Properties

Label 513.2.h.c.235.8
Level $513$
Weight $2$
Character 513.235
Analytic conductor $4.096$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [513,2,Mod(235,513)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(513, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("513.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.8
Character \(\chi\) \(=\) 513.235
Dual form 513.2.h.c.334.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.370889 q^{2} -1.86244 q^{4} +(-1.77761 + 3.07890i) q^{5} +(-0.124876 + 0.216291i) q^{7} +1.43254 q^{8} +(0.659294 - 1.14193i) q^{10} +(0.815815 - 1.41303i) q^{11} -1.32541 q^{13} +(0.0463150 - 0.0802199i) q^{14} +3.19357 q^{16} +(-3.73000 - 6.46055i) q^{17} +(-4.07660 + 1.54315i) q^{19} +(3.31069 - 5.73428i) q^{20} +(-0.302577 + 0.524078i) q^{22} +4.49143 q^{23} +(-3.81976 - 6.61602i) q^{25} +0.491582 q^{26} +(0.232573 - 0.402829i) q^{28} +(-2.06363 - 3.57430i) q^{29} +(-4.32871 - 7.49755i) q^{31} -4.04953 q^{32} +(1.38342 + 2.39615i) q^{34} +(-0.443959 - 0.768960i) q^{35} +3.10599 q^{37} +(1.51197 - 0.572336i) q^{38} +(-2.54649 + 4.41064i) q^{40} +(2.77461 - 4.80577i) q^{41} -10.0406 q^{43} +(-1.51941 + 2.63169i) q^{44} -1.66582 q^{46} +(1.68288 + 2.91483i) q^{47} +(3.46881 + 6.00816i) q^{49} +(1.41671 + 2.45381i) q^{50} +2.46851 q^{52} +(-0.254182 + 0.440256i) q^{53} +(2.90039 + 5.02363i) q^{55} +(-0.178889 + 0.309845i) q^{56} +(0.765376 + 1.32567i) q^{58} +(-5.23121 + 9.06071i) q^{59} +(-2.07050 - 3.58621i) q^{61} +(1.60547 + 2.78076i) q^{62} -4.88521 q^{64} +(2.35606 - 4.08082i) q^{65} -0.799350 q^{67} +(6.94690 + 12.0324i) q^{68} +(0.164660 + 0.285199i) q^{70} +(-5.60051 - 9.70037i) q^{71} +(-1.84754 - 3.20004i) q^{73} -1.15198 q^{74} +(7.59244 - 2.87402i) q^{76} +(0.203751 + 0.352907i) q^{77} +9.85529 q^{79} +(-5.67691 + 9.83269i) q^{80} +(-1.02907 + 1.78241i) q^{82} +(-0.185251 + 0.320865i) q^{83} +26.5219 q^{85} +3.72396 q^{86} +(1.16868 - 2.02422i) q^{88} +(-4.01034 + 6.94611i) q^{89} +(0.165512 - 0.286675i) q^{91} -8.36503 q^{92} +(-0.624161 - 1.08108i) q^{94} +(2.49539 - 15.2946i) q^{95} +6.43155 q^{97} +(-1.28654 - 2.22836i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} + 34 q^{4} - 3 q^{5} + q^{7} + 36 q^{8} - 8 q^{10} - 7 q^{11} + 8 q^{13} - q^{14} + 22 q^{16} + 7 q^{17} + 7 q^{19} + 3 q^{20} - 8 q^{22} + 10 q^{23} - 9 q^{25} + 4 q^{26} - 10 q^{28} - 10 q^{29}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.370889 −0.262258 −0.131129 0.991365i \(-0.541860\pi\)
−0.131129 + 0.991365i \(0.541860\pi\)
\(3\) 0 0
\(4\) −1.86244 −0.931221
\(5\) −1.77761 + 3.07890i −0.794969 + 1.37693i 0.127889 + 0.991788i \(0.459180\pi\)
−0.922859 + 0.385139i \(0.874154\pi\)
\(6\) 0 0
\(7\) −0.124876 + 0.216291i −0.0471985 + 0.0817503i −0.888660 0.458568i \(-0.848363\pi\)
0.841461 + 0.540318i \(0.181696\pi\)
\(8\) 1.43254 0.506478
\(9\) 0 0
\(10\) 0.659294 1.14193i 0.208487 0.361110i
\(11\) 0.815815 1.41303i 0.245977 0.426045i −0.716429 0.697660i \(-0.754224\pi\)
0.962406 + 0.271615i \(0.0875578\pi\)
\(12\) 0 0
\(13\) −1.32541 −0.367604 −0.183802 0.982963i \(-0.558841\pi\)
−0.183802 + 0.982963i \(0.558841\pi\)
\(14\) 0.0463150 0.0802199i 0.0123782 0.0214397i
\(15\) 0 0
\(16\) 3.19357 0.798393
\(17\) −3.73000 6.46055i −0.904658 1.56691i −0.821376 0.570387i \(-0.806793\pi\)
−0.0832816 0.996526i \(-0.526540\pi\)
\(18\) 0 0
\(19\) −4.07660 + 1.54315i −0.935237 + 0.354022i
\(20\) 3.31069 5.73428i 0.740292 1.28222i
\(21\) 0 0
\(22\) −0.302577 + 0.524078i −0.0645096 + 0.111734i
\(23\) 4.49143 0.936528 0.468264 0.883589i \(-0.344880\pi\)
0.468264 + 0.883589i \(0.344880\pi\)
\(24\) 0 0
\(25\) −3.81976 6.61602i −0.763952 1.32320i
\(26\) 0.491582 0.0964071
\(27\) 0 0
\(28\) 0.232573 0.402829i 0.0439522 0.0761275i
\(29\) −2.06363 3.57430i −0.383206 0.663732i 0.608313 0.793697i \(-0.291847\pi\)
−0.991518 + 0.129966i \(0.958513\pi\)
\(30\) 0 0
\(31\) −4.32871 7.49755i −0.777460 1.34660i −0.933401 0.358834i \(-0.883174\pi\)
0.155941 0.987766i \(-0.450159\pi\)
\(32\) −4.04953 −0.715863
\(33\) 0 0
\(34\) 1.38342 + 2.39615i 0.237254 + 0.410936i
\(35\) −0.443959 0.768960i −0.0750428 0.129978i
\(36\) 0 0
\(37\) 3.10599 0.510622 0.255311 0.966859i \(-0.417822\pi\)
0.255311 + 0.966859i \(0.417822\pi\)
\(38\) 1.51197 0.572336i 0.245274 0.0928452i
\(39\) 0 0
\(40\) −2.54649 + 4.41064i −0.402635 + 0.697384i
\(41\) 2.77461 4.80577i 0.433322 0.750535i −0.563835 0.825887i \(-0.690675\pi\)
0.997157 + 0.0753521i \(0.0240081\pi\)
\(42\) 0 0
\(43\) −10.0406 −1.53118 −0.765591 0.643328i \(-0.777553\pi\)
−0.765591 + 0.643328i \(0.777553\pi\)
\(44\) −1.51941 + 2.63169i −0.229059 + 0.396742i
\(45\) 0 0
\(46\) −1.66582 −0.245612
\(47\) 1.68288 + 2.91483i 0.245473 + 0.425171i 0.962264 0.272116i \(-0.0877235\pi\)
−0.716792 + 0.697287i \(0.754390\pi\)
\(48\) 0 0
\(49\) 3.46881 + 6.00816i 0.495545 + 0.858308i
\(50\) 1.41671 + 2.45381i 0.200353 + 0.347021i
\(51\) 0 0
\(52\) 2.46851 0.342320
\(53\) −0.254182 + 0.440256i −0.0349146 + 0.0604739i −0.882955 0.469458i \(-0.844449\pi\)
0.848040 + 0.529932i \(0.177783\pi\)
\(54\) 0 0
\(55\) 2.90039 + 5.02363i 0.391089 + 0.677386i
\(56\) −0.178889 + 0.309845i −0.0239050 + 0.0414047i
\(57\) 0 0
\(58\) 0.765376 + 1.32567i 0.100499 + 0.174069i
\(59\) −5.23121 + 9.06071i −0.681045 + 1.17960i 0.293617 + 0.955923i \(0.405141\pi\)
−0.974662 + 0.223681i \(0.928192\pi\)
\(60\) 0 0
\(61\) −2.07050 3.58621i −0.265100 0.459168i 0.702489 0.711694i \(-0.252072\pi\)
−0.967590 + 0.252527i \(0.918738\pi\)
\(62\) 1.60547 + 2.78076i 0.203895 + 0.353157i
\(63\) 0 0
\(64\) −4.88521 −0.610652
\(65\) 2.35606 4.08082i 0.292234 0.506164i
\(66\) 0 0
\(67\) −0.799350 −0.0976561 −0.0488281 0.998807i \(-0.515549\pi\)
−0.0488281 + 0.998807i \(0.515549\pi\)
\(68\) 6.94690 + 12.0324i 0.842436 + 1.45914i
\(69\) 0 0
\(70\) 0.164660 + 0.285199i 0.0196806 + 0.0340878i
