) 0 0
\(28\) 2.00000 3.46410i 0.377964 0.654654i
\(29\) 3.24037 5.61249i 0.601722 1.04221i −0.390839 0.920459i \(-0.627815\pi\)
0.992560 0.121753i \(-0.0388517\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i 0.987829 + 0.155543i \(0.0497126\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.48074 + 3.74166i −1.09545 + 0.632456i
\(36\) 0 0
\(37\) 5.19615i 0.854242i 0.904194 + 0.427121i \(0.140472\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.24037 5.61249i −0.506061 0.876523i −0.999975 0.00701264i \(-0.997768\pi\)
0.493915 0.869510i \(-0.335566\pi\)
\(42\) 0 0
\(43\) −2.50000 4.33013i −0.381246 0.660338i 0.609994 0.792406i \(-0.291172\pi\)
−0.991241 + 0.132068i \(0.957838\pi\)
\(44\) −6.48074 3.74166i −0.977008 0.564076i
\(45\) 0 0
\(46\) 0 0
\(47\) 3.24037 + 1.87083i 0.472657 + 0.272888i 0.717351 0.696712i \(-0.245354\pi\)
−0.244695 + 0.969600i \(0.578688\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 9.00000 5.19615i 1.24808 0.720577i
\(53\) −3.24037 + 5.61249i −0.445099 + 0.770934i −0.998059 0.0622735i \(-0.980165\pi\)
0.552960 + 0.833208i \(0.313498\pi\)
\(54\) 0 0
\(55\) 7.00000 + 12.1244i 0.943880 + 1.63485i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.48074 + 11.2250i 0.843721 + 1.46137i 0.886728 + 0.462292i \(0.152973\pi\)
−0.0430071 + 0.999075i \(0.513694\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −19.4422 −2.41151
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 14.9666i 1.81497i
\(69\) 0 0
\(70\) 0 0
\(71\) 3.24037 + 5.61249i 0.384561 + 0.666080i 0.991708 0.128510i \(-0.0410194\pi\)
−0.607147 + 0.794590i \(0.707686\pi\)
\(72\) 0 0
\(73\) 2.00000 + 3.46410i 0.234082 + 0.405442i 0.959006 0.283387i \(-0.0914581\pi\)
−0.724923 + 0.688830i \(0.758125\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −8.00000 + 3.46410i −0.917663 + 0.397360i
\(77\) 7.48331i 0.852803i
\(78\) 0 0
\(79\) −4.50000 + 2.59808i −0.506290 + 0.292306i −0.731307 0.682048i \(-0.761089\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 12.9615 + 7.48331i 1.44914 + 0.836660i
\(81\) 0 0
\(82\) 0 0
\(83\) 7.48331i 0.821401i 0.911770 + 0.410700i \(0.134716\pi\)
−0.911770 + 0.410700i \(0.865284\pi\)
\(84\) 0 0
\(85\) −14.0000 + 24.2487i −1.51851 + 2.63014i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.48074 11.2250i 0.686957 1.18984i −0.285860 0.958271i \(-0.592279\pi\)
0.972817 0.231573i \(-0.0743873\pi\)
\(90\) 0 0
\(91\) 9.00000 + 5.19615i 0.943456 + 0.544705i
\(92\) 6.48074 3.74166i 0.675664 0.390095i
\(93\) 0 0
\(94\) 0 0
\(95\) 16.2019 + 1.87083i 1.66227 + 0.191943i
\(96\) 0 0
\(97\) 4.50000 2.59808i 0.456906 0.263795i −0.253837 0.967247i \(-0.581693\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.00000 15.5885i −0.900000 1.55885i
\(101\) 3.24037 + 1.87083i 0.322429 + 0.186154i 0.652475 0.757811i \(-0.273731\pi\)
−0.330046 + 0.943965i \(0.607064\pi\)
\(102\) 0 0
\(103\) 6.92820i 0.682656i 0.939944 + 0.341328i \(0.110877\pi\)
−0.939944 + 0.341328i \(0.889123\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.4422 −1.87955 −0.939775 0.341793i \(-0.888966\pi\)
−0.939775 + 0.341793i \(0.888966\pi\)
\(108\) 0 0
\(109\) −3.00000 + 1.73205i −0.287348 + 0.165900i −0.636745 0.771074i \(-0.719720\pi\)
0.349397 + 0.936975i \(0.386386\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 6.92820i −0.377964 0.654654i
\(113\) −6.48074 −0.609657 −0.304828 0.952407i \(-0.598599\pi\)
−0.304828 + 0.952407i \(0.598599\pi\)
\(114\) 0 0
\(115\) −14.0000 −1.30551
\(116\) −6.48074 11.2250i −0.601722 1.04221i
\(117\) 0 0
\(118\) 0 0
\(119\) 12.9615 7.48331i 1.18818 0.685994i
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) 0 0
\(124\) 3.00000 + 1.73205i 0.269408 + 0.155543i
\(125\) 14.9666i 1.33866i
\(126\) 0 0
\(127\) −12.0000 6.92820i −1.06483 0.614779i −0.138064 0.990423i \(-0.544088\pi\)
−0.926764 + 0.375645i \(0.877421\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.9615 + 7.48331i −1.13245 + 0.653820i −0.944550 0.328368i \(-0.893501\pi\)
−0.187900 + 0.982188i \(0.560168\pi\)
\(132\) 0 0
\(133\) −7.00000 5.19615i −0.606977 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.24037 + 1.87083i 0.276844 + 0.159836i 0.631994 0.774974i \(-0.282237\pi\)
−0.355150 + 0.934809i \(0.615570\pi\)
\(138\) 0 0
\(139\) −7.00000 + 12.1244i −0.593732 + 1.02837i 0.399992 + 0.916519i \(0.369013\pi\)
