Properties

Label 513.2.g.c.505.9
Level $513$
Weight $2$
Character 513.505
Analytic conductor $4.096$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [513,2,Mod(64,513)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(513, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("513.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 505.9
Character \(\chi\) \(=\) 513.505
Dual form 513.2.g.c.64.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.185445 + 0.321199i) q^{2} +(0.931221 - 1.61292i) q^{4} +3.55521 q^{5} +(-0.124876 + 0.216291i) q^{7} +1.43254 q^{8} +(0.659294 + 1.14193i) q^{10} +(0.815815 - 1.41303i) q^{11} +(0.662707 - 1.14784i) q^{13} -0.0926300 q^{14} +(-1.59679 - 2.76571i) q^{16} +(-3.73000 + 6.46055i) q^{17} +(-4.07660 - 1.54315i) q^{19} +(3.31069 - 5.73428i) q^{20} +0.605154 q^{22} +(-2.24572 + 3.88969i) q^{23} +7.63952 q^{25} +0.491582 q^{26} +(0.232573 + 0.402829i) q^{28} +4.12725 q^{29} +(-4.32871 - 7.49755i) q^{31} +(2.02477 - 3.50700i) q^{32} -2.76683 q^{34} +(-0.443959 + 0.768960i) q^{35} +3.10599 q^{37} +(-0.260326 - 1.59557i) q^{38} +5.09297 q^{40} -5.54922 q^{41} +(5.02032 + 8.69544i) q^{43} +(-1.51941 - 2.63169i) q^{44} -1.66582 q^{46} -3.36575 q^{47} +(3.46881 + 6.00816i) q^{49} +(1.41671 + 2.45381i) q^{50} +(-1.23425 - 2.13779i) q^{52} +(-0.254182 - 0.440256i) q^{53} +(2.90039 - 5.02363i) q^{55} +(-0.178889 + 0.309845i) q^{56} +(0.765376 + 1.32567i) q^{58} +10.4624 q^{59} +4.14100 q^{61} +(1.60547 - 2.78076i) q^{62} -4.88521 q^{64} +(2.35606 - 4.08082i) q^{65} +(0.399675 - 0.692257i) q^{67} +(6.94690 + 12.0324i) q^{68} -0.329319 q^{70} +(-5.60051 + 9.70037i) q^{71} +(-1.84754 + 3.20004i) q^{73} +(0.575989 + 0.997642i) q^{74} +(-6.28519 + 5.13823i) q^{76} +(0.203751 + 0.352907i) q^{77} +(-4.92764 - 8.53493i) q^{79} +(-5.67691 - 9.83269i) q^{80} +(-1.02907 - 1.78241i) q^{82} +(-0.185251 + 0.320865i) q^{83} +(-13.2609 + 22.9686i) q^{85} +(-1.86198 + 3.22504i) q^{86} +(1.16868 - 2.02422i) q^{88} +(-4.01034 - 6.94611i) q^{89} +(0.165512 + 0.286675i) q^{91} +(4.18251 + 7.24433i) q^{92} +(-0.624161 - 1.08108i) q^{94} +(-14.4932 - 5.48621i) q^{95} +(-3.21577 - 5.56988i) q^{97} +(-1.28654 + 2.22836i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - q^{2} - 17 q^{4} + 6 q^{5} + q^{7} + 36 q^{8} - 8 q^{10} - 7 q^{11} - 4 q^{13} + 2 q^{14} - 11 q^{16} + 7 q^{17} + 7 q^{19} + 3 q^{20} + 16 q^{22} - 5 q^{23} + 18 q^{25} + 4 q^{26} - 10 q^{28}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.185445 + 0.321199i 0.131129 + 0.227122i 0.924112 0.382122i \(-0.124806\pi\)
−0.792983 + 0.609244i \(0.791473\pi\)
\(3\) 0 0
\(4\) 0.931221 1.61292i 0.465610 0.806461i
\(5\) 3.55521 1.58994 0.794969 0.606650i \(-0.207487\pi\)
0.794969 + 0.606650i \(0.207487\pi\)
\(6\) 0 0
\(7\) −0.124876 + 0.216291i −0.0471985 + 0.0817503i −0.888660 0.458568i \(-0.848363\pi\)
0.841461 + 0.540318i \(0.181696\pi\)
\(8\) 1.43254 0.506478
\(9\) 0 0
\(10\) 0.659294 + 1.14193i 0.208487 + 0.361110i