\(71\) −5.60051 9.70037i −0.664658 1.15122i −0.979378 0.202037i \(-0.935244\pi\)
0.314719 0.949185i \(-0.398090\pi\)
\(72\) 0 0
\(73\) −1.84754 3.20004i −0.216239 0.374537i 0.737416 0.675439i \(-0.236046\pi\)
−0.953655 + 0.300902i \(0.902712\pi\)
\(74\) −1.15198 −0.133915
\(75\) 0 0
\(76\) 7.59244 2.87402i 0.870912 0.329673i
\(77\) 0.203751 + 0.352907i 0.0232195 + 0.0402174i
\(78\) 0 0
\(79\) 9.85529 1.10881 0.554403 0.832248i \(-0.312947\pi\)
0.554403 + 0.832248i \(0.312947\pi\)
\(80\) −5.67691 + 9.83269i −0.634698 + 1.09933i
\(81\) 0 0
\(82\) −1.02907 + 1.78241i −0.113642 + 0.196834i
\(83\) −0.185251 + 0.320865i −0.0203340 + 0.0352195i −0.876013 0.482287i \(-0.839806\pi\)
0.855679 + 0.517506i \(0.173140\pi\)
\(84\) 0 0
\(85\) 26.5219 2.87670
\(86\) 3.72396 0.401565
\(87\) 0 0
\(88\) 1.16868 2.02422i 0.124582 0.215783i
\(89\) −4.01034 + 6.94611i −0.425095 + 0.736286i −0.996429 0.0844315i \(-0.973093\pi\)
0.571334 + 0.820717i \(0.306426\pi\)
\(90\) 0 0
\(91\) 0.165512 0.286675i 0.0173504 0.0300517i
\(92\) −8.36503 −0.872115
\(93\) 0 0
\(94\) −0.624161 1.08108i −0.0643772 0.111505i
\(95\) 2.49539 15.2946i 0.256022 1.56919i
\(96\) 0 0
\(97\) 6.43155 0.653024 0.326512 0.945193i \(-0.394127\pi\)
0.326512 + 0.945193i \(0.394127\pi\)
\(98\) −1.28654 2.22836i −0.129961 0.225098i
\(99\) 0 0
\(100\) 7.11408 + 12.3220i 0.711408 + 1.23220i
\(101\) 3.78177 + 6.55021i 0.376300 + 0.651771i 0.990521 0.137364i \(-0.0438629\pi\)
−0.614221 + 0.789134i \(0.710530\pi\)
\(102\) 0 0
\(103\) −6.90927 11.9672i −0.680791 1.17916i −0.974740 0.223343i \(-0.928303\pi\)
0.293949 0.955821i \(-0.405030\pi\)
\(104\) −1.89871 −0.186183
\(105\) 0 0
\(106\) 0.0942734 0.163286i 0.00915664 0.0158598i
\(107\) −12.0119 −1.16123 −0.580616 0.814177i \(-0.697188\pi\)
−0.580616 + 0.814177i \(0.697188\pi\)
\(108\) 0 0
\(109\) −7.62598 13.2086i −0.730436 1.26515i −0.956697 0.291086i \(-0.905984\pi\)
0.226261 0.974067i \(-0.427350\pi\)
\(110\) −1.07572 1.86321i −0.102566 0.177650i
\(111\) 0 0
\(112\) −0.398799 + 0.690740i −0.0376830 + 0.0652688i
\(113\) 1.46481 + 2.53713i 0.137798 + 0.238673i 0.926663 0.375894i \(-0.122664\pi\)
−0.788865 + 0.614567i \(0.789331\pi\)
\(114\) 0 0
\(115\) −7.98399 + 13.8287i −0.744511 + 1.28953i
\(116\) 3.84338 + 6.65693i 0.356849 + 0.618081i
\(117\) 0 0
\(118\) 1.94020 3.36052i 0.178610 0.309361i
\(119\) 1.86314 0.170794
\(120\) 0 0
\(121\) 4.16889 + 7.22073i 0.378990 + 0.656430i
\(122\) 0.767926 + 1.33009i 0.0695248 + 0.120420i
\(123\) 0 0
\(124\) 8.06198 + 13.9638i 0.723987 + 1.25398i
\(125\) 9.38406 0.839336
\(126\) 0 0
\(127\) −0.949181 + 1.64403i −0.0842262 + 0.145884i −0.905061 0.425281i \(-0.860175\pi\)
0.820835 + 0.571165i \(0.193509\pi\)
\(128\) 9.91094 0.876012
\(129\) 0 0
\(130\) −0.873838 + 1.51353i −0.0766407 + 0.132746i
\(131\) −1.51445 + 2.62310i −0.132318 + 0.229181i −0.924570 0.381013i \(-0.875575\pi\)
0.792252 + 0.610194i \(0.208909\pi\)
\(132\) 0 0
\(133\) 0.175300 1.07443i 0.0152004 0.0931652i
\(134\) 0.296470 0.0256111
\(135\) 0 0
\(136\) −5.34336 9.25497i −0.458190 0.793608i
\(137\) 2.12874 + 3.68708i 0.181870 + 0.315009i 0.942517 0.334157i \(-0.108452\pi\)
−0.760647 + 0.649166i \(0.775118\pi\)
\(138\) 0 0
\(139\) −17.2721 −1.46500 −0.732502 0.680765i \(-0.761648\pi\)
−0.732502 + 0.680765i \(0.761648\pi\)
\(140\) 0.826848 + 1.43214i 0.0698814 + 0.121038i
\(141\) 0 0
\(142\) 2.07717 + 3.59776i 0.174312 + 0.301917i
\(143\) −1.08129 + 1.87285i −0.0904222 + 0.156616i
\(144\) 0 0
\(145\) 14.6732 1.21855
\(146\) 0.685234 + 1.18686i 0.0567104 + 0.0982253i
\(147\) 0 0
\(148\) −5.78473 −0.475501
\(149\) 0.923073 1.59881i 0.0756211 0.130980i −0.825735 0.564058i \(-0.809239\pi\)
0.901356 + 0.433079i \(0.142573\pi\)
\(150\) 0 0
\(151\) −5.59926 + 9.69820i −0.455661 + 0.789228i −0.998726 0.0504626i \(-0.983930\pi\)
0.543065 + 0.839691i \(0.317264\pi\)
\(152\) −5.83989 + 2.21061i −0.473677 + 0.179305i
\(153\) 0 0
\(154\) −0.0755689 0.130889i −0.00608952 0.0105473i
\(155\) 30.7790 2.47223
\(156\) 0 0
\(157\) −10.3856 + 17.9883i −0.828858 + 1.43562i 0.0700766 + 0.997542i \(0.477676\pi\)
−0.898935 + 0.438083i \(0.855658\pi\)
\(158\) −3.65522 −0.290794
\(159\) 0 0
\(160\) 7.19847 12.4681i 0.569089 0.985692i
\(161\) −0.560870 + 0.971456i −0.0442028 + 0.0765614i
\(162\) 0 0
\(163\) −5.41671 −0.424269 −0.212135 0.977240i \(-0.568042\pi\)
−0.212135 + 0.977240i \(0.568042\pi\)
\(164\) −5.16755 + 8.95046i −0.403518 + 0.698914i
\(165\) 0 0
\(166\) 0.0687077 0.119005i 0.00533275 0.00923660i
\(167\) 1.50006 0.116078 0.0580392 0.998314i \(-0.481515\pi\)
0.0580392 + 0.998314i \(0.481515\pi\)
\(168\) 0 0
\(169\) −11.2433 −0.864867
\(170\) −9.83667 −0.754438
\(171\) 0 0
\(172\) 18.7001 1.42587
\(173\) −22.4134 −1.70406 −0.852031 0.523491i \(-0.824629\pi\)
−0.852031 + 0.523491i \(0.824629\pi\)
\(174\) 0 0
\(175\) 1.90798 0.144230
\(176\) 2.60536 4.51262i 0.196387 0.340151i
\(177\) 0 0
\(178\) 1.48739 2.57623i 0.111485 0.193097i
\(179\) 12.7134 0.950242 0.475121 0.879920i \(-0.342404\pi\)
0.475121 + 0.879920i \(0.342404\pi\)
\(180\) 0 0
\(181\) 1.31157 2.27170i 0.0974880 0.168854i −0.813156 0.582045i \(-0.802253\pi\)
0.910644 + 0.413191i \(0.135586\pi\)
\(182\) −0.0613866 + 0.106325i −0.00455027 + 0.00788131i
\(183\) 0 0
\(184\) 6.43414 0.474331
\(185\) −5.52123 + 9.56304i −0.405929 + 0.703089i
\(186\) 0 0
\(187\) −12.1720 −0.890101
\(188\) −3.13426 5.42870i −0.228589 0.395928i
\(189\) 0 0
\(190\) −0.925514 + 5.67259i −0.0671439 + 0.411533i
\(191\) 1.70417 2.95170i 0.123309 0.213578i −0.797762 0.602973i \(-0.793983\pi\)
0.921071 + 0.389395i \(0.127316\pi\)
\(192\) 0 0
\(193\) −0.248883 + 0.431077i −0.0179150 + 0.0310296i −0.874844 0.484405i \(-0.839036\pi\)
0.856929 + 0.515435i \(0.172369\pi\)
\(194\) −2.38539 −0.171261
\(195\) 0 0
\(196\) −6.46046 11.1898i −0.461461 0.799275i
\(197\) 2.64398 0.188376 0.0941880 0.995554i \(-0.469975\pi\)
0.0941880 + 0.995554i \(0.469975\pi\)