−0.993724 + 0.111856i \(0.964321\pi\)
\(140\) 14.9666i 1.26491i
\(141\) 0 0
\(142\) 0 0
\(143\) 9.72111 16.8375i 0.812920 1.40802i
\(144\) 0 0
\(145\) 24.2487i 2.01375i
\(146\) 0 0
\(147\) 0 0
\(148\) 9.00000 + 5.19615i 0.739795 + 0.427121i
\(149\) −12.9615 + 7.48331i −1.06185 + 0.613057i −0.925942 0.377665i \(-0.876727\pi\)
−0.135904 + 0.990722i \(0.543394\pi\)
\(150\) 0 0
\(151\) 8.66025i 0.704761i 0.935857 + 0.352381i \(0.114628\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.24037 5.61249i −0.260273 0.450806i
\(156\) 0 0
\(157\) −5.50000 9.52628i −0.438948 0.760280i 0.558661 0.829396i \(-0.311315\pi\)
−0.997609 + 0.0691164i \(0.977982\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.48074 + 3.74166i 0.510754 + 0.294884i
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) −12.9615 −1.01212
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0 0
\(169\) 7.00000 + 12.1244i 0.538462 + 0.932643i
\(170\) 0 0
\(171\) 0 0
\(172\) −10.0000 −0.762493
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) 9.00000 15.5885i 0.680336 1.17838i
\(176\) −12.9615 + 7.48331i −0.977008 + 0.564076i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 19.5000 + 11.2583i 1.44942 + 0.836825i 0.998447 0.0557107i \(-0.0177424\pi\)
0.450977 + 0.892536i \(0.351076\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.72111 16.8375i −0.714710 1.23791i
\(186\) 0 0
\(187\) −14.0000 24.2487i −1.02378 1.77324i
\(188\) 6.48074 3.74166i 0.472657 0.272888i
\(189\) 0 0
\(190\) 0 0
\(191\) 3.74166i 0.270737i −0.990795 0.135368i \(-0.956778\pi\)
0.990795 0.135368i \(-0.0432218\pi\)
\(192\) 0 0
\(193\) 21.0000 12.1244i 1.51161 0.872730i 0.511705 0.859161i \(-0.329014\pi\)
0.999908 0.0135691i \(-0.00431931\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −3.00000 + 5.19615i −0.214286 + 0.371154i
\(197\) 3.74166i 0.266582i −0.991077 0.133291i \(-0.957446\pi\)
0.991077 0.133291i \(-0.0425545\pi\)
\(198\) 0 0
\(199\) 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i \(-0.788052\pi\)
0.928166 + 0.372168i \(0.121385\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.48074 11.2250i 0.454859 0.787839i
\(204\) 0 0
\(205\) 21.0000 + 12.1244i 1.46670 + 0.846802i
\(206\) 0 0
\(207\) 0 0
\(208\) 20.7846i 1.44115i
\(209\) −9.72111 + 13.0958i −0.672423 + 0.905855i
\(210\) 0 0
\(211\) 12.0000 6.92820i 0.826114 0.476957i −0.0264062 0.999651i \(-0.508406\pi\)
0.852520 + 0.522694i \(0.175073\pi\)
\(212\) 6.48074 + 11.2250i 0.445099 + 0.770934i
\(213\) 0 0
\(214\) 0 0
\(215\) 16.2019 + 9.35414i 1.10496 + 0.637947i
\(216\) 0 0
\(217\) 3.46410i 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 28.0000 1.88776
\(221\) 38.8844 2.61565
\(222\) 0 0
\(223\) −4.50000 + 2.59808i −0.301342 + 0.173980i −0.643046 0.765828i \(-0.722329\pi\)
0.341703 + 0.939808i \(0.388996\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.48074 0.430142 0.215071 0.976598i \(-0.431002\pi\)
0.215071 + 0.976598i \(0.431002\pi\)
\(228\) 0 0
\(229\) −1.00000 −0.0660819 −0.0330409 0.999454i \(-0.510519\pi\)
−0.0330409 + 0.999454i \(0.510519\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.48074 3.74166i 0.424567 0.245124i −0.272462 0.962167i \(-0.587838\pi\)
0.697030 + 0.717042i \(0.254505\pi\)
\(234\) 0 0
\(235\) −14.0000 −0.913259
\(236\) 25.9230 1.68744
\(237\) 0 0
\(238\) 0 0
\(239\) 14.9666i 0.968111i −0.875037 0.484055i \(-0.839163\pi\)
0.875037 0.484055i \(-0.160837\pi\)
\(240\) 0 0
\(241\) 12.0000 + 6.92820i 0.772988 + 0.446285i 0.833939 0.551856i \(-0.186080\pi\)
−0.0609515 + 0.998141i \(0.519414\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −7.00000 12.1244i −0.448129 0.776182i
\(245\) 9.72111 5.61249i 0.621059 0.358569i
\(246\) 0 0
\(247\) −9.00000 20.7846i −0.572656 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.2019 9.35414i −1.02265 0.590428i −0.107781 0.994175i \(-0.534374\pi\)
−0.914871 + 0.403746i \(0.867708\pi\)
\(252\) 0 0
\(253\) 7.00000 12.1244i 0.440086 0.762252i
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −9.72111 + 16.8375i −0.606386 + 1.05029i 0.385445 + 0.922731i \(0.374048\pi\)
−0.991831 + 0.127561i \(0.959285\pi\)
\(258\) 0 0
\(259\) 10.3923i 0.645746i
\(260\) −19.4422 + 33.6749i −1.20576 + 2.08843i
\(261\) 0 0
\(262\) 0 0
\(263\) −12.9615 + 7.48331i −0.799239 + 0.461441i −0.843205 0.537592i \(-0.819334\pi\)