\(11\) 0.815815 1.41303i 0.245977 0.426045i −0.716429 0.697660i \(-0.754224\pi\)
0.962406 + 0.271615i \(0.0875578\pi\)
\(12\) 0 0
\(13\) 0.662707 1.14784i 0.183802 0.318354i −0.759370 0.650659i \(-0.774493\pi\)
0.943172 + 0.332305i \(0.107826\pi\)
\(14\) −0.0926300 −0.0247564
\(15\) 0 0
\(16\) −1.59679 2.76571i −0.399196 0.691428i
\(17\) −3.73000 + 6.46055i −0.904658 + 1.56691i −0.0832816 + 0.996526i \(0.526540\pi\)
−0.821376 + 0.570387i \(0.806793\pi\)
\(18\) 0 0
\(19\) −4.07660 1.54315i −0.935237 0.354022i
\(20\) 3.31069 5.73428i 0.740292 1.28222i
\(21\) 0 0
\(22\) 0.605154 0.129019
\(23\) −2.24572 + 3.88969i −0.468264 + 0.811057i −0.999342 0.0362656i \(-0.988454\pi\)
0.531078 + 0.847323i \(0.321787\pi\)
\(24\) 0 0
\(25\) 7.63952 1.52790
\(26\) 0.491582 0.0964071
\(27\) 0 0
\(28\) 0.232573 + 0.402829i 0.0439522 + 0.0761275i
\(29\) 4.12725 0.766411 0.383206 0.923663i \(-0.374820\pi\)
0.383206 + 0.923663i \(0.374820\pi\)
\(30\) 0 0
\(31\) −4.32871 7.49755i −0.777460 1.34660i −0.933401 0.358834i \(-0.883174\pi\)
0.155941 0.987766i \(-0.450159\pi\)
\(32\) 2.02477 3.50700i 0.357932 0.619956i
\(33\) 0 0
\(34\) −2.76683 −0.474508
\(35\) −0.443959 + 0.768960i −0.0750428 + 0.129978i
\(36\) 0 0
\(37\) 3.10599 0.510622 0.255311 0.966859i \(-0.417822\pi\)
0.255311 + 0.966859i \(0.417822\pi\)
\(38\) −0.260326 1.59557i −0.0422305 0.258836i
\(39\) 0 0
\(40\) 5.09297 0.805269
\(41\) −5.54922 −0.866643 −0.433322 0.901239i \(-0.642659\pi\)
−0.433322 + 0.901239i \(0.642659\pi\)
\(42\) 0 0
\(43\) 5.02032 + 8.69544i 0.765591 + 1.32604i 0.939934 + 0.341358i \(0.110887\pi\)
−0.174342 + 0.984685i \(0.555780\pi\)
\(44\) −1.51941 2.63169i −0.229059 0.396742i
\(45\) 0 0
\(46\) −1.66582 −0.245612
\(47\) −3.36575 −0.490946 −0.245473 0.969403i \(-0.578943\pi\)
−0.245473 + 0.969403i \(0.578943\pi\)
\(48\) 0 0
\(49\) 3.46881 + 6.00816i 0.495545 + 0.858308i
\(50\) 1.41671 + 2.45381i 0.200353 + 0.347021i
\(51\) 0 0
\(52\) −1.23425 2.13779i −0.171160 0.296458i
\(53\) −0.254182 0.440256i −0.0349146 0.0604739i 0.848040 0.529932i \(-0.177783\pi\)
−0.882955 + 0.469458i \(0.844449\pi\)
\(54\) 0 0
\(55\) 2.90039 5.02363i 0.391089 0.677386i
\(56\) −0.178889 + 0.309845i −0.0239050 + 0.0414047i
\(57\) 0 0
\(58\) 0.765376 + 1.32567i 0.100499 + 0.174069i
\(59\) 10.4624 1.36209 0.681045 0.732242i \(-0.261526\pi\)
0.681045 + 0.732242i \(0.261526\pi\)
\(60\) 0 0
\(61\) 4.14100 0.530201 0.265100 0.964221i \(-0.414595\pi\)
0.265100 + 0.964221i \(0.414595\pi\)
\(62\) 1.60547 2.78076i 0.203895 0.353157i
\(63\) 0 0
\(64\) −4.88521 −0.610652
\(65\) 2.35606 4.08082i 0.292234 0.506164i
\(66\) 0 0
\(67\) 0.399675 0.692257i 0.0488281 0.0845727i −0.840578 0.541690i \(-0.817785\pi\)
0.889406 + 0.457117i \(0.151118\pi\)
\(68\) 6.94690 + 12.0324i 0.842436 + 1.45914i
\(69\) 0 0
\(70\) −0.329319 −0.0393612
\(71\) −5.60051 + 9.70037i −0.664658 + 1.15122i 0.314719 + 0.949185i \(0.398090\pi\)
−0.979378 + 0.202037i \(0.935244\pi\)
\(72\) 0 0
\(73\) −1.84754 + 3.20004i −0.216239 + 0.374537i −0.953655 0.300902i \(-0.902712\pi\)