\(198\) 0 0
\(199\) 0.106311 0.184136i 0.00753617 0.0130530i −0.862233 0.506512i \(-0.830934\pi\)
0.869769 + 0.493459i \(0.164268\pi\)
\(200\) −5.47195 9.47770i −0.386925 0.670174i
\(201\) 0 0
\(202\) −1.40262 2.42940i −0.0986877 0.170932i
\(203\) 1.03079 0.0723470
\(204\) 0 0
\(205\) 9.86433 + 17.0855i 0.688955 + 1.19330i
\(206\) 2.56257 + 4.43851i 0.178543 + 0.309245i
\(207\) 0 0
\(208\) −4.23280 −0.293492
\(209\) −1.14524 + 7.01930i −0.0792177 + 0.485535i
\(210\) 0 0
\(211\) 4.26187 7.38178i 0.293400 0.508183i −0.681212 0.732086i \(-0.738547\pi\)
0.974611 + 0.223903i \(0.0718800\pi\)
\(212\) 0.473399 0.819952i 0.0325132 0.0563145i
\(213\) 0 0
\(214\) 4.45508 0.304543
\(215\) 17.8483 30.9141i 1.21724 2.10833i
\(216\) 0 0
\(217\) 2.16220 0.146780
\(218\) 2.82839 + 4.89892i 0.191563 + 0.331797i
\(219\) 0 0
\(220\) −5.40181 9.35621i −0.364190 0.630796i
\(221\) 4.94380 + 8.56290i 0.332556 + 0.576003i
\(222\) 0 0
\(223\) 15.6032 1.04487 0.522433 0.852680i \(-0.325025\pi\)
0.522433 + 0.852680i \(0.325025\pi\)
\(224\) 0.505688 0.875877i 0.0337877 0.0585220i
\(225\) 0 0
\(226\) −0.543283 0.940994i −0.0361386 0.0625940i
\(227\) 0.595426 1.03131i 0.0395198 0.0684503i −0.845589 0.533835i \(-0.820751\pi\)
0.885109 + 0.465384i \(0.154084\pi\)
\(228\) 0 0
\(229\) −9.98443 17.2935i −0.659790 1.14279i −0.980670 0.195669i \(-0.937312\pi\)
0.320880 0.947120i \(-0.396021\pi\)
\(230\) 2.96118 5.12891i 0.195254 0.338190i
\(231\) 0 0
\(232\) −2.95622 5.12032i −0.194085 0.336166i
\(233\) −6.18432 10.7115i −0.405148 0.701737i 0.589191 0.807994i \(-0.299447\pi\)
−0.994339 + 0.106257i \(0.966113\pi\)
\(234\) 0 0
\(235\) −11.9660 −0.780573
\(236\) 9.74281 16.8750i 0.634203 1.09847i
\(237\) 0 0
\(238\) −0.691019 −0.0447921
\(239\) −8.11631 14.0579i −0.525000 0.909327i −0.999576 0.0291128i \(-0.990732\pi\)
0.474576 0.880215i \(-0.342602\pi\)
\(240\) 0 0
\(241\) −5.24347 9.08196i −0.337762 0.585020i 0.646250 0.763126i \(-0.276336\pi\)
−0.984011 + 0.178106i \(0.943003\pi\)
\(242\) −1.54620 2.67809i −0.0993933 0.172154i
\(243\) 0 0
\(244\) 3.85619 + 6.67911i 0.246867 + 0.427586i
\(245\) −24.6647 −1.57577
\(246\) 0 0
\(247\) 5.40319 2.04531i 0.343797 0.130140i
\(248\) −6.20104 10.7405i −0.393767 0.682024i
\(249\) 0 0
\(250\) −3.48044 −0.220123
\(251\) 7.02198 12.1624i 0.443223 0.767685i −0.554703 0.832048i \(-0.687168\pi\)
0.997927 + 0.0643630i \(0.0205016\pi\)
\(252\) 0 0
\(253\) 3.66418 6.34654i 0.230365 0.399004i
\(254\) 0.352041 0.609753i 0.0220890 0.0382593i
\(255\) 0 0
\(256\) 6.09457 0.380910
\(257\) −17.1607 −1.07045 −0.535227 0.844709i \(-0.679774\pi\)
−0.535227 + 0.844709i \(0.679774\pi\)
\(258\) 0 0
\(259\) −0.387862 + 0.671797i −0.0241006 + 0.0417435i
\(260\) −4.38803 + 7.60029i −0.272134 + 0.471350i
\(261\) 0 0
\(262\) 0.561691 0.972878i 0.0347014 0.0601046i
\(263\) −19.4995 −1.20239 −0.601194 0.799103i \(-0.705308\pi\)
−0.601194 + 0.799103i \(0.705308\pi\)
\(264\) 0 0
\(265\) −0.903671 1.56520i −0.0555121 0.0961498i
\(266\) −0.0650167 + 0.398496i −0.00398643 + 0.0244333i
\(267\) 0 0
\(268\) 1.48874 0.0909394
\(269\) 11.5796 + 20.0564i 0.706020 + 1.22286i 0.966322 + 0.257335i \(0.0828443\pi\)
−0.260303 + 0.965527i \(0.583822\pi\)
\(270\) 0 0
\(271\) −11.0388 19.1197i −0.670557 1.16144i −0.977746 0.209790i \(-0.932722\pi\)
0.307190 0.951648i \(-0.400611\pi\)
\(272\) −11.9120 20.6322i −0.722272 1.25101i
\(273\) 0 0
\(274\) −0.789525 1.36750i −0.0476970 0.0826136i
\(275\) −12.4649 −0.751660
\(276\) 0 0
\(277\) 14.7992 25.6330i 0.889199 1.54014i 0.0483752 0.998829i \(-0.484596\pi\)
0.840824 0.541309i \(-0.182071\pi\)
\(278\) 6.40605 0.384209
\(279\) 0 0
\(280\) −0.635988 1.10156i −0.0380075 0.0658310i
\(281\) 14.4042 + 24.9487i 0.859280 + 1.48832i 0.872617 + 0.488406i \(0.162421\pi\)
−0.0133368 + 0.999911i \(0.504245\pi\)
\(282\) 0 0
\(283\) −8.01020 + 13.8741i −0.476157 + 0.824728i −0.999627 0.0273162i \(-0.991304\pi\)
0.523470 + 0.852044i \(0.324637\pi\)
\(284\) 10.4306 + 18.0664i 0.618944 + 1.07204i
\(285\) 0 0
\(286\) 0.401040 0.694621i 0.0237140 0.0410738i
\(287\) 0.692963 + 1.20025i 0.0409043 + 0.0708483i
\(288\) 0 0
\(289\) −19.3258 + 33.4732i −1.13681 + 1.96901i
\(290\) −5.44215 −0.319574
\(291\) 0 0
\(292\) 3.44094 + 5.95989i 0.201366 + 0.348776i
\(293\) 0.400378 + 0.693475i 0.0233903 + 0.0405132i 0.877484 0.479607i \(-0.159221\pi\)
−0.854093 + 0.520120i \(0.825887\pi\)
\(294\) 0 0
\(295\) −18.5980 32.2127i −1.08282 1.87550i
\(296\) 4.44945 0.258619
\(297\) 0 0
\(298\) −0.342358 + 0.592981i −0.0198322 + 0.0343504i
\(299\) −5.95301 −0.344271
\(300\) 0 0
\(301\) 1.25383 2.17170i 0.0722696 0.125175i
\(302\) 2.07670 3.59696i 0.119501 0.206982i
\(303\) 0 0
\(304\) −13.0189 + 4.92815i −0.746686 + 0.282649i
\(305\) 14.7221 0.842987
\(306\) 0 0
\(307\) 2.29987 + 3.98349i 0.131260 + 0.227350i 0.924163 0.381999i \(-0.124764\pi\)
−0.792902 + 0.609349i \(0.791431\pi\)
\(308\) −0.379474 0.657268i −0.0216225 0.0374513i
\(309\) 0 0
\(310\) −11.4156 −0.648362
\(311\) −16.4116 28.4257i −0.930615 1.61187i −0.782273 0.622936i \(-0.785940\pi\)
−0.148342 0.988936i \(-0.547394\pi\)
\(312\) 0 0
\(313\) 9.19380 + 15.9241i 0.519664 + 0.900085i 0.999739 + 0.0228573i \(0.00727633\pi\)
−0.480074 + 0.877228i \(0.659390\pi\)
\(314\) 3.85189 6.67167i 0.217375 0.376504i
\(315\) 0 0
\(316\) −18.3549 −1.03254
\(317\) 0.679102 + 1.17624i 0.0381422 + 0.0660642i 0.884466 0.466604i \(-0.154523\pi\)
−0.846324 + 0.532668i \(0.821189\pi\)
\(318\) 0 0
\(319\) −6.73415 −0.377040
\(320\) 8.68398 15.0411i 0.485449 0.840823i
\(321\) 0 0
\(322\) 0.208021 0.360302i 0.0115925 0.0200789i
\(323\) 25.1753 + 20.5812i 1.40079 + 1.14517i
\(324\) 0 0
\(325\) 5.06277 + 8.76897i 0.280832 + 0.486415i
\(326\) 2.00900 0.111268
\(327\) 0 0
\(328\) 3.97473 6.88444i 0.219468 0.380130i
\(329\) −0.840601 −0.0463438
\(330\) 0 0
\(331\) 8.39869 14.5470i 0.461634 0.799573i −0.537409 0.843322i \(-0.680597\pi\)