0.0439659 + 0.999033i \(0.486001\pi\)
\(264\) 0 0
\(265\) 24.2487i 1.48959i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.48074 11.2250i −0.395138 0.684399i 0.597981 0.801510i \(-0.295970\pi\)
−0.993119 + 0.117112i \(0.962636\pi\)
\(270\) 0 0
\(271\) 6.50000 + 11.2583i 0.394847 + 0.683895i 0.993082 0.117426i \(-0.0374643\pi\)
−0.598235 + 0.801321i \(0.704131\pi\)
\(272\) −25.9230 14.9666i −1.57181 0.907485i
\(273\) 0 0
\(274\) 0 0
\(275\) −29.1633 16.8375i −1.75862 1.01534i
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.24037 5.61249i 0.193304 0.334813i −0.753039 0.657976i \(-0.771413\pi\)
0.946343 + 0.323163i \(0.104746\pi\)
\(282\) 0 0
\(283\) 5.00000 + 8.66025i 0.297219 + 0.514799i 0.975499 0.220005i \(-0.0706075\pi\)
−0.678280 + 0.734804i \(0.737274\pi\)
\(284\) 12.9615 0.769122
\(285\) 0 0
\(286\) 0 0
\(287\) −6.48074 11.2250i −0.382546 0.662589i
\(288\) 0 0
\(289\) 19.5000 33.7750i 1.14706 1.98676i
\(290\) 0 0
\(291\) 0 0
\(292\) 8.00000 0.468165
\(293\) 12.9615 0.757218 0.378609 0.925557i \(-0.376403\pi\)
0.378609 + 0.925557i \(0.376403\pi\)
\(294\) 0 0
\(295\) −42.0000 24.2487i −2.44533 1.41181i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.72111 + 16.8375i 0.562186 + 0.973735i
\(300\) 0 0
\(301\) −5.00000 8.66025i −0.288195 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) −2.00000 + 17.3205i −0.114708 + 0.993399i
\(305\) 26.1916i 1.49973i
\(306\) 0 0
\(307\) 6.00000 3.46410i 0.342438 0.197707i −0.318912 0.947784i \(-0.603317\pi\)
0.661350 + 0.750078i \(0.269984\pi\)
\(308\) −12.9615 7.48331i −0.738549 0.426401i
\(309\) 0 0
\(310\) 0 0
\(311\) 3.74166i 0.212170i −0.994357 0.106085i \(-0.966168\pi\)
0.994357 0.106085i \(-0.0338316\pi\)
\(312\) 0 0
\(313\) 3.50000 6.06218i 0.197832 0.342655i −0.749993 0.661445i \(-0.769943\pi\)
0.947825 + 0.318791i \(0.103277\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 10.3923i 0.584613i
\(317\) −6.48074 + 11.2250i −0.363995 + 0.630457i −0.988614 0.150472i \(-0.951921\pi\)
0.624620 + 0.780929i \(0.285254\pi\)
\(318\) 0 0
\(319\) −21.0000 12.1244i −1.17577 0.678834i
\(320\) 25.9230 14.9666i 1.44914 0.836660i
\(321\) 0 0
\(322\) 0 0
\(323\) −32.4037 3.74166i −1.80299 0.208191i
\(324\) 0 0
\(325\) 40.5000 23.3827i 2.24654 1.29704i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.48074 + 3.74166i 0.357295 + 0.206284i
\(330\) 0 0
\(331\) 29.4449i 1.61844i 0.587508 + 0.809218i \(0.300109\pi\)
−0.587508 + 0.809218i \(0.699891\pi\)
\(332\) 12.9615 + 7.48331i 0.711354 + 0.410700i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 12.0000 6.92820i 0.653682 0.377403i −0.136184 0.990684i \(-0.543484\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 28.0000 + 48.4974i 1.51851 + 2.63014i
\(341\) 6.48074 0.350952
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.24037 + 1.87083i −0.173952 + 0.100431i −0.584448 0.811431i \(-0.698689\pi\)
0.410496 + 0.911862i \(0.365356\pi\)
\(348\) 0 0
\(349\) −7.00000 −0.374701 −0.187351 0.982293i \(-0.559990\pi\)
−0.187351 + 0.982293i \(0.559990\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 29.9333i 1.59319i 0.604516 + 0.796593i \(0.293367\pi\)
−0.604516 + 0.796593i \(0.706633\pi\)
\(354\) 0 0
\(355\) −21.0000 12.1244i −1.11456 0.643494i
\(356\) −12.9615 22.4499i −0.686957 1.18984i
\(357\) 0 0
\(358\) 0 0
\(359\) −12.9615 + 7.48331i −0.684081 + 0.394954i −0.801391 0.598141i \(-0.795906\pi\)
0.117310 + 0.993095i \(0.462573\pi\)
\(360\) 0 0
\(361\) 5.50000 + 18.1865i 0.289474 + 0.957186i
\(362\) 0 0
\(363\) 0 0
\(364\) 18.0000 10.3923i 0.943456 0.544705i
\(365\) −12.9615 7.48331i −0.678435 0.391695i
\(366\) 0 0
\(367\) 12.5000 21.6506i 0.652495 1.13015i −0.330021 0.943974i \(-0.607056\pi\)
0.982516 0.186180i \(-0.0596109\pi\)
\(368\) 14.9666i 0.780189i
\(369\) 0 0
\(370\) 0 0
\(371\) −6.48074 + 11.2250i −0.336463 + 0.582772i
\(372\) 0 0
\(373\) 12.1244i 0.627775i 0.949460 + 0.313888i \(0.101632\pi\)
−0.949460 + 0.313888i \(0.898368\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 29.1633 16.8375i 1.50199 0.867173i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 19.4422 26.1916i 0.997365 1.34360i
\(381\) 0 0
\(382\) 0 0
\(383\) 16.2019 + 28.0624i 0.827876 + 1.43392i 0.899701 + 0.436506i \(0.143784\pi\)
−0.0718254 + 0.997417i \(0.522882\pi\)
\(384\) 0 0
\(385\) 14.0000 + 24.2487i 0.713506 + 1.23583i
\(386\) 0 0