0.737416 + 0.675439i \(0.236046\pi\)
\(74\) 0.575989 + 0.997642i 0.0669573 + 0.115974i
\(75\) 0 0
\(76\) −6.28519 + 5.13823i −0.720961 + 0.589396i
\(77\) 0.203751 + 0.352907i 0.0232195 + 0.0402174i
\(78\) 0 0
\(79\) −4.92764 8.53493i −0.554403 0.960255i −0.997950 0.0640032i \(-0.979613\pi\)
0.443546 0.896251i \(-0.353720\pi\)
\(80\) −5.67691 9.83269i −0.634698 1.09933i
\(81\) 0 0
\(82\) −1.02907 1.78241i −0.113642 0.196834i
\(83\) −0.185251 + 0.320865i −0.0203340 + 0.0352195i −0.876013 0.482287i \(-0.839806\pi\)
0.855679 + 0.517506i \(0.173140\pi\)
\(84\) 0 0
\(85\) −13.2609 + 22.9686i −1.43835 + 2.49130i
\(86\) −1.86198 + 3.22504i −0.200782 + 0.347765i
\(87\) 0 0
\(88\) 1.16868 2.02422i 0.124582 0.215783i
\(89\) −4.01034 6.94611i −0.425095 0.736286i 0.571334 0.820717i \(-0.306426\pi\)
−0.996429 + 0.0844315i \(0.973093\pi\)
\(90\) 0 0
\(91\) 0.165512 + 0.286675i 0.0173504 + 0.0300517i
\(92\) 4.18251 + 7.24433i 0.436057 + 0.755273i
\(93\) 0 0
\(94\) −0.624161 1.08108i −0.0643772 0.111505i
\(95\) −14.4932 5.48621i −1.48697 0.562873i
\(96\) 0 0
\(97\) −3.21577 5.56988i −0.326512 0.565536i 0.655305 0.755364i \(-0.272540\pi\)
−0.981817 + 0.189829i \(0.939207\pi\)
\(98\) −1.28654 + 2.22836i −0.129961 + 0.225098i
\(99\) 0 0
\(100\) 7.11408 12.3220i 0.711408 1.23220i
\(101\) −7.56353 −0.752600 −0.376300 0.926498i \(-0.622804\pi\)
−0.376300 + 0.926498i \(0.622804\pi\)
\(102\) 0 0
\(103\) −6.90927 11.9672i −0.680791 1.17916i −0.974740 0.223343i \(-0.928303\pi\)
0.293949 0.955821i \(-0.405030\pi\)
\(104\) 0.949353 1.64433i 0.0930917 0.161240i
\(105\) 0 0
\(106\) 0.0942734 0.163286i 0.00915664 0.0158598i
\(107\) −12.0119 −1.16123 −0.580616 0.814177i \(-0.697188\pi\)
−0.580616 + 0.814177i \(0.697188\pi\)
\(108\) 0 0
\(109\) −7.62598 + 13.2086i −0.730436 + 1.26515i 0.226261 + 0.974067i \(0.427350\pi\)
−0.956697 + 0.291086i \(0.905984\pi\)
\(110\) 2.15145 0.205133
\(111\) 0 0
\(112\) 0.797598 0.0753659
\(113\) 1.46481 + 2.53713i 0.137798 + 0.238673i 0.926663 0.375894i \(-0.122664\pi\)
−0.788865 + 0.614567i \(0.789331\pi\)
\(114\) 0 0
\(115\) −7.98399 + 13.8287i −0.744511 + 1.28953i
\(116\) 3.84338 6.65693i 0.356849 0.618081i
\(117\) 0 0
\(118\) 1.94020 + 3.36052i 0.178610 + 0.309361i
\(119\) −0.931572 1.61353i −0.0853970 0.147912i
\(120\) 0 0
\(121\) 4.16889 + 7.22073i 0.378990 + 0.656430i
\(122\) 0.767926 + 1.33009i 0.0695248 + 0.120420i
\(123\) 0 0
\(124\) −16.1240 −1.44797
\(125\) 9.38406 0.839336
\(126\) 0 0
\(127\) −0.949181 1.64403i −0.0842262 0.145884i 0.820835 0.571165i \(-0.193509\pi\)
−0.905061 + 0.425281i \(0.860175\pi\)
\(128\) −4.95547 8.58313i −0.438006 0.758648i
\(129\) 0 0
\(130\) 1.74768 0.153281
\(131\) 3.02889 0.264636 0.132318 0.991207i \(-0.457758\pi\)
0.132318 + 0.991207i \(0.457758\pi\)
\(132\) 0 0
\(133\) 0.842837 0.689031i 0.0730832 0.0597465i
\(134\) 0.296470 0.0256111
\(135\) 0 0
\(136\) −5.34336 + 9.25497i −0.458190 + 0.793608i
\(137\) −4.25747 −0.363741 −0.181870 0.983323i \(-0.558215\pi\)
−0.181870 + 0.983323i \(0.558215\pi\)