0.999043 + 0.0437490i \(0.0139302\pi\)
\(332\) 0.345020 0.597592i 0.0189354 0.0327971i
\(333\) 0 0
\(334\) −0.556357 −0.0304425
\(335\) 1.42093 2.46112i 0.0776336 0.134465i
\(336\) 0 0
\(337\) −18.2612 + 31.6293i −0.994750 + 1.72296i −0.408751 + 0.912646i \(0.634035\pi\)
−0.585999 + 0.810312i \(0.699298\pi\)
\(338\) 4.17001 0.226819
\(339\) 0 0
\(340\) −49.3954 −2.67884
\(341\) −14.1257 −0.764951
\(342\) 0 0
\(343\) −3.48094 −0.187953
\(344\) −14.3836 −0.775511
\(345\) 0 0
\(346\) 8.31290 0.446904
\(347\) −5.07542 + 8.79089i −0.272463 + 0.471920i −0.969492 0.245123i \(-0.921172\pi\)
0.697029 + 0.717043i \(0.254505\pi\)
\(348\) 0 0
\(349\) 8.63614 14.9582i 0.462282 0.800696i −0.536792 0.843715i \(-0.680364\pi\)
0.999074 + 0.0430183i \(0.0136974\pi\)
\(350\) −0.707649 −0.0378254
\(351\) 0 0
\(352\) −3.30367 + 5.72212i −0.176086 + 0.304990i
\(353\) 8.45158 14.6386i 0.449832 0.779132i −0.548543 0.836123i \(-0.684817\pi\)
0.998375 + 0.0569905i \(0.0181505\pi\)
\(354\) 0 0
\(355\) 39.8220 2.11353
\(356\) 7.46902 12.9367i 0.395857 0.685645i
\(357\) 0 0
\(358\) −4.71525 −0.249209
\(359\) −3.82747 6.62938i −0.202006 0.349885i 0.747168 0.664635i \(-0.231413\pi\)
−0.949175 + 0.314750i \(0.898079\pi\)
\(360\) 0 0
\(361\) 14.2374 12.5816i 0.749337 0.662189i
\(362\) −0.486446 + 0.842549i −0.0255670 + 0.0442834i
\(363\) 0 0
\(364\) −0.308256 + 0.533915i −0.0161570 + 0.0279848i
\(365\) 13.1368 0.687613
\(366\) 0 0
\(367\) 12.3888 + 21.4579i 0.646688 + 1.12010i 0.983909 + 0.178670i \(0.0571796\pi\)
−0.337221 + 0.941425i \(0.609487\pi\)
\(368\) 14.3437 0.747717
\(369\) 0 0
\(370\) 2.04776 3.54683i 0.106458 0.184391i
\(371\) −0.0634823 0.109955i −0.00329584 0.00570856i
\(372\) 0 0
\(373\) 11.5863 + 20.0681i 0.599917 + 1.03909i 0.992833 + 0.119512i \(0.0381330\pi\)
−0.392916 + 0.919574i \(0.628534\pi\)
\(374\) 4.51444 0.233436
\(375\) 0 0
\(376\) 2.41078 + 4.17560i 0.124327 + 0.215340i
\(377\) 2.73516 + 4.73744i 0.140868 + 0.243990i
\(378\) 0 0
\(379\) 29.0801 1.49374 0.746871 0.664969i \(-0.231555\pi\)
0.746871 + 0.664969i \(0.231555\pi\)
\(380\) −4.64752 + 28.4852i −0.238413 + 1.46126i
\(381\) 0 0
\(382\) −0.632057 + 1.09475i −0.0323388 + 0.0560125i
\(383\) −1.41428 + 2.44960i −0.0722662 + 0.125169i −0.899894 0.436108i \(-0.856356\pi\)
0.827628 + 0.561277i \(0.189690\pi\)
\(384\) 0 0
\(385\) −1.44875 −0.0738353
\(386\) 0.0923078 0.159882i 0.00469834 0.00813777i
\(387\) 0 0
\(388\) −11.9784 −0.608110
\(389\) 9.58295 + 16.5982i 0.485875 + 0.841560i 0.999868 0.0162341i \(-0.00516771\pi\)
−0.513993 + 0.857794i \(0.671834\pi\)
\(390\) 0 0
\(391\) −16.7530 29.0171i −0.847238 1.46746i
\(392\) 4.96920 + 8.60691i 0.250983 + 0.434715i
\(393\) 0 0
\(394\) −0.980624 −0.0494031
\(395\) −17.5188 + 30.3435i −0.881467 + 1.52675i
\(396\) 0 0
\(397\) 15.9590 + 27.6417i 0.800958 + 1.38730i 0.918986 + 0.394289i \(0.129009\pi\)
−0.118029 + 0.993010i \(0.537658\pi\)
\(398\) −0.0394295 + 0.0682939i −0.00197642 + 0.00342326i
\(399\) 0 0
\(400\) −12.1987 21.1287i −0.609934 1.05644i
\(401\) 19.1703 33.2040i 0.957320 1.65813i 0.228353 0.973578i \(-0.426666\pi\)
0.728967 0.684548i \(-0.240001\pi\)
\(402\) 0 0
\(403\) 5.73734 + 9.93737i 0.285797 + 0.495015i
\(404\) −7.04332 12.1994i −0.350418 0.606942i
\(405\) 0 0
\(406\) −0.382307 −0.0189736
\(407\) 2.53391 4.38887i 0.125601 0.217548i
\(408\) 0 0
\(409\) 2.29288 0.113375 0.0566877 0.998392i \(-0.481946\pi\)
0.0566877 + 0.998392i \(0.481946\pi\)
\(410\) −3.65857 6.33683i −0.180684 0.312954i
\(411\) 0 0
\(412\) 12.8681 + 22.2882i 0.633966 + 1.09806i
\(413\) −1.30650 2.26292i −0.0642886 0.111351i
\(414\) 0 0
\(415\) −0.658608 1.14074i −0.0323298 0.0559968i
\(416\) 5.36731 0.263154
\(417\) 0 0
\(418\) 0.424756 2.60338i 0.0207755 0.127335i
\(419\) −5.32211 9.21817i −0.260002 0.450337i 0.706240 0.707972i \(-0.250390\pi\)
−0.966242 + 0.257636i \(0.917057\pi\)
\(420\) 0 0
\(421\) 25.8645 1.26056 0.630280 0.776367i \(-0.282940\pi\)
0.630280 + 0.776367i \(0.282940\pi\)
\(422\) −1.58068 + 2.73782i −0.0769464 + 0.133275i
\(423\) 0 0
\(424\) −0.364125 + 0.630684i −0.0176835 + 0.0306287i
\(425\) −28.4954 + 49.3555i −1.38223 + 2.39409i
\(426\) 0 0
\(427\) 1.03422 0.0500494
\(428\) 22.3714 1.08136
\(429\) 0 0
\(430\) −6.61973 + 11.4657i −0.319232 + 0.552926i
\(431\) 9.52984 16.5062i 0.459036 0.795074i −0.539874 0.841746i \(-0.681528\pi\)
0.998910 + 0.0466716i \(0.0148614\pi\)
\(432\) 0 0
\(433\) 13.3288 23.0861i 0.640540 1.10945i −0.344773 0.938686i \(-0.612044\pi\)
0.985312 0.170761i \(-0.0546226\pi\)
\(434\) −0.801937 −0.0384942
\(435\) 0 0
\(436\) 14.2029 + 24.6002i 0.680197 + 1.17814i
\(437\) −18.3098 + 6.93094i −0.875876 + 0.331552i
\(438\) 0 0
\(439\) −1.94705 −0.0929274 −0.0464637 0.998920i \(-0.514795\pi\)
−0.0464637 + 0.998920i \(0.514795\pi\)
\(440\) 4.15492 + 7.19653i 0.198078 + 0.343081i
\(441\) 0 0
\(442\) −1.83360 3.17589i −0.0872154 0.151062i
\(443\) 3.28115 + 5.68312i 0.155892 + 0.270013i 0.933384 0.358880i \(-0.116841\pi\)
−0.777491 + 0.628894i \(0.783508\pi\)
\(444\) 0 0
\(445\) −14.2576 24.6949i −0.675875 1.17065i
\(446\) −5.78704 −0.274024
\(447\) 0 0
\(448\) 0.610044 1.05663i 0.0288219 0.0499209i
\(449\) 35.5348 1.67699 0.838495 0.544910i \(-0.183436\pi\)
0.838495 + 0.544910i \(0.183436\pi\)
\(450\) 0 0
\(451\) −4.52714 7.84124i −0.213175 0.369229i
\(452\) −2.72813 4.72526i −0.128320 0.222257i
\(453\) 0 0
\(454\) −0.220837 + 0.382501i −0.0103644 + 0.0179516i
\(455\) 0.588430 + 1.01919i 0.0275860 + 0.0477804i
\(456\) 0 0
\(457\) −3.32444 + 5.75809i −0.155511 + 0.269352i −0.933245 0.359241i \(-0.883036\pi\)
0.777734 + 0.628593i \(0.216369\pi\)
\(458\) 3.70311 + 6.41398i 0.173035 + 0.299706i
\(459\) 0 0
\(460\) 14.8697 25.7551i 0.693304 1.20084i
\(461\) 6.97181 0.324709 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(462\) 0 0