\(387\) 0 0
\(388\) 10.3923i 0.527589i
\(389\) −6.48074 3.74166i −0.328587 0.189710i 0.326627 0.945153i \(-0.394088\pi\)
−0.655213 + 0.755444i \(0.727421\pi\)
\(390\) 0 0
\(391\) 28.0000 1.41602
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.72111 16.8375i 0.489122 0.847184i
\(396\) 0 0
\(397\) 0.500000 + 0.866025i 0.0250943 + 0.0434646i 0.878300 0.478110i \(-0.158678\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −36.0000 −1.80000
\(401\) 16.2019 + 28.0624i 0.809082 + 1.40137i 0.913501 + 0.406837i \(0.133368\pi\)
−0.104419 + 0.994533i \(0.533298\pi\)
\(402\) 0 0
\(403\) −4.50000 + 7.79423i −0.224161 + 0.388258i
\(404\) 6.48074 3.74166i 0.322429 0.186154i
\(405\) 0 0
\(406\) 0 0
\(407\) 19.4422 0.963715
\(408\) 0 0
\(409\) −22.5000 12.9904i −1.11255 0.642333i −0.173064 0.984911i \(-0.555367\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 12.0000 + 6.92820i 0.591198 + 0.341328i
\(413\) 12.9615 + 22.4499i 0.637793 + 1.10469i
\(414\) 0 0
\(415\) −14.0000 24.2487i −0.687233 1.19032i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.9666i 0.731168i −0.930778 0.365584i \(-0.880869\pi\)
0.930778 0.365584i \(-0.119131\pi\)
\(420\) 0 0
\(421\) −31.5000 + 18.1865i −1.53522 + 0.886357i −0.536107 + 0.844150i \(0.680106\pi\)
−0.999109 + 0.0422075i \(0.986561\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 67.3498i 3.26695i
\(426\) 0 0
\(427\) 7.00000 12.1244i 0.338754 0.586739i
\(428\) −19.4422 + 33.6749i −0.939775 + 1.62774i
\(429\) 0 0
\(430\) 0 0
\(431\) 6.48074 11.2250i 0.312166 0.540688i −0.666665 0.745358i \(-0.732279\pi\)
0.978831 + 0.204670i \(0.0656121\pi\)
\(432\) 0 0
\(433\) 19.5000 + 11.2583i 0.937110 + 0.541041i 0.889053 0.457804i \(-0.151364\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.92820i 0.331801i
\(437\) −6.48074 14.9666i −0.310016 0.715951i
\(438\) 0 0
\(439\) 13.5000 7.79423i 0.644320 0.371998i −0.141957 0.989873i \(-0.545339\pi\)
0.786277 + 0.617875i \(0.212006\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 22.6826 + 13.0958i 1.07768 + 0.622200i 0.930270 0.366875i \(-0.119572\pi\)
0.147412 + 0.989075i \(0.452906\pi\)
\(444\) 0 0
\(445\) 48.4974i 2.29900i
\(446\) 0 0
\(447\) 0 0
\(448\) −16.0000 −0.755929
\(449\) 19.4422 0.917535 0.458768 0.888556i \(-0.348291\pi\)
0.458768 + 0.888556i \(0.348291\pi\)
\(450\) 0 0
\(451\) −21.0000 + 12.1244i −0.988851 + 0.570914i
\(452\) −6.48074 + 11.2250i −0.304828 + 0.527978i
\(453\) 0 0
\(454\) 0 0
\(455\) −38.8844 −1.82293
\(456\) 0 0
\(457\) −31.0000 −1.45012 −0.725059 0.688686i \(-0.758188\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −14.0000 + 24.2487i −0.652753 + 1.13060i
\(461\) −22.6826 + 13.0958i −1.05643 + 0.609932i −0.924444 0.381319i \(-0.875470\pi\)
−0.131990 + 0.991251i \(0.542137\pi\)
\(462\) 0 0
\(463\) −1.00000 −0.0464739 −0.0232370 0.999730i \(-0.507397\pi\)
−0.0232370 + 0.999730i \(0.507397\pi\)
\(464\) −25.9230 −1.20344
\(465\) 0 0
\(466\) 0 0
\(467\) 18.7083i 0.865716i 0.901462 + 0.432858i \(0.142495\pi\)
−0.901462 + 0.432858i \(0.857505\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16.2019 + 9.35414i −0.744962 + 0.430104i
\(474\) 0 0
\(475\) −36.0000 + 15.5885i −1.65179 + 0.715247i
\(476\) 29.9333i 1.37199i
\(477\) 0 0
\(478\) 0 0
\(479\) 3.24037 + 1.87083i 0.148056 + 0.0854803i 0.572198 0.820115i \(-0.306091\pi\)
−0.424142 + 0.905596i \(0.639424\pi\)
\(480\) 0 0
\(481\) −13.5000 + 23.3827i −0.615547 + 1.06616i
\(482\) 0 0
\(483\) 0 0
\(484\) −3.00000 + 5.19615i −0.136364 + 0.236189i
\(485\) −9.72111 + 16.8375i −0.441413 + 0.764550i
\(486\) 0 0
\(487\) 36.3731i 1.64822i 0.566429 + 0.824110i \(0.308325\pi\)
−0.566429 + 0.824110i \(0.691675\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.24037 + 1.87083i −0.146236 + 0.0844293i −0.571333 0.820719i \(-0.693573\pi\)
0.425097 + 0.905148i \(0.360240\pi\)
\(492\) 0 0
\(493\) 48.4974i 2.18421i
\(494\) 0 0
\(495\) 0 0
\(496\) 6.00000 3.46410i 0.269408 0.155543i
\(497\) 6.48074 + 11.2250i 0.290701 + 0.503509i
\(498\) 0 0
\(499\) −8.50000 14.7224i −0.380512 0.659067i 0.610623 0.791921i \(-0.290919\pi\)
−0.991136 + 0.132855i \(0.957586\pi\)
\(500\) 25.9230 + 14.9666i 1.15931 + 0.669328i
\(501\) 0 0
\(502\) 0 0
\(503\) −6.48074 3.74166i −0.288962 0.166832i 0.348512 0.937304i \(-0.386687\pi\)
−0.637474 + 0.770472i \(0.720021\pi\)
\(504\) 0 0
\(505\) −14.0000 −0.622992