\(138\) 0 0
\(139\) 8.63607 14.9581i 0.732502 1.26873i −0.223308 0.974748i \(-0.571686\pi\)
0.955811 0.293983i \(-0.0949809\pi\)
\(140\) 0.826848 + 1.43214i 0.0698814 + 0.121038i
\(141\) 0 0
\(142\) −4.15434 −0.348624
\(143\) −1.08129 1.87285i −0.0904222 0.156616i
\(144\) 0 0
\(145\) 14.6732 1.21855
\(146\) −1.37047 −0.113421
\(147\) 0 0
\(148\) 2.89236 5.00972i 0.237751 0.411796i
\(149\) −1.84615 −0.151242 −0.0756211 0.997137i \(-0.524094\pi\)
−0.0756211 + 0.997137i \(0.524094\pi\)
\(150\) 0 0
\(151\) −5.59926 + 9.69820i −0.455661 + 0.789228i −0.998726 0.0504626i \(-0.983930\pi\)
0.543065 + 0.839691i \(0.317264\pi\)
\(152\) −5.83989 2.21061i −0.473677 0.179305i
\(153\) 0 0
\(154\) −0.0755689 + 0.130889i −0.00608952 + 0.0105473i
\(155\) −15.3895 26.6554i −1.23611 2.14101i
\(156\) 0 0
\(157\) 20.7711 1.65772 0.828858 0.559459i \(-0.188991\pi\)
0.828858 + 0.559459i \(0.188991\pi\)
\(158\) 1.82761 3.16551i 0.145397 0.251835i
\(159\) 0 0
\(160\) 7.19847 12.4681i 0.569089 0.985692i
\(161\) −0.560870 0.971456i −0.0442028 0.0765614i
\(162\) 0 0
\(163\) −5.41671 −0.424269 −0.212135 0.977240i \(-0.568042\pi\)
−0.212135 + 0.977240i \(0.568042\pi\)
\(164\) −5.16755 + 8.95046i −0.403518 + 0.698914i
\(165\) 0 0
\(166\) −0.137415 −0.0106655
\(167\) −0.750032 + 1.29909i −0.0580392 + 0.100527i −0.893585 0.448894i \(-0.851818\pi\)
0.835546 + 0.549421i \(0.185152\pi\)
\(168\) 0 0
\(169\) 5.62164 + 9.73696i 0.432434 + 0.748997i
\(170\) −9.83667 −0.754438
\(171\) 0 0
\(172\) 18.7001 1.42587
\(173\) 11.2067 + 19.4106i 0.852031 + 1.47576i 0.879372 + 0.476135i \(0.157963\pi\)
−0.0273414 + 0.999626i \(0.508704\pi\)
\(174\) 0 0
\(175\) −0.953990 + 1.65236i −0.0721149 + 0.124907i
\(176\) −5.21072 −0.392773
\(177\) 0 0
\(178\) 1.48739 2.57623i 0.111485 0.193097i
\(179\) 12.7134 0.950242 0.475121 0.879920i \(-0.342404\pi\)
0.475121 + 0.879920i \(0.342404\pi\)
\(180\) 0 0
\(181\) 1.31157 + 2.27170i 0.0974880 + 0.168854i 0.910644 0.413191i \(-0.135586\pi\)
−0.813156 + 0.582045i \(0.802253\pi\)
\(182\) −0.0613866 + 0.106325i −0.00455027 + 0.00788131i
\(183\) 0 0
\(184\) −3.21707 + 5.57213i −0.237166 + 0.410783i
\(185\) 11.0425 0.811857
\(186\) 0 0
\(187\) 6.08598 + 10.5412i 0.445051 + 0.770850i
\(188\) −3.13426 + 5.42870i −0.228589 + 0.395928i
\(189\) 0 0
\(190\) −0.925514 5.67259i −0.0671439 0.411533i
\(191\) 1.70417 2.95170i 0.123309 0.213578i −0.797762 0.602973i \(-0.793983\pi\)
0.921071 + 0.389395i \(0.127316\pi\)
\(192\) 0 0
\(193\) 0.497765 0.0358299 0.0179150 0.999840i \(-0.494297\pi\)
0.0179150 + 0.999840i \(0.494297\pi\)
\(194\) 1.19269 2.06581i 0.0856305 0.148316i
\(195\) 0 0
\(196\) 12.9209 0.922923
\(197\) 2.64398 0.188376 0.0941880 0.995554i \(-0.469975\pi\)
0.0941880 + 0.995554i \(0.469975\pi\)
\(198\) 0 0
\(199\) 0.106311 + 0.184136i 0.00753617 + 0.0130530i 0.869769 0.493459i \(-0.164268\pi\)
−0.862233 + 0.506512i \(0.830934\pi\)
\(200\) 10.9439 0.773851
\(201\) 0 0
\(202\) −1.40262 2.42940i −0.0986877 0.170932i