\(463\) 8.59691 + 14.8903i 0.399532 + 0.692010i 0.993668 0.112354i \(-0.0358392\pi\)
−0.594136 + 0.804365i \(0.702506\pi\)
\(464\) −6.59033 11.4148i −0.305949 0.529919i
\(465\) 0 0
\(466\) 2.29369 + 3.97280i 0.106253 + 0.184036i
\(467\) −36.5485 −1.69126 −0.845632 0.533766i \(-0.820776\pi\)
−0.845632 + 0.533766i \(0.820776\pi\)
\(468\) 0 0
\(469\) 0.0998193 0.172892i 0.00460923 0.00798341i
\(470\) 4.43804 0.204712
\(471\) 0 0
\(472\) −7.49390 + 12.9798i −0.344935 + 0.597444i
\(473\) −8.19130 + 14.1877i −0.376636 + 0.652353i
\(474\) 0 0
\(475\) 25.7811 + 21.0764i 1.18292 + 0.967054i
\(476\) −3.47000 −0.159047
\(477\) 0 0
\(478\) 3.01025 + 5.21391i 0.137686 + 0.238479i
\(479\) −9.98270 17.2905i −0.456121 0.790025i 0.542631 0.839971i \(-0.317428\pi\)
−0.998752 + 0.0499464i \(0.984095\pi\)
\(480\) 0 0
\(481\) −4.11673 −0.187707
\(482\) 1.94475 + 3.36840i 0.0885807 + 0.153426i
\(483\) 0 0
\(484\) −7.76432 13.4482i −0.352924 0.611281i
\(485\) −11.4327 + 19.8021i −0.519134 + 0.899167i
\(486\) 0 0
\(487\) 0.541412 0.0245337 0.0122669 0.999925i \(-0.496095\pi\)
0.0122669 + 0.999925i \(0.496095\pi\)
\(488\) −2.96607 5.13738i −0.134268 0.232558i
\(489\) 0 0
\(490\) 9.14787 0.413259
\(491\) −3.67184 + 6.35982i −0.165708 + 0.287015i −0.936906 0.349580i \(-0.886324\pi\)
0.771199 + 0.636595i \(0.219658\pi\)
\(492\) 0 0
\(493\) −15.3946 + 26.6643i −0.693340 + 1.20090i
\(494\) −2.00398 + 0.758583i −0.0901635 + 0.0341302i
\(495\) 0 0
\(496\) −13.8241 23.9440i −0.620718 1.07512i
\(497\) 2.79747 0.125484
\(498\) 0 0
\(499\) 5.97373 10.3468i 0.267421 0.463187i −0.700774 0.713383i \(-0.747162\pi\)
0.968195 + 0.250197i \(0.0804952\pi\)
\(500\) −17.4773 −0.781607
\(501\) 0 0
\(502\) −2.60437 + 4.51091i −0.116239 + 0.201332i
\(503\) −14.7358 + 25.5232i −0.657038 + 1.13802i 0.324341 + 0.945940i \(0.394858\pi\)
−0.981379 + 0.192083i \(0.938476\pi\)
\(504\) 0 0
\(505\) −26.8900 −1.19659
\(506\) −1.35900 + 2.35386i −0.0604151 + 0.104642i
\(507\) 0 0
\(508\) 1.76779 3.06191i 0.0784332 0.135850i
\(509\) −17.9044 −0.793600 −0.396800 0.917905i \(-0.629879\pi\)
−0.396800 + 0.917905i \(0.629879\pi\)
\(510\) 0 0
\(511\) 0.922853 0.0408246
\(512\) −22.0823 −0.975909
\(513\) 0 0
\(514\) 6.36470 0.280735
\(515\) 49.1278 2.16483
\(516\) 0 0
\(517\) 5.49166 0.241523
\(518\) 0.143854 0.249162i 0.00632058 0.0109476i
\(519\) 0 0
\(520\) 3.37515 5.84593i 0.148010 0.256361i
\(521\) 27.8411 1.21974 0.609871 0.792501i \(-0.291221\pi\)
0.609871 + 0.792501i \(0.291221\pi\)
\(522\) 0 0
\(523\) −12.9624 + 22.4515i −0.566805 + 0.981735i 0.430074 + 0.902794i \(0.358487\pi\)
−0.996879 + 0.0789417i \(0.974846\pi\)
\(524\) 2.82057 4.88537i 0.123217 0.213418i
\(525\) 0 0
\(526\) 7.23214 0.315336
\(527\) −32.2922 + 55.9317i −1.40667 + 2.43642i
\(528\) 0 0
\(529\) −2.82704 −0.122915
\(530\) 0.335162 + 0.580517i 0.0145585 + 0.0252161i
\(531\) 0 0
\(532\) −0.326485 + 2.00107i −0.0141549 + 0.0867574i
\(533\) −3.67751 + 6.36964i −0.159291 + 0.275900i
\(534\) 0 0
\(535\) 21.3524 36.9834i 0.923144 1.59893i
\(536\) −1.14510 −0.0494607
\(537\) 0 0
\(538\) −4.29474 7.43871i −0.185159 0.320705i
\(539\) 11.3196 0.487571
\(540\) 0 0
\(541\) −12.3043 + 21.3116i −0.529001 + 0.916257i 0.470427 + 0.882439i \(0.344100\pi\)
−0.999428 + 0.0338181i \(0.989233\pi\)
\(542\) 4.09415 + 7.09128i 0.175859 + 0.304597i
\(543\) 0 0
\(544\) 15.1048 + 26.1622i 0.647611 + 1.12170i
\(545\) 54.2239 2.32270
\(546\) 0 0
\(547\) −6.44357 11.1606i −0.275507 0.477192i 0.694756 0.719246i \(-0.255512\pi\)
−0.970263 + 0.242054i \(0.922179\pi\)
\(548\) −3.96465 6.86697i −0.169361 0.293343i
\(549\) 0 0
\(550\) 4.62308 0.197129
\(551\) 13.9283 + 11.3865i 0.593364 + 0.485083i
\(552\) 0 0
\(553\) −1.23068 + 2.13161i −0.0523340 + 0.0906452i
\(554\) −5.48887 + 9.50700i −0.233200 + 0.403914i
\(555\) 0 0
\(556\) 32.1684 1.36424
\(557\) 11.8767 20.5710i 0.503231 0.871622i −0.496762 0.867887i \(-0.665478\pi\)
0.999993 0.00373498i \(-0.00118888\pi\)
\(558\) 0 0
\(559\) 13.3080 0.562868
\(560\) −1.41781 2.45573i −0.0599136 0.103773i
\(561\) 0 0
\(562\) −5.34234 9.25321i −0.225353 0.390323i
\(563\) −13.3440 23.1125i −0.562383 0.974077i −0.997288 0.0735999i \(-0.976551\pi\)
0.434904 0.900477i \(-0.356782\pi\)
\(564\) 0 0
\(565\) −10.4154 −0.438181
\(566\) 2.97090 5.14574i 0.124876 0.216292i
\(567\) 0 0
\(568\) −8.02294 13.8961i −0.336635 0.583069i
\(569\) −6.57047 + 11.3804i −0.275448 + 0.477090i −0.970248 0.242113i \(-0.922160\pi\)
0.694800 + 0.719203i \(0.255493\pi\)
\(570\) 0 0
\(571\) −1.08070 1.87182i −0.0452258 0.0783333i 0.842526 0.538655i \(-0.181067\pi\)
−0.887752 + 0.460322i \(0.847734\pi\)
\(572\) 2.01384 3.48808i 0.0842031 0.145844i
\(573\) 0 0
\(574\) −0.257012 0.445158i −0.0107275 0.0185805i
\(575\) −17.1562 29.7154i −0.715463 1.23922i
\(576\) 0 0
\(577\) 4.53956 0.188985 0.0944923 0.995526i \(-0.469877\pi\)
0.0944923 + 0.995526i \(0.469877\pi\)
\(578\) 7.16772 12.4149i 0.298138 0.516390i
\(579\) 0 0
\(580\) −27.3281 −1.13474
\(581\) −0.0462667 0.0801364i −0.00191947 0.00332462i
\(582\) 0 0
\(583\) 0.414731 + 0.718336i 0.0171764 + 0.0297504i
\(584\) −2.64668 4.58418i −0.109520 0.189695i
\(585\) 0 0
\(586\) −0.148496 0.257202i −0.00613430 0.0106249i
\(587\) −24.2678 −1.00164 −0.500819 0.865552i \(-0.666968\pi\)
−0.500819 + 0.865552i \(0.666968\pi\)
\(588\) 0 0
\(589\) 29.2163 + 23.8847i 1.20384 + 0.984152i
\(590\) 6.89781 + 11.9474i 0.283978 + 0.491865i
\(591\) 0 0
\(592\) 9.91920 0.407677
\(593\) −16.5350 + 28.6395i −0.679013 + 1.17608i 0.296266 + 0.955106i \(0.404259\pi\)
−0.975279 + 0.220979i \(0.929075\pi\)
\(594\) 0 0
\(595\) −3.31193 + 5.73644i −0.135776 + 0.235171i
\(596\) −1.71917 + 2.97769i −0.0704199 + 0.121971i
\(597\) 0 0
\(598\) 2.20791 0.0902880
\(599\) 13.2848 0.542803 0.271401 0.962466i \(-0.412513\pi\)
0.271401 + 0.962466i \(0.412513\pi\)
\(600\) 0 0
\(601\) −7.35146 + 12.7331i −0.299872 + 0.519394i −0.976106 0.217293i \(-0.930277\pi\)