\(506\) 0 0
\(507\) 0 0
\(508\) −24.0000 + 13.8564i −1.06483 + 0.614779i
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) 4.00000 + 6.92820i 0.176950 + 0.306486i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.9615 22.4499i −0.571151 0.989263i
\(516\) 0 0
\(517\) 7.00000 12.1244i 0.307860 0.533229i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.4422 −0.851779 −0.425890 0.904775i \(-0.640039\pi\)
−0.425890 + 0.904775i \(0.640039\pi\)
\(522\) 0 0
\(523\) −34.5000 19.9186i −1.50858 0.870979i −0.999950 0.00999344i \(-0.996819\pi\)
−0.508630 0.860985i \(-0.669848\pi\)
\(524\) 29.9333i 1.30764i
\(525\) 0 0
\(526\) 0 0
\(527\) 6.48074 + 11.2250i 0.282305 + 0.488967i
\(528\) 0 0
\(529\) −4.50000 7.79423i −0.195652 0.338880i
\(530\) 0 0
\(531\) 0 0
\(532\) −16.0000 + 6.92820i −0.693688 + 0.300376i
\(533\) 33.6749i 1.45862i
\(534\) 0 0
\(535\) 63.0000 36.3731i 2.72373 1.57254i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11.2250i 0.483494i
\(540\) 0 0
\(541\) −8.50000 + 14.7224i −0.365444 + 0.632967i −0.988847 0.148933i \(-0.952416\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.48074 11.2250i 0.277604 0.480825i
\(546\) 0 0
\(547\) −10.5000 6.06218i −0.448948 0.259200i 0.258438 0.966028i \(-0.416792\pi\)
−0.707386 + 0.706828i \(0.750126\pi\)
\(548\) 6.48074 3.74166i 0.276844 0.159836i
\(549\) 0 0
\(550\) 0 0
\(551\) −25.9230 + 11.2250i −1.10436 + 0.478200i
\(552\) 0 0
\(553\) −9.00000 + 5.19615i −0.382719 + 0.220963i
\(554\) 0 0
\(555\) 0 0
\(556\) 14.0000 + 24.2487i 0.593732 + 1.02837i
\(557\) −35.6441 20.5791i −1.51029 0.871965i −0.999928 0.0120042i \(-0.996179\pi\)
−0.510360 0.859961i \(-0.670488\pi\)
\(558\) 0 0
\(559\) 25.9808i 1.09887i
\(560\) 25.9230 + 14.9666i 1.09545 + 0.632456i
\(561\) 0 0
\(562\) 0 0
\(563\) 12.9615 0.546261 0.273131 0.961977i \(-0.411941\pi\)
0.273131 + 0.961977i \(0.411941\pi\)
\(564\) 0 0
\(565\) 21.0000 12.1244i 0.883477 0.510075i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.48074 0.271687 0.135843 0.990730i \(-0.456626\pi\)
0.135843 + 0.990730i \(0.456626\pi\)
\(570\) 0 0
\(571\) −37.0000 −1.54840 −0.774201 0.632940i \(-0.781848\pi\)
−0.774201 + 0.632940i \(0.781848\pi\)
\(572\) −19.4422 33.6749i −0.812920 1.40802i
\(573\) 0 0
\(574\) 0 0
\(575\) 29.1633 16.8375i 1.21620 0.702171i
\(576\) 0 0
\(577\) 17.0000 0.707719 0.353860 0.935299i \(-0.384869\pi\)
0.353860 + 0.935299i \(0.384869\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 42.0000 + 24.2487i 1.74396 + 1.00687i
\(581\) 14.9666i 0.620920i
\(582\) 0 0
\(583\) 21.0000 + 12.1244i 0.869731 + 0.502140i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.9615 + 7.48331i −0.534978 + 0.308869i −0.743041 0.669246i \(-0.766617\pi\)
0.208063 + 0.978115i \(0.433284\pi\)
\(588\) 0 0
\(589\) 4.50000 6.06218i 0.185419 0.249788i
\(590\) 0 0
\(591\) 0 0
\(592\) 18.0000 10.3923i 0.739795 0.427121i
\(593\) −35.6441 20.5791i −1.46373 0.845083i −0.464546 0.885549i \(-0.653782\pi\)
−0.999181 + 0.0404661i \(0.987116\pi\)
\(594\) 0 0
\(595\) −28.0000 + 48.4974i −1.14789 + 1.98820i
\(596\) 29.9333i 1.22611i
\(597\) 0 0
\(598\) 0 0
\(599\) 19.4422 33.6749i 0.794388 1.37592i −0.128840 0.991665i \(-0.541125\pi\)
0.923227 0.384254i \(-0.125541\pi\)
\(600\) 0 0
\(601\) 29.4449i 1.20108i 0.799594 + 0.600541i \(0.205048\pi\)
−0.799594 + 0.600541i \(0.794952\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 15.0000 + 8.66025i 0.610341 + 0.352381i
\(605\) 9.72111 5.61249i 0.395219 0.228180i
\(606\) 0 0
\(607\) 3.46410i 0.140604i −0.997526 0.0703018i \(-0.977604\pi\)
0.997526 0.0703018i \(-0.0223962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.72111 + 16.8375i 0.393274 + 0.681171i
\(612\) 0 0
\(613\) −11.5000 19.9186i −0.464481 0.804504i 0.534697 0.845044i \(-0.320426\pi\)
−0.999178 + 0.0405396i \(0.987092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.4037 + 18.7083i 1.30452 + 0.753167i 0.981177 0.193113i \(-0.0618584\pi\)
0.323347 + 0.946280i \(0.395192\pi\)
\(618\) 0 0
\(619\) −25.0000 −1.00483 −0.502417 0.864625i \(-0.667556\pi\)
−0.502417 + 0.864625i \(0.667556\pi\)
\(620\) −12.9615 −0.520546
\(621\) 0 0
\(622\) 0 0
\(623\) 12.9615 22.4499i 0.519291 0.899438i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) 19.4422 + 33.6749i 0.775212 + 1.34271i
\(630\) 0 0