\(203\) −0.515393 + 0.892687i −0.0361735 + 0.0626543i
\(204\) 0 0
\(205\) −19.7287 −1.37791
\(206\) 2.56257 4.43851i 0.178543 0.309245i
\(207\) 0 0
\(208\) −4.23280 −0.293492
\(209\) −5.50627 + 4.50145i −0.380877 + 0.311372i
\(210\) 0 0
\(211\) −8.52375 −0.586799 −0.293400 0.955990i \(-0.594787\pi\)
−0.293400 + 0.955990i \(0.594787\pi\)
\(212\) −0.946799 −0.0650264
\(213\) 0 0
\(214\) −2.22754 3.85821i −0.152271 0.263742i
\(215\) 17.8483 + 30.9141i 1.21724 + 2.10833i
\(216\) 0 0
\(217\) 2.16220 0.146780
\(218\) −5.65678 −0.383126
\(219\) 0 0
\(220\) −5.40181 9.35621i −0.364190 0.630796i
\(221\) 4.94380 + 8.56290i 0.332556 + 0.576003i
\(222\) 0 0
\(223\) −7.80159 13.5127i −0.522433 0.904880i −0.999659 0.0260998i \(-0.991691\pi\)
0.477227 0.878780i \(-0.341642\pi\)
\(224\) 0.505688 + 0.875877i 0.0337877 + 0.0585220i
\(225\) 0 0
\(226\) −0.543283 + 0.940994i −0.0361386 + 0.0625940i
\(227\) 0.595426 1.03131i 0.0395198 0.0684503i −0.845589 0.533835i \(-0.820751\pi\)
0.885109 + 0.465384i \(0.154084\pi\)
\(228\) 0 0
\(229\) −9.98443 17.2935i −0.659790 1.14279i −0.980670 0.195669i \(-0.937312\pi\)
0.320880 0.947120i \(-0.396021\pi\)
\(230\) −5.92235 −0.390508
\(231\) 0 0
\(232\) 5.91244 0.388171
\(233\) −6.18432 + 10.7115i −0.405148 + 0.701737i −0.994339 0.106257i \(-0.966113\pi\)
0.589191 + 0.807994i \(0.299447\pi\)
\(234\) 0 0
\(235\) −11.9660 −0.780573
\(236\) 9.74281 16.8750i 0.634203 1.09847i
\(237\) 0 0
\(238\) 0.345510 0.598440i 0.0223961 0.0387911i
\(239\) −8.11631 14.0579i −0.525000 0.909327i −0.999576 0.0291128i \(-0.990732\pi\)
0.474576 0.880215i \(-0.342602\pi\)
\(240\) 0 0
\(241\) 10.4869 0.675523 0.337762 0.941232i \(-0.390330\pi\)
0.337762 + 0.941232i \(0.390330\pi\)
\(242\) −1.54620 + 2.67809i −0.0993933 + 0.172154i
\(243\) 0 0
\(244\) 3.85619 6.67911i 0.246867 0.427586i
\(245\) 12.3324 + 21.3603i 0.787885 + 1.36466i
\(246\) 0 0
\(247\) −4.47288 + 3.65665i −0.284603 + 0.232667i
\(248\) −6.20104 10.7405i −0.393767 0.682024i
\(249\) 0 0
\(250\) 1.74022 + 3.01415i 0.110061 + 0.190632i
\(251\) 7.02198 + 12.1624i 0.443223 + 0.767685i 0.997927 0.0643630i \(-0.0205016\pi\)
−0.554703 + 0.832048i \(0.687168\pi\)
\(252\) 0 0
\(253\) 3.66418 + 6.34654i 0.230365 + 0.399004i
\(254\) 0.352041 0.609753i 0.0220890 0.0382593i
\(255\) 0 0
\(256\) −3.04728 + 5.27805i −0.190455 + 0.329878i
\(257\) 8.58033 14.8616i 0.535227 0.927040i −0.463926 0.885874i \(-0.653560\pi\)
0.999152 0.0411655i \(-0.0131071\pi\)
\(258\) 0 0
\(259\) −0.387862 + 0.671797i −0.0241006 + 0.0417435i
\(260\) −4.38803 7.60029i −0.272134 0.471350i
\(261\) 0 0
\(262\) 0.561691 + 0.972878i 0.0347014 + 0.0601046i
\(263\) 9.74973 + 16.8870i 0.601194 + 1.04130i 0.992641 + 0.121098i \(0.0386415\pi\)
−0.391446 + 0.920201i \(0.628025\pi\)
\(264\) 0 0
\(265\) −0.903671 1.56520i −0.0555121 0.0961498i
\(266\) 0.377616 + 0.142942i 0.0231531 + 0.00876431i
\(267\) 0 0
\(268\) −0.744371 1.28929i −0.0454697 0.0787558i
\(269\) 11.5796 20.0564i 0.706020 1.22286i −0.260303 0.965527i \(-0.583822\pi\)