0.676234 + 0.736687i \(0.263611\pi\)
\(602\) −0.465032 + 0.805459i −0.0189533 + 0.0328280i
\(603\) 0 0
\(604\) 10.4283 18.0623i 0.424321 0.734946i
\(605\) −29.6426 −1.20514
\(606\) 0 0
\(607\) −1.19304 2.06641i −0.0484241 0.0838729i 0.840797 0.541350i \(-0.182087\pi\)
−0.889221 + 0.457477i \(0.848753\pi\)
\(608\) 16.5083 6.24903i 0.669502 0.253431i
\(609\) 0 0
\(610\) −5.46028 −0.221080
\(611\) −2.23051 3.86336i −0.0902368 0.156295i
\(612\) 0 0
\(613\) 2.16079 + 3.74260i 0.0872736 + 0.151162i 0.906358 0.422511i \(-0.138851\pi\)
−0.819084 + 0.573673i \(0.805518\pi\)
\(614\) −0.852996 1.47743i −0.0344241 0.0596243i
\(615\) 0 0
\(616\) 0.291880 + 0.505552i 0.0117602 + 0.0203693i
\(617\) 9.61045 0.386902 0.193451 0.981110i \(-0.438032\pi\)
0.193451 + 0.981110i \(0.438032\pi\)
\(618\) 0 0
\(619\) −1.79677 + 3.11209i −0.0722182 + 0.125086i −0.899873 0.436152i \(-0.856341\pi\)
0.827655 + 0.561237i \(0.189674\pi\)
\(620\) −57.3241 −2.30219
\(621\) 0 0
\(622\) 6.08687 + 10.5428i 0.244061 + 0.422727i
\(623\) −1.00159 1.73480i −0.0401277 0.0695032i
\(624\) 0 0
\(625\) 2.41765 4.18750i 0.0967061 0.167500i
\(626\) −3.40988 5.90608i −0.136286 0.236055i
\(627\) 0 0
\(628\) 19.3425 33.5022i 0.771850 1.33688i
\(629\) −11.5853 20.0664i −0.461938 0.800100i
\(630\) 0 0
\(631\) 12.6319 21.8792i 0.502870 0.870996i −0.497125 0.867679i \(-0.665611\pi\)
0.999994 0.00331669i \(-0.00105574\pi\)
\(632\) 14.1181 0.561586
\(633\) 0 0
\(634\) −0.251872 0.436254i −0.0100031 0.0173259i
\(635\) −3.37454 5.84487i −0.133915 0.231947i
\(636\) 0 0
\(637\) −4.59761 7.96330i −0.182164 0.315517i
\(638\) 2.49762 0.0988818
\(639\) 0 0
\(640\) −17.6177 + 30.5148i −0.696402 + 1.20620i
\(641\) 23.3043 0.920463 0.460231 0.887799i \(-0.347766\pi\)
0.460231 + 0.887799i \(0.347766\pi\)
\(642\) 0 0
\(643\) −8.62978 + 14.9472i −0.340325 + 0.589461i −0.984493 0.175423i \(-0.943871\pi\)
0.644168 + 0.764884i \(0.277204\pi\)
\(644\) 1.04459 1.80928i 0.0411625 0.0712956i
\(645\) 0 0
\(646\) −9.33724 7.63333i −0.367369 0.300329i
\(647\) 35.6673 1.40223 0.701114 0.713049i \(-0.252686\pi\)
0.701114 + 0.713049i \(0.252686\pi\)
\(648\) 0 0
\(649\) 8.53539 + 14.7837i 0.335043 + 0.580312i
\(650\) −1.87772 3.25231i −0.0736504 0.127566i
\(651\) 0 0
\(652\) 10.0883 0.395088
\(653\) 8.46548 + 14.6626i 0.331280 + 0.573794i 0.982763 0.184869i \(-0.0591862\pi\)
−0.651483 + 0.758663i \(0.725853\pi\)
\(654\) 0 0
\(655\) −5.38418 9.32566i −0.210377 0.364384i
\(656\) 8.86092 15.3476i 0.345961 0.599222i
\(657\) 0 0
\(658\) 0.311770 0.0121540
\(659\) −2.26182 3.91760i −0.0881082 0.152608i 0.818603 0.574359i \(-0.194749\pi\)
−0.906711 + 0.421752i \(0.861415\pi\)
\(660\) 0 0
\(661\) 20.0800 0.781021 0.390510 0.920599i \(-0.372299\pi\)
0.390510 + 0.920599i \(0.372299\pi\)
\(662\) −3.11498 + 5.39530i −0.121067 + 0.209694i
\(663\) 0 0
\(664\) −0.265379 + 0.459651i −0.0102987 + 0.0178379i
\(665\) 2.99646 + 2.44965i 0.116198 + 0.0949933i
\(666\) 0 0
\(667\) −9.26864 16.0537i −0.358883 0.621604i
\(668\) −2.79378 −0.108095
\(669\) 0 0
\(670\) −0.527007 + 0.912803i −0.0203600 + 0.0352646i
\(671\) −6.75658 −0.260835
\(672\) 0 0
\(673\) 8.72911 15.1193i 0.336482 0.582805i −0.647286 0.762247i \(-0.724096\pi\)
0.983768 + 0.179443i \(0.0574294\pi\)
\(674\) 6.77287 11.7310i 0.260881 0.451860i
\(675\) 0 0
\(676\) 20.9399 0.805382
\(677\) 20.4904 35.4905i 0.787511 1.36401i −0.139976 0.990155i \(-0.544703\pi\)
0.927487 0.373854i \(-0.121964\pi\)
\(678\) 0 0
\(679\) −0.803143 + 1.39108i −0.0308218 + 0.0533849i
\(680\) 37.9936 1.45699
\(681\) 0 0
\(682\) 5.23907 0.200614
\(683\) −20.9461 −0.801480 −0.400740 0.916192i \(-0.631247\pi\)
−0.400740 + 0.916192i \(0.631247\pi\)
\(684\) 0 0
\(685\) −15.1362 −0.578325
\(686\) 1.29104 0.0492922
\(687\) 0 0
\(688\) −32.0655 −1.22248
\(689\) 0.336897 0.583522i 0.0128347 0.0222304i
\(690\) 0 0
\(691\) −10.5768 + 18.3195i −0.402359 + 0.696907i −0.994010 0.109288i \(-0.965143\pi\)
0.591651 + 0.806194i \(0.298476\pi\)
\(692\) 41.7437 1.58686
\(693\) 0 0
\(694\) 1.88242 3.26044i 0.0714556 0.123765i
\(695\) 30.7031 53.1793i 1.16463 2.01720i
\(696\) 0 0
\(697\) −41.3972 −1.56803
\(698\) −3.20305 + 5.54785i −0.121237 + 0.209989i
\(699\) 0 0
\(700\) −3.55350 −0.134310
\(701\) 1.32346 + 2.29231i 0.0499865 + 0.0865792i 0.889936 0.456085i \(-0.150749\pi\)
−0.839950 + 0.542665i \(0.817415\pi\)
\(702\) 0 0
\(703\) −12.6619 + 4.79300i −0.477552 + 0.180771i
\(704\) −3.98543 + 6.90297i −0.150207 + 0.260165i
\(705\) 0 0
\(706\) −3.13460 + 5.42928i −0.117972 + 0.204334i
\(707\) −1.88900 −0.0710432
\(708\) 0 0
\(709\) −13.4226 23.2486i −0.504097 0.873121i −0.999989 0.00473700i \(-0.998492\pi\)
0.495892 0.868384i \(-0.334841\pi\)
\(710\) −14.7695 −0.554291
\(711\) 0 0
\(712\) −5.74496 + 9.95056i −0.215301 + 0.372913i
\(713\) −19.4421 33.6748i −0.728113 1.26113i
\(714\) 0 0
\(715\) −3.84422 6.65839i −0.143766 0.249010i
\(716\) −23.6779 −0.884885
\(717\) 0 0
\(718\) 1.41957 + 2.45876i 0.0529778 + 0.0917602i
\(719\) −1.94193 3.36352i −0.0724217 0.125438i 0.827540 0.561406i \(-0.189739\pi\)
−0.899962 + 0.435968i \(0.856406\pi\)
\(720\) 0 0
\(721\) 3.45120 0.128529
\(722\) −5.28049 + 4.66638i −0.196520 + 0.173665i
\(723\) 0 0
\(724\) −2.44272 + 4.23091i −0.0907828 + 0.157240i
\(725\) −15.7651 + 27.3060i −0.585502 + 1.01412i
\(726\) 0 0
\(727\) −52.3039 −1.93984 −0.969922 0.243417i \(-0.921732\pi\)
−0.969922 + 0.243417i \(0.921732\pi\)
\(728\) 0.237102 0.410673i 0.00878758 0.0152205i
\(729\) 0 0
\(730\) −4.87230 −0.180332
\(731\) 37.4516 + 64.8680i 1.38520 + 2.39923i
\(732\) 0 0
\(733\) 3.06517 + 5.30902i 0.113215 + 0.196093i 0.917065 0.398739i \(-0.130552\pi\)
−0.803850 + 0.594832i \(0.797219\pi\)
\(734\) −4.59485 7.95852i −0.169599 0.293754i
\(735\) 0 0
\(736\) −18.1882 −0.670426
\(737\) −0.652121 + 1.12951i −0.0240212 + 0.0416059i
\(738\) 0 0