\(631\) −2.50000 + 4.33013i −0.0995234 + 0.172380i −0.911487 0.411328i \(-0.865065\pi\)
0.811964 + 0.583707i \(0.198398\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 51.8459 2.05744
\(636\) 0 0
\(637\) −13.5000 7.79423i −0.534889 0.308819i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(642\) 0 0
\(643\) 18.5000 + 32.0429i 0.729569 + 1.26365i 0.957066 + 0.289871i \(0.0936125\pi\)
−0.227497 + 0.973779i \(0.573054\pi\)
\(644\) 12.9615 7.48331i 0.510754 0.294884i
\(645\) 0 0
\(646\) 0 0
\(647\) 18.7083i 0.735499i 0.929925 + 0.367749i \(0.119872\pi\)
−0.929925 + 0.367749i \(0.880128\pi\)
\(648\) 0 0
\(649\) 42.0000 24.2487i 1.64864 0.951845i
\(650\) 0 0
\(651\) 0 0
\(652\) −1.00000 + 1.73205i −0.0391630 + 0.0678323i
\(653\) 14.9666i 0.585689i −0.956160 0.292845i \(-0.905398\pi\)
0.956160 0.292845i \(-0.0946019\pi\)
\(654\) 0 0
\(655\) 28.0000 48.4974i 1.09405 1.89495i
\(656\) −12.9615 + 22.4499i −0.506061 + 0.876523i
\(657\) 0 0
\(658\) 0 0
\(659\) 3.24037 5.61249i 0.126227 0.218631i −0.795985 0.605316i \(-0.793047\pi\)
0.922212 + 0.386685i \(0.126380\pi\)
\(660\) 0 0
\(661\) 13.5000 + 7.79423i 0.525089 + 0.303160i 0.739014 0.673690i \(-0.235292\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 32.4037 + 3.74166i 1.25656 + 0.145095i
\(666\) 0 0
\(667\) 21.0000 12.1244i 0.813123 0.469457i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.6826 13.0958i −0.875652 0.505558i
\(672\) 0 0
\(673\) 13.8564i 0.534125i 0.963679 + 0.267063i \(0.0860531\pi\)
−0.963679 + 0.267063i \(0.913947\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 28.0000 1.07692
\(677\) 6.48074 0.249075 0.124538 0.992215i \(-0.460255\pi\)
0.124538 + 0.992215i \(0.460255\pi\)
\(678\) 0 0
\(679\) 9.00000 5.19615i 0.345388 0.199410i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19.4422 0.743936 0.371968 0.928246i \(-0.378683\pi\)
0.371968 + 0.928246i \(0.378683\pi\)
\(684\) 0 0
\(685\) −14.0000 −0.534913
\(686\) 0 0
\(687\) 0 0
\(688\) −10.0000 + 17.3205i −0.381246 + 0.660338i
\(689\) −29.1633 + 16.8375i −1.11103 + 0.641456i
\(690\) 0 0
\(691\) 50.0000 1.90209 0.951045 0.309053i \(-0.100012\pi\)
0.951045 + 0.309053i \(0.100012\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 52.3832i 1.98701i
\(696\) 0 0
\(697\) −42.0000 24.2487i −1.59086 0.918485i
\(698\) 0 0
\(699\) 0 0
\(700\) −18.0000 31.1769i −0.680336 1.17838i
\(701\) 16.2019 9.35414i 0.611935 0.353301i −0.161787 0.986826i \(-0.551726\pi\)
0.773723 + 0.633525i \(0.218392\pi\)
\(702\) 0 0
\(703\) 13.5000 18.1865i 0.509162 0.685918i
\(704\) 29.9333i 1.12815i
\(705\) 0 0
\(706\) 0 0
\(707\) 6.48074 + 3.74166i 0.243733 + 0.140720i
\(708\) 0 0
\(709\) 26.0000 45.0333i 0.976450 1.69126i 0.301388 0.953502i \(-0.402550\pi\)
0.675063 0.737760i \(-0.264116\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.24037 + 5.61249i −0.121353 + 0.210189i
\(714\) 0 0
\(715\) 72.7461i 2.72055i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −42.1248 + 24.3208i −1.57099 + 0.907012i −0.574943 + 0.818194i \(0.694976\pi\)
−0.996048 + 0.0888181i \(0.971691\pi\)
\(720\) 0 0
\(721\) 13.8564i 0.516040i
\(722\) 0 0
\(723\) 0 0
\(724\) 39.0000 22.5167i 1.44942 0.836825i
\(725\) −29.1633 50.5124i −1.08310 1.87598i
\(726\) 0 0
\(727\) −17.5000 30.3109i −0.649039 1.12417i −0.983353 0.181707i \(-0.941838\pi\)
0.334314 0.942462i \(-0.391496\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −32.4037 18.7083i −1.19849 0.691951i
\(732\) 0 0
\(733\) 8.00000 0.295487 0.147743 0.989026i \(-0.452799\pi\)
0.147743 + 0.989026i \(0.452799\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −8.50000 14.7224i −0.312678 0.541573i 0.666264 0.745716i \(-0.267893\pi\)
−0.978941 + 0.204143i \(0.934559\pi\)
\(740\) −38.8844 −1.42942
\(741\) 0 0
\(742\) 0 0
\(743\) −3.24037 5.61249i −0.118878 0.205902i 0.800446 0.599406i \(-0.204596\pi\)
−0.919323 + 0.393503i \(0.871263\pi\)
\(744\) 0 0
\(745\) 28.0000 48.4974i 1.02584 1.77681i
\(746\) 0 0
\(747\) 0 0
\(748\) −56.0000 −2.04756
\(749\) −38.8844 −1.42081
\(750\) 0 0
\(751\) 4.50000 + 2.59808i 0.164207 + 0.0948051i 0.579852 0.814722i \(-0.303111\pi\)
−0.415644 + 0.909527i \(0.636444\pi\)
\(752\) 14.9666i 0.545777i
\(753\) 0 0
\(754\) 0 0
\(755\) −16.2019 28.0624i −0.589646 1.02130i
\(756\) 0 0
\(757\) 9.50000 + 16.4545i 0.345283 + 0.598048i 0.985405 0.170225i \(-0.0544495\pi\)