0.966322 0.257335i \(-0.0828443\pi\)
\(270\) 0 0
\(271\) −11.0388 + 19.1197i −0.670557 + 1.16144i 0.307190 + 0.951648i \(0.400611\pi\)
−0.977746 + 0.209790i \(0.932722\pi\)
\(272\) 23.8240 1.44454
\(273\) 0 0
\(274\) −0.789525 1.36750i −0.0476970 0.0826136i
\(275\) 6.23244 10.7949i 0.375830 0.650957i
\(276\) 0 0
\(277\) 14.7992 25.6330i 0.889199 1.54014i 0.0483752 0.998829i \(-0.484596\pi\)
0.840824 0.541309i \(-0.182071\pi\)
\(278\) 6.40605 0.384209
\(279\) 0 0
\(280\) −0.635988 + 1.10156i −0.0380075 + 0.0658310i
\(281\) −28.8083 −1.71856 −0.859280 0.511506i \(-0.829088\pi\)
−0.859280 + 0.511506i \(0.829088\pi\)
\(282\) 0 0
\(283\) 16.0204 0.952314 0.476157 0.879360i \(-0.342029\pi\)
0.476157 + 0.879360i \(0.342029\pi\)
\(284\) 10.4306 + 18.0664i 0.618944 + 1.07204i
\(285\) 0 0
\(286\) 0.401040 0.694621i 0.0237140 0.0410738i
\(287\) 0.692963 1.20025i 0.0409043 0.0708483i
\(288\) 0 0
\(289\) −19.3258 33.4732i −1.13681 1.96901i
\(290\) 2.72107 + 4.71304i 0.159787 + 0.276759i
\(291\) 0 0
\(292\) 3.44094 + 5.95989i 0.201366 + 0.348776i
\(293\) 0.400378 + 0.693475i 0.0233903 + 0.0405132i 0.877484 0.479607i \(-0.159221\pi\)
−0.854093 + 0.520120i \(0.825887\pi\)
\(294\) 0 0
\(295\) 37.1961 2.16564
\(296\) 4.44945 0.258619
\(297\) 0 0
\(298\) −0.342358 0.592981i −0.0198322 0.0343504i
\(299\) 2.97650 + 5.15546i 0.172136 + 0.298148i
\(300\) 0 0
\(301\) −2.50766 −0.144539
\(302\) −4.15341 −0.239002
\(303\) 0 0
\(304\) 2.24156 + 13.7388i 0.128562 + 0.787974i
\(305\) 14.7221 0.842987
\(306\) 0 0
\(307\) 2.29987 3.98349i 0.131260 0.227350i −0.792902 0.609349i \(-0.791431\pi\)
0.924163 + 0.381999i \(0.124764\pi\)
\(308\) 0.758947 0.0432450
\(309\) 0 0
\(310\) 5.70779 9.88619i 0.324181 0.561498i
\(311\) −16.4116 28.4257i −0.930615 1.61187i −0.782273 0.622936i \(-0.785940\pi\)
−0.148342 0.988936i \(-0.547394\pi\)
\(312\) 0 0
\(313\) −18.3876 −1.03933 −0.519664 0.854371i \(-0.673943\pi\)
−0.519664 + 0.854371i \(0.673943\pi\)
\(314\) 3.85189 + 6.67167i 0.217375 + 0.376504i
\(315\) 0 0
\(316\) −18.3549 −1.03254
\(317\) −1.35820 −0.0762844 −0.0381422 0.999272i \(-0.512144\pi\)
−0.0381422 + 0.999272i \(0.512144\pi\)
\(318\) 0 0
\(319\) 3.36707 5.83194i 0.188520 0.326526i
\(320\) −17.3680 −0.970899
\(321\) 0 0
\(322\) 0.208021 0.360302i 0.0115925 0.0200789i
\(323\) 25.1753 20.5812i 1.40079 1.14517i
\(324\) 0 0
\(325\) 5.06277 8.76897i 0.280832 0.486415i
\(326\) −1.00450 1.73984i −0.0556341 0.0963610i
\(327\) 0 0
\(328\) −7.94947 −0.438936
\(329\) 0.420300 0.727982i 0.0231719 0.0401349i
\(330\) 0 0
\(331\) 8.39869 14.5470i 0.461634 0.799573i −0.537409 0.843322i \(-0.680597\pi\)
0.999043 + 0.0437490i \(0.0139302\pi\)
\(332\) 0.345020 + 0.597592i 0.0189354 + 0.0327971i
\(333\) 0 0
\(334\) −0.556357 −0.0304425
\(335\) 1.42093 2.46112i 0.0776336 0.134465i
\(336\) 0 0
\(337\) 36.5224 1.98950 0.994750 0.102335i \(-0.0326312\pi\)
0.994750 + 0.102335i \(0.0326312\pi\)
\(338\) −2.08500 + 3.61133i −0.113409 + 0.196431i
\(339\) 0 0
\(340\) 24.6977 + 42.7777i 1.33942 + 2.31995i