\(739\) −6.68714 11.5825i −0.245990 0.426068i 0.716419 0.697670i \(-0.245780\pi\)
−0.962410 + 0.271602i \(0.912447\pi\)
\(740\) 10.2830 17.8106i 0.378009 0.654731i
\(741\) 0 0
\(742\) 0.0235449 + 0.0407809i 0.000864360 + 0.00149712i
\(743\) −1.37195 + 2.37629i −0.0503321 + 0.0871778i −0.890094 0.455777i \(-0.849361\pi\)
0.839762 + 0.542955i \(0.182695\pi\)
\(744\) 0 0
\(745\) 3.28172 + 5.68410i 0.120233 + 0.208249i
\(746\) −4.29724 7.44304i −0.157333 0.272509i
\(747\) 0 0
\(748\) 22.6696 0.828881
\(749\) 1.49999 2.59806i 0.0548085 0.0949311i
\(750\) 0 0
\(751\) −20.9472 −0.764374 −0.382187 0.924085i \(-0.624829\pi\)
−0.382187 + 0.924085i \(0.624829\pi\)
\(752\) 5.37439 + 9.30871i 0.195984 + 0.339454i
\(753\) 0 0
\(754\) −1.01444 1.75706i −0.0369438 0.0639885i
\(755\) −19.9065 34.4791i −0.724473 1.25482i
\(756\) 0 0
\(757\) 3.65990 + 6.33913i 0.133021 + 0.230400i 0.924840 0.380357i \(-0.124199\pi\)
−0.791819 + 0.610756i \(0.790865\pi\)
\(758\) −10.7855 −0.391746
\(759\) 0 0
\(760\) 3.57474 21.9100i 0.129670 0.794761i
\(761\) −6.05266 10.4835i −0.219409 0.380027i 0.735219 0.677830i \(-0.237079\pi\)
−0.954627 + 0.297803i \(0.903746\pi\)
\(762\) 0 0
\(763\) 3.80919 0.137902
\(764\) −3.17391 + 5.49737i −0.114828 + 0.198888i
\(765\) 0 0
\(766\) 0.524540 0.908530i 0.0189524 0.0328265i
\(767\) 6.93352 12.0092i 0.250355 0.433627i
\(768\) 0 0
\(769\) −28.9659 −1.04454 −0.522269 0.852781i \(-0.674914\pi\)
−0.522269 + 0.852781i \(0.674914\pi\)
\(770\) 0.537327 0.0193639
\(771\) 0 0
\(772\) 0.463529 0.802856i 0.0166828 0.0288954i
\(773\) −21.7876 + 37.7372i −0.783645 + 1.35731i 0.146160 + 0.989261i \(0.453309\pi\)
−0.929805 + 0.368052i \(0.880025\pi\)
\(774\) 0 0
\(775\) −33.0693 + 57.2777i −1.18788 + 2.05748i
\(776\) 9.21343 0.330743
\(777\) 0 0
\(778\) −3.55421 6.15608i −0.127425 0.220706i
\(779\) −3.89499 + 23.8729i −0.139552 + 0.855334i
\(780\) 0 0
\(781\) −18.2759 −0.653964
\(782\) 6.21352 + 10.7621i 0.222195 + 0.384853i
\(783\) 0 0
\(784\) 11.0779 + 19.1875i 0.395639 + 0.685267i
\(785\) −36.9229 63.9523i −1.31783 2.28255i
\(786\) 0 0
\(787\) 3.10060 + 5.37040i 0.110525 + 0.191434i 0.915982 0.401220i \(-0.131414\pi\)
−0.805457 + 0.592654i \(0.798080\pi\)
\(788\) −4.92426 −0.175420
\(789\) 0 0
\(790\) 6.49754 11.2541i 0.231172 0.400402i
\(791\) −0.731677 −0.0260155
\(792\) 0 0
\(793\) 2.74427 + 4.75322i 0.0974520 + 0.168792i
\(794\) −5.91901 10.2520i −0.210058 0.363831i
\(795\) 0 0
\(796\) −0.197997 + 0.342942i −0.00701784 + 0.0121552i
\(797\) 19.1606 + 33.1871i 0.678702 + 1.17555i 0.975372 + 0.220566i \(0.0707904\pi\)
−0.296671 + 0.954980i \(0.595876\pi\)
\(798\) 0 0
\(799\) 12.5543 21.7446i 0.444138 0.769269i
\(800\) 15.4683 + 26.7918i 0.546885 + 0.947233i
\(801\) 0 0
\(802\) −7.11006 + 12.3150i −0.251065 + 0.434857i
\(803\) −6.02902 −0.212759
\(804\) 0 0
\(805\) −1.99401 3.45373i −0.0702797 0.121728i
\(806\) −2.12792 3.68566i −0.0749527 0.129822i
\(807\) 0 0
\(808\) 5.41752 + 9.38342i 0.190588 + 0.330108i
\(809\) 36.9557 1.29929 0.649647 0.760236i \(-0.274917\pi\)
0.649647 + 0.760236i \(0.274917\pi\)
\(810\) 0 0
\(811\) 21.0016 36.3759i 0.737467 1.27733i −0.216165 0.976357i \(-0.569355\pi\)
0.953632 0.300974i \(-0.0973118\pi\)
\(812\) −1.91978 −0.0673710
\(813\) 0 0
\(814\) −0.939801 + 1.62778i −0.0329400 + 0.0570537i
\(815\) 9.62877 16.6775i 0.337281 0.584188i
\(816\) 0 0
\(817\) 40.9317 15.4942i 1.43202 0.542072i
\(818\) −0.850402 −0.0297336
\(819\) 0 0
\(820\) −18.3717 31.8208i −0.641569 1.11123i
\(821\) −8.86017 15.3463i −0.309222 0.535588i 0.668970 0.743289i \(-0.266735\pi\)
−0.978192 + 0.207701i \(0.933402\pi\)
\(822\) 0 0
\(823\) −29.2027 −1.01794 −0.508971 0.860784i \(-0.669974\pi\)
−0.508971 + 0.860784i \(0.669974\pi\)
\(824\) −9.89779 17.1435i −0.344806 0.597221i
\(825\) 0 0
\(826\) 0.484566 + 0.839294i 0.0168602 + 0.0292028i
\(827\) −7.34515 + 12.7222i −0.255416 + 0.442393i −0.965008 0.262219i \(-0.915546\pi\)
0.709593 + 0.704612i \(0.248879\pi\)
\(828\) 0 0
\(829\) −2.88680 −0.100263 −0.0501314 0.998743i \(-0.515964\pi\)
−0.0501314 + 0.998743i \(0.515964\pi\)
\(830\) 0.244270 + 0.423089i 0.00847875 + 0.0146856i
\(831\) 0 0
\(832\) 6.47493 0.224478
\(833\) 25.8773 44.8209i 0.896596 1.55295i
\(834\) 0 0
\(835\) −2.66652 + 4.61855i −0.0922788 + 0.159831i
\(836\) 2.13294 13.0730i 0.0737692 0.452140i
\(837\) 0 0
\(838\) 1.97391 + 3.41892i 0.0681877 + 0.118105i
\(839\) 15.1184 0.521946 0.260973 0.965346i \(-0.415957\pi\)
0.260973 + 0.965346i \(0.415957\pi\)
\(840\) 0 0
\(841\) 5.98290 10.3627i 0.206307 0.357334i
\(842\) −9.59288 −0.330592
\(843\) 0 0
\(844\) −7.93749 + 13.7481i −0.273220 + 0.473230i
\(845\) 19.9861 34.6170i 0.687543 1.19086i
\(846\) 0 0
\(847\) −2.08237 −0.0715511
\(848\) −0.811749 + 1.40599i −0.0278756 + 0.0482819i
\(849\) 0 0
\(850\) 10.5686 18.3054i 0.362501 0.627871i
\(851\) 13.9503 0.478212
\(852\) 0 0
\(853\) 26.1014 0.893696 0.446848 0.894610i \(-0.352546\pi\)
0.446848 + 0.894610i \(0.352546\pi\)
\(854\) −0.383581 −0.0131259
\(855\) 0 0
\(856\) −17.2075 −0.588139
\(857\) −41.6454 −1.42258 −0.711291 0.702898i \(-0.751889\pi\)
−0.711291 + 0.702898i \(0.751889\pi\)
\(858\) 0 0
\(859\) 9.44030 0.322099 0.161049 0.986946i \(-0.448512\pi\)
0.161049 + 0.986946i \(0.448512\pi\)
\(860\) −33.2414 + 57.5758i −1.13352 + 1.96332i
\(861\) 0 0
\(862\) −3.53451 + 6.12196i −0.120386 + 0.208515i
\(863\) −31.0403 −1.05662 −0.528311 0.849051i \(-0.677175\pi\)
−0.528311 + 0.849051i \(0.677175\pi\)
\(864\) 0 0
\(865\) 39.8422 69.0088i 1.35468 2.34637i
\(866\) −4.94349 + 8.56238i −0.167987 + 0.290962i
\(867\) 0 0
\(868\) −4.02698 −0.136684
\(869\) 8.04009 13.9258i 0.272741 0.472402i
\(870\) 0 0
\(871\) 1.05947 0.0358988
\(872\) −10.9245 18.9218i −0.369950 0.640772i
\(873\) 0 0
\(874\) 6.79090 2.57061i 0.229706 0.0869522i
\(875\) −1.17184 + 2.02969i −0.0396154 + 0.0686159i
\(876\) 0 0
\(877\) 20.7277 35.9014i 0.699924 1.21230i −0.268568 0.963261i \(-0.586550\pi\)