−0.640122 + 0.768273i \(0.721116\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.9333i 1.08508i 0.840030 + 0.542540i \(0.182537\pi\)
−0.840030 + 0.542540i \(0.817463\pi\)
\(762\) 0 0
\(763\) −6.00000 + 3.46410i −0.217215 + 0.125409i
\(764\) −6.48074 3.74166i −0.234465 0.135368i
\(765\) 0 0
\(766\) 0 0
\(767\) 67.3498i 2.43186i
\(768\) 0 0
\(769\) −23.5000 + 40.7032i −0.847432 + 1.46779i 0.0360609 + 0.999350i \(0.488519\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 48.4974i 1.74546i
\(773\) −12.9615 + 22.4499i −0.466192 + 0.807468i −0.999254 0.0386076i \(-0.987708\pi\)
0.533062 + 0.846076i \(0.321041\pi\)
\(774\) 0 0
\(775\) 13.5000 + 7.79423i 0.484934 + 0.279977i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.24037 + 28.0624i −0.116098 + 1.00544i
\(780\) 0 0
\(781\) 21.0000 12.1244i 0.751439 0.433844i
\(782\) 0 0
\(783\) 0 0
\(784\) 6.00000 + 10.3923i 0.214286 + 0.371154i
\(785\) 35.6441 + 20.5791i 1.27219 + 0.734500i
\(786\) 0 0
\(787\) 39.8372i 1.42004i −0.704181 0.710021i \(-0.748685\pi\)
0.704181 0.710021i \(-0.251315\pi\)
\(788\) −6.48074 3.74166i −0.230867 0.133291i
\(789\) 0 0
\(790\) 0 0
\(791\) −12.9615 −0.460857
\(792\) 0 0
\(793\) 31.5000 18.1865i 1.11860 0.645823i
\(794\) 0 0
\(795\) 0 0
\(796\) −4.00000 6.92820i −0.141776 0.245564i
\(797\) 51.8459 1.83648 0.918238 0.396028i \(-0.129612\pi\)
0.918238 + 0.396028i \(0.129612\pi\)
\(798\) 0 0
\(799\) 28.0000 0.990569
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.9615 7.48331i 0.457401 0.264080i
\(804\) 0 0
\(805\) −28.0000 −0.986870
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37.4166i 1.31550i −0.753238 0.657748i \(-0.771509\pi\)
0.753238 0.657748i \(-0.228491\pi\)
\(810\) 0 0
\(811\) −12.0000 6.92820i −0.421377 0.243282i 0.274289 0.961647i \(-0.411557\pi\)
−0.695666 + 0.718365i \(0.744891\pi\)
\(812\) −12.9615 22.4499i −0.454859 0.787839i
\(813\) 0 0
\(814\) 0 0
\(815\) 3.24037 1.87083i 0.113505 0.0655323i
\(816\) 0 0
\(817\) −2.50000 + 21.6506i −0.0874639 + 0.757460i
\(818\) 0 0
\(819\) 0 0
\(820\) 42.0000 24.2487i 1.46670 0.846802i
\(821\) 32.4037 + 18.7083i 1.13090 + 0.652924i 0.944160 0.329486i \(-0.106876\pi\)
0.186737 + 0.982410i \(0.440209\pi\)
\(822\) 0 0
\(823\) −11.5000 + 19.9186i −0.400865 + 0.694318i −0.993831 0.110910i \(-0.964624\pi\)
0.592966 + 0.805228i \(0.297957\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.2019 28.0624i 0.563394 0.975826i −0.433804 0.901007i \(-0.642829\pi\)
0.997197 0.0748188i \(-0.0238379\pi\)
\(828\) 0 0
\(829\) 10.3923i 0.360940i 0.983581 + 0.180470i \(0.0577618\pi\)
−0.983581 + 0.180470i \(0.942238\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −36.0000 20.7846i −1.24808 0.720577i
\(833\) −19.4422 + 11.2250i −0.673633 + 0.388922i
\(834\) 0 0
\(835\) 0 0
\(836\) 12.9615 + 29.9333i 0.448282 + 1.03526i
\(837\) 0 0
\(838\) 0 0
\(839\) −9.72111 16.8375i −0.335610 0.581294i 0.647992 0.761647i \(-0.275609\pi\)
−0.983602 + 0.180354i \(0.942276\pi\)
\(840\) 0 0
\(841\) −6.50000 11.2583i −0.224138 0.388218i
\(842\) 0 0
\(843\) 0 0
\(844\) 27.7128i 0.953914i
\(845\) −45.3652 26.1916i −1.56061 0.901018i
\(846\) 0 0
\(847\) −6.00000 −0.206162
\(848\) 25.9230 0.890198
\(849\) 0 0
\(850\) 0 0
\(851\) −9.72111 + 16.8375i −0.333235 + 0.577181i
\(852\) 0 0
\(853\) 20.0000 + 34.6410i 0.684787 + 1.18609i 0.973504 + 0.228671i \(0.0734381\pi\)
−0.288717 + 0.957415i \(0.593229\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 0 0
\(859\) 3.50000 6.06218i 0.119418 0.206839i −0.800119 0.599841i \(-0.795230\pi\)
0.919537 + 0.393003i \(0.128564\pi\)
\(860\) 32.4037 18.7083i 1.10496 0.637947i
\(861\) 0 0
\(862\) 0 0
\(863\) 38.8844 1.32364 0.661821 0.749662i \(-0.269784\pi\)
0.661821 + 0.749662i \(0.269784\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 6.00000 + 3.46410i 0.203653 + 0.117579i
\(869\) 9.72111 + 16.8375i 0.329766 + 0.571172i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 29.9333i 1.01193i
\(876\) 0 0
\(877\) −10.5000 + 6.06218i −0.354560 + 0.204705i −0.666692 0.745334i \(-0.732290\pi\)
0.312132 + 0.950039i \(0.398957\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 28.0000 48.4974i 0.943880 1.63485i
\(881\) 14.9666i 0.504239i −0.967696 0.252119i \(-0.918872\pi\)
0.967696 0.252119i \(-0.0811275\pi\)
\(882\) 0 0
\(883\) −20.5000 + 35.5070i −0.689880 + 1.19491i 0.281996 + 0.959415i \(0.409003\pi\)