\(341\) −14.1257 −0.764951
\(342\) 0 0
\(343\) −3.48094 −0.187953
\(344\) 7.19179 + 12.4565i 0.387755 + 0.671612i
\(345\) 0 0
\(346\) −4.15645 + 7.19918i −0.223452 + 0.387030i
\(347\) 10.1508 0.544926 0.272463 0.962166i \(-0.412162\pi\)
0.272463 + 0.962166i \(0.412162\pi\)
\(348\) 0 0
\(349\) 8.63614 14.9582i 0.462282 0.800696i −0.536792 0.843715i \(-0.680364\pi\)
0.999074 + 0.0430183i \(0.0136974\pi\)
\(350\) −0.707649 −0.0378254
\(351\) 0 0
\(352\) −3.30367 5.72212i −0.176086 0.304990i
\(353\) 8.45158 14.6386i 0.449832 0.779132i −0.548543 0.836123i \(-0.684817\pi\)
0.998375 + 0.0569905i \(0.0181505\pi\)
\(354\) 0 0
\(355\) −19.9110 + 34.4869i −1.05677 + 1.83037i
\(356\) −14.9380 −0.791714
\(357\) 0 0
\(358\) 2.35762 + 4.08353i 0.124604 + 0.215821i
\(359\) −3.82747 + 6.62938i −0.202006 + 0.349885i −0.949175 0.314750i \(-0.898079\pi\)
0.747168 + 0.664635i \(0.231413\pi\)
\(360\) 0 0
\(361\) 14.2374 + 12.5816i 0.749337 + 0.662189i
\(362\) −0.486446 + 0.842549i −0.0255670 + 0.0442834i
\(363\) 0 0
\(364\) 0.616512 0.0323140
\(365\) −6.56841 + 11.3768i −0.343806 + 0.595490i
\(366\) 0 0
\(367\) −24.7775 −1.29338 −0.646688 0.762755i \(-0.723846\pi\)
−0.646688 + 0.762755i \(0.723846\pi\)
\(368\) 14.3437 0.747717
\(369\) 0 0
\(370\) 2.04776 + 3.54683i 0.106458 + 0.184391i
\(371\) 0.126965 0.00659167
\(372\) 0 0
\(373\) 11.5863 + 20.0681i 0.599917 + 1.03909i 0.992833 + 0.119512i \(0.0381330\pi\)
−0.392916 + 0.919574i \(0.628534\pi\)
\(374\) −2.25722 + 3.90962i −0.116718 + 0.202162i
\(375\) 0 0
\(376\) −4.82157 −0.248653
\(377\) 2.73516 4.73744i 0.140868 0.243990i
\(378\) 0 0
\(379\) 29.0801 1.49374 0.746871 0.664969i \(-0.231555\pi\)
0.746871 + 0.664969i \(0.231555\pi\)
\(380\) −22.3452 + 18.2675i −1.14628 + 0.937103i
\(381\) 0 0
\(382\) 1.26411 0.0646777
\(383\) 2.82855 0.144532 0.0722662 0.997385i \(-0.476977\pi\)
0.0722662 + 0.997385i \(0.476977\pi\)
\(384\) 0 0
\(385\) 0.724377 + 1.25466i 0.0369177 + 0.0639433i
\(386\) 0.0923078 + 0.159882i 0.00469834 + 0.00813777i
\(387\) 0 0
\(388\) −11.9784 −0.608110
\(389\) −19.1659 −0.971750 −0.485875 0.874028i \(-0.661499\pi\)
−0.485875 + 0.874028i \(0.661499\pi\)
\(390\) 0 0
\(391\) −16.7530 29.0171i −0.847238 1.46746i
\(392\) 4.96920 + 8.60691i 0.250983 + 0.434715i
\(393\) 0 0
\(394\) 0.490312 + 0.849245i 0.0247016 + 0.0427844i
\(395\) −17.5188 30.3435i −0.881467 1.52675i
\(396\) 0 0
\(397\) 15.9590 27.6417i 0.800958 1.38730i −0.118029 0.993010i \(-0.537658\pi\)
0.918986 0.394289i \(-0.129009\pi\)
\(398\) −0.0394295 + 0.0682939i −0.00197642 + 0.00342326i
\(399\) 0 0
\(400\) −12.1987 21.1287i −0.609934 1.05644i
\(401\) −38.3406 −1.91464 −0.957320 0.289030i \(-0.906667\pi\)
−0.957320 + 0.289030i \(0.906667\pi\)
\(402\) 0 0
\(403\) −11.4747 −0.571595
\(404\) −7.04332 + 12.1994i −0.350418 + 0.606942i
\(405\) 0 0
\(406\) −0.382307 −0.0189736
\(407\) 2.53391 4.38887i 0.125601 0.217548i
\(408\) 0 0
\(409\) −1.14644 + 1.98569i −0.0566877 + 0.0981860i −0.892977 0.450103i \(-0.851387\pi\)