0.968492 0.249044i \(-0.0801163\pi\)
\(878\) 0.722138 0.0243710
\(879\) 0 0
\(880\) 9.26261 + 16.0433i 0.312243 + 0.540820i
\(881\) −15.2233 −0.512886 −0.256443 0.966559i \(-0.582551\pi\)
−0.256443 + 0.966559i \(0.582551\pi\)
\(882\) 0 0
\(883\) −0.314882 + 0.545392i −0.0105966 + 0.0183539i −0.871275 0.490795i \(-0.836706\pi\)
0.860678 + 0.509149i \(0.170040\pi\)
\(884\) −9.20753 15.9479i −0.309683 0.536386i
\(885\) 0 0
\(886\) −1.21694 2.10781i −0.0408840 0.0708132i
\(887\) 1.12719 0.0378474 0.0189237 0.999821i \(-0.493976\pi\)
0.0189237 + 0.999821i \(0.493976\pi\)
\(888\) 0 0
\(889\) −0.237059 0.410599i −0.00795071 0.0137710i
\(890\) 5.28798 + 9.15906i 0.177254 + 0.307012i
\(891\) 0 0
\(892\) −29.0600 −0.973000
\(893\) −11.3584 9.28567i −0.380095 0.310733i
\(894\) 0 0
\(895\) −22.5994 + 39.1432i −0.755413 + 1.30841i
\(896\) −1.23763 + 2.14365i −0.0413465 + 0.0716142i
\(897\) 0 0
\(898\) −13.1795 −0.439804
\(899\) −17.8657 + 30.9443i −0.595854 + 1.03205i
\(900\) 0 0
\(901\) 3.79240 0.126343
\(902\) 1.67907 + 2.90823i 0.0559068 + 0.0968334i
\(903\) 0 0
\(904\) 2.09840 + 3.63453i 0.0697917 + 0.120883i
\(905\) 4.66290 + 8.07637i 0.155000 + 0.268468i
\(906\) 0 0
\(907\) 28.7319 0.954028 0.477014 0.878896i \(-0.341719\pi\)
0.477014 + 0.878896i \(0.341719\pi\)
\(908\) −1.10895 + 1.92075i −0.0368016 + 0.0637423i
\(909\) 0 0
\(910\) −0.218242 0.378006i −0.00723466 0.0125308i
\(911\) 19.6724 34.0735i 0.651774 1.12891i −0.330918 0.943660i \(-0.607358\pi\)
0.982692 0.185246i \(-0.0593083\pi\)
\(912\) 0 0
\(913\) 0.302262 + 0.523532i 0.0100034 + 0.0173264i
\(914\) 1.23300 2.13561i 0.0407839 0.0706398i
\(915\) 0 0
\(916\) 18.5954 + 32.2082i 0.614410 + 1.06419i
\(917\) −0.378235 0.655122i −0.0124904 0.0216340i
\(918\) 0 0
\(919\) 14.3218 0.472433 0.236217 0.971700i \(-0.424093\pi\)
0.236217 + 0.971700i \(0.424093\pi\)
\(920\) −11.4374 + 19.8101i −0.377079 + 0.653120i
\(921\) 0 0
\(922\) −2.58577 −0.0851577
\(923\) 7.42300 + 12.8570i 0.244331 + 0.423194i
\(924\) 0 0
\(925\) −11.8641 20.5493i −0.390091 0.675657i
\(926\) −3.18850 5.52264i −0.104781 0.181485i
\(927\) 0 0
\(928\) 8.35672 + 14.4743i 0.274323 + 0.475141i
\(929\) −1.78788 −0.0586586 −0.0293293 0.999570i \(-0.509337\pi\)
−0.0293293 + 0.999570i \(0.509337\pi\)
\(930\) 0 0
\(931\) −23.4124 19.1400i −0.767312 0.627288i
\(932\) 11.5179 + 19.9496i 0.377282 + 0.653472i
\(933\) 0 0
\(934\) 13.5555 0.443548
\(935\) 21.6369 37.4763i 0.707603 1.22560i
\(936\) 0 0
\(937\) 6.96721 12.0676i 0.227609 0.394230i −0.729490 0.683991i \(-0.760243\pi\)
0.957099 + 0.289761i \(0.0935759\pi\)
\(938\) −0.0370219 + 0.0641238i −0.00120881 + 0.00209372i
\(939\) 0 0
\(940\) 22.2859 0.726886
\(941\) 45.4329 1.48107 0.740535 0.672017i \(-0.234572\pi\)
0.740535 + 0.672017i \(0.234572\pi\)
\(942\) 0 0
\(943\) 12.4620 21.5848i 0.405818 0.702897i
\(944\) −16.7062 + 28.9360i −0.543741 + 0.941787i
\(945\) 0 0
\(946\) 3.03806 5.26208i 0.0987759 0.171085i
\(947\) 5.17499 0.168165 0.0840823 0.996459i \(-0.473204\pi\)
0.0840823 + 0.996459i \(0.473204\pi\)
\(948\) 0 0
\(949\) 2.44876 + 4.24138i 0.0794902 + 0.137681i
\(950\) −9.56194 7.81702i −0.310230 0.253618i
\(951\) 0 0
\(952\) 2.66902 0.0865035
\(953\) −12.9234 22.3840i −0.418630 0.725088i 0.577172 0.816622i \(-0.304156\pi\)
−0.995802 + 0.0915347i \(0.970823\pi\)
\(954\) 0 0
\(955\) 6.05867 + 10.4939i 0.196054 + 0.339575i
\(956\) 15.1162 + 26.1819i 0.488891 + 0.846785i
\(957\) 0 0
\(958\) 3.70247 + 6.41287i 0.119621 + 0.207190i
\(959\) −1.06331 −0.0343360
\(960\) 0 0
\(961\) −21.9755 + 38.0628i −0.708888 + 1.22783i
\(962\) 1.52685 0.0492276
\(963\) 0 0
\(964\) 9.76565 + 16.9146i 0.314531 + 0.544783i
\(965\) −0.884830 1.53257i −0.0284837 0.0493352i
\(966\) 0 0
\(967\) −13.0699 + 22.6377i −0.420299 + 0.727979i −0.995969 0.0897035i \(-0.971408\pi\)
0.575670 + 0.817682i \(0.304741\pi\)
\(968\) 5.97209 + 10.3440i 0.191950 + 0.332468i
\(969\) 0 0
\(970\) 4.24028 7.34438i 0.136147 0.235814i
\(971\) −6.28902 10.8929i −0.201824 0.349570i 0.747292 0.664496i \(-0.231354\pi\)
−0.949116 + 0.314926i \(0.898020\pi\)
\(972\) 0 0
\(973\) 2.15687 3.73581i 0.0691461 0.119764i
\(974\) −0.200804 −0.00643417
\(975\) 0 0
\(976\) −6.61229 11.4528i −0.211654 0.366596i
\(977\) −18.8495 32.6483i −0.603050 1.04451i −0.992356 0.123405i \(-0.960619\pi\)
0.389307 0.921108i \(-0.372715\pi\)
\(978\) 0 0
\(979\) 6.54338 + 11.3335i 0.209127 + 0.362219i
\(980\) 45.9366 1.46739
\(981\) 0 0
\(982\) 1.36185 2.35879i 0.0434583 0.0752719i
\(983\) 23.2447 0.741390 0.370695 0.928755i \(-0.379119\pi\)
0.370695 + 0.928755i \(0.379119\pi\)
\(984\) 0 0
\(985\) −4.69996 + 8.14056i −0.149753 + 0.259380i
\(986\) 5.70970 9.88950i 0.181834 0.314946i
\(987\) 0 0
\(988\) −10.0631 + 3.80927i −0.320151 + 0.121189i
\(989\) −45.0968 −1.43400
\(990\) 0 0
\(991\) −11.8484 20.5220i −0.376376 0.651903i 0.614156 0.789185i \(-0.289497\pi\)
−0.990532 + 0.137282i \(0.956163\pi\)
\(992\) 17.5293 + 30.3616i 0.556555 + 0.963982i
\(993\) 0 0
\(994\) −1.03755 −0.0329091
\(995\) 0.377957 + 0.654641i 0.0119820 + 0.0207535i
\(996\) 0 0
\(997\) 9.46564 + 16.3950i 0.299780 + 0.519234i 0.976085 0.217387i \(-0.0697535\pi\)
−0.676306 + 0.736621i \(0.736420\pi\)
\(998\) −2.21559 + 3.83752i −0.0701333 + 0.121475i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.h.c.235.8 32
3.2 odd 2 171.2.h.c.7.9 yes 32
9.4 even 3 513.2.g.c.64.9 32
9.5 odd 6 171.2.g.c.121.8 yes 32
19.11 even 3 513.2.g.c.505.9 32
57.11 odd 6 171.2.g.c.106.8 32
171.49 even 3 inner 513.2.h.c.334.8 32
171.68 odd 6 171.2.h.c.49.9 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.g.c.106.8 32 57.11 odd 6
171.2.g.c.121.8 yes 32 9.5 odd 6
171.2.h.c.7.9 yes 32 3.2 odd 2
171.2.h.c.49.9 yes 32 171.68 odd 6
513.2.g.c.64.9 32 9.4 even 3
513.2.g.c.505.9 32 19.11 even 3
513.2.h.c.235.8 32 1.1 even 1 trivial
513.2.h.c.334.8 32 171.49 even 3 inner