−0.971876 + 0.235492i \(0.924330\pi\)
\(884\) 38.8844 67.3498i 1.30783 2.26522i
\(885\) 0 0
\(886\) 0 0
\(887\) −29.1633 + 50.5124i −0.979209 + 1.69604i −0.313927 + 0.949447i \(0.601645\pi\)
−0.665282 + 0.746593i \(0.731689\pi\)
\(888\) 0 0
\(889\) −24.0000 13.8564i −0.804934 0.464729i
\(890\) 0 0
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) −6.48074 14.9666i −0.216870 0.500839i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.72111 + 5.61249i 0.324217 + 0.187187i
\(900\) 0 0
\(901\) 48.4974i 1.61568i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −84.2496 −2.80055
\(906\) 0 0
\(907\) −13.5000 + 7.79423i −0.448260 + 0.258803i −0.707095 0.707118i \(-0.749995\pi\)
0.258835 + 0.965922i \(0.416661\pi\)
\(908\) 6.48074 11.2250i 0.215071 0.372514i
\(909\) 0 0
\(910\) 0 0
\(911\) 25.9230 0.858866 0.429433 0.903099i \(-0.358713\pi\)
0.429433 + 0.903099i \(0.358713\pi\)
\(912\) 0 0
\(913\) 28.0000 0.926665
\(914\) 0 0
\(915\) 0 0
\(916\) −1.00000 + 1.73205i −0.0330409 + 0.0572286i
\(917\) −25.9230 + 14.9666i −0.856052 + 0.494242i
\(918\) 0 0
\(919\) 17.0000 0.560778 0.280389 0.959886i \(-0.409536\pi\)
0.280389 + 0.959886i \(0.409536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 33.6749i 1.10842i
\(924\) 0 0
\(925\) 40.5000 + 23.3827i 1.33163 + 0.768818i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 35.6441 20.5791i 1.16944 0.675179i 0.215895 0.976417i \(-0.430733\pi\)
0.953549 + 0.301238i \(0.0973998\pi\)
\(930\) 0 0
\(931\) 10.5000 + 7.79423i 0.344124 + 0.255446i
\(932\) 14.9666i 0.490248i
\(933\) 0 0
\(934\) 0 0
\(935\) 90.7304 + 52.3832i 2.96720 + 1.71311i
\(936\) 0 0
\(937\) 18.5000 32.0429i 0.604369 1.04680i −0.387782 0.921751i \(-0.626759\pi\)
0.992151 0.125046i \(-0.0399079\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −14.0000 + 24.2487i −0.456630 + 0.790906i
\(941\) 29.1633 50.5124i 0.950697 1.64666i 0.206777 0.978388i \(-0.433702\pi\)
0.743920 0.668268i \(-0.232964\pi\)
\(942\) 0 0
\(943\) 24.2487i 0.789647i
\(944\) 25.9230 44.8999i 0.843721 1.46137i
\(945\) 0 0
\(946\) 0 0
\(947\) 6.48074 3.74166i 0.210596 0.121588i −0.390992 0.920394i \(-0.627868\pi\)
0.601588 + 0.798806i \(0.294535\pi\)
\(948\) 0 0
\(949\) 20.7846i 0.674697i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.24037 + 5.61249i 0.104966 + 0.181806i 0.913724 0.406335i \(-0.133193\pi\)
−0.808758 + 0.588141i \(0.799860\pi\)
\(954\) 0 0
\(955\) 7.00000 + 12.1244i 0.226515 + 0.392335i
\(956\) −25.9230 14.9666i −0.838409 0.484055i
\(957\) 0 0
\(958\) 0 0
\(959\) 6.48074 + 3.74166i 0.209274 + 0.120824i
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) 0 0
\(963\) 0 0
\(964\) 24.0000 13.8564i 0.772988 0.446285i
\(965\) −45.3652 + 78.5748i −1.46036 + 2.52941i
\(966\) 0 0
\(967\) −13.0000 22.5167i −0.418052 0.724087i 0.577692 0.816255i \(-0.303954\pi\)
−0.995743 + 0.0921681i \(0.970620\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.24037 + 5.61249i 0.103988 + 0.180113i 0.913324 0.407233i \(-0.133506\pi\)
−0.809336 + 0.587346i \(0.800173\pi\)
\(972\) 0 0
\(973\) −14.0000 + 24.2487i −0.448819 + 0.777378i
\(974\) 0 0
\(975\) 0 0
\(976\) −28.0000 −0.896258
\(977\) −45.3652 −1.45136 −0.725680 0.688032i \(-0.758475\pi\)
−0.725680 + 0.688032i \(0.758475\pi\)
\(978\) 0 0
\(979\) −42.0000 24.2487i −1.34233 0.774992i
\(980\) 22.4499i 0.717137i
\(981\) 0 0
\(982\) 0 0
\(983\) −19.4422 33.6749i −0.620111 1.07406i −0.989465 0.144774i \(-0.953754\pi\)
0.369354 0.929289i \(-0.379579\pi\)
\(984\) 0 0
\(985\) 7.00000 + 12.1244i 0.223039 + 0.386314i
\(986\) 0 0
\(987\) 0 0
\(988\) −45.0000 5.19615i −1.43164 0.165312i
\(989\) 18.7083i 0.594889i
\(990\) 0 0
\(991\) −34.5000 + 19.9186i −1.09593 + 0.632735i −0.935149 0.354256i \(-0.884734\pi\)
−0.160780 + 0.986990i \(0.551401\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.9666i 0.474474i
\(996\) 0 0
\(997\) 24.5000 42.4352i 0.775923 1.34394i −0.158352 0.987383i \(-0.550618\pi\)
0.934274 0.356555i \(-0.116049\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.m.d.107.1 4
3.2 odd 2 inner 513.2.m.d.107.2 yes 4
19.8 odd 6 inner 513.2.m.d.350.2 yes 4
57.8 even 6 inner 513.2.m.d.350.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.m.d.107.1 4 1.1 even 1 trivial
513.2.m.d.107.2 yes 4 3.2 odd 2 inner
513.2.m.d.350.1 yes 4 57.8 even 6 inner
513.2.m.d.350.2 yes 4 19.8 odd 6 inner