0.836289 + 0.548289i \(0.184721\pi\)
\(410\) −3.65857 6.33683i −0.180684 0.312954i
\(411\) 0 0
\(412\) −25.7362 −1.26793
\(413\) −1.30650 + 2.26292i −0.0642886 + 0.111351i
\(414\) 0 0
\(415\) −0.658608 + 1.14074i −0.0323298 + 0.0559968i
\(416\) −2.68366 4.64823i −0.131577 0.227898i
\(417\) 0 0
\(418\) −2.46697 0.933841i −0.120663 0.0456756i
\(419\) −5.32211 9.21817i −0.260002 0.450337i 0.706240 0.707972i \(-0.250390\pi\)
−0.966242 + 0.257636i \(0.917057\pi\)
\(420\) 0 0
\(421\) −12.9323 22.3994i −0.630280 1.09168i −0.987494 0.157655i \(-0.949607\pi\)
0.357214 0.934023i \(-0.383727\pi\)
\(422\) −1.58068 2.73782i −0.0769464 0.133275i
\(423\) 0 0
\(424\) −0.364125 0.630684i −0.0176835 0.0306287i
\(425\) −28.4954 + 49.3555i −1.38223 + 2.39409i
\(426\) 0 0
\(427\) −0.517110 + 0.895661i −0.0250247 + 0.0433441i
\(428\) −11.1857 + 19.3742i −0.540682 + 0.936489i
\(429\) 0 0
\(430\) −6.61973 + 11.4657i −0.319232 + 0.552926i
\(431\) 9.52984 + 16.5062i 0.459036 + 0.795074i 0.998910 0.0466716i \(-0.0148614\pi\)
−0.539874 + 0.841746i \(0.681528\pi\)
\(432\) 0 0
\(433\) 13.3288 + 23.0861i 0.640540 + 1.10945i 0.985312 + 0.170761i \(0.0546226\pi\)
−0.344773 + 0.938686i \(0.612044\pi\)
\(434\) 0.400969 + 0.694498i 0.0192471 + 0.0333370i
\(435\) 0 0
\(436\) 14.2029 + 24.6002i 0.680197 + 1.17814i
\(437\) 15.1573 12.3913i 0.725070 0.592755i
\(438\) 0 0
\(439\) 0.973523 + 1.68619i 0.0464637 + 0.0804775i 0.888322 0.459221i \(-0.151871\pi\)
−0.841858 + 0.539699i \(0.818538\pi\)
\(440\) 4.15492 7.19653i 0.198078 0.343081i
\(441\) 0 0
\(442\) −1.83360 + 3.17589i −0.0872154 + 0.151062i
\(443\) −6.56230 −0.311784 −0.155892 0.987774i \(-0.549825\pi\)
−0.155892 + 0.987774i \(0.549825\pi\)
\(444\) 0 0
\(445\) −14.2576 24.6949i −0.675875 1.17065i
\(446\) 2.89352 5.01173i 0.137012 0.237312i
\(447\) 0 0
\(448\) 0.610044 1.05663i 0.0288219 0.0499209i
\(449\) 35.5348 1.67699 0.838495 0.544910i \(-0.183436\pi\)
0.838495 + 0.544910i \(0.183436\pi\)
\(450\) 0 0
\(451\) −4.52714 + 7.84124i −0.213175 + 0.369229i
\(452\) 5.45626 0.256641
\(453\) 0 0
\(454\) 0.441674 0.0207288
\(455\) 0.588430 + 1.01919i 0.0275860 + 0.0477804i
\(456\) 0 0
\(457\) −3.32444 + 5.75809i −0.155511 + 0.269352i −0.933245 0.359241i \(-0.883036\pi\)
0.777734 + 0.628593i \(0.216369\pi\)
\(458\) 3.70311 6.41398i 0.173035 0.299706i
\(459\) 0 0
\(460\) 14.8697 + 25.7551i 0.693304 + 1.20084i
\(461\) −3.48590 6.03776i −0.162355 0.281207i 0.773358 0.633970i \(-0.218576\pi\)
−0.935713 + 0.352763i \(0.885242\pi\)
\(462\) 0 0
\(463\) 8.59691 + 14.8903i 0.399532 + 0.692010i 0.993668 0.112354i \(-0.0358392\pi\)
−0.594136 + 0.804365i \(0.702506\pi\)
\(464\) −6.59033 11.4148i −0.305949 0.529919i
\(465\) 0 0
\(466\) −4.58739 −0.212507
\(467\) −36.5485 −1.69126 −0.845632 0.533766i \(-0.820776\pi\)
−0.845632 + 0.533766i \(0.820776\pi\)
\(468\) 0 0
\(469\) 0.0998193 + 0.172892i 0.00460923 + 0.00798341i
\(470\) −2.21902 3.84346i −0.102356 0.177286i
\(471\) 0 0
\(472\) 14.9878 0.689869
\(473\) 16.3826 0.753272
\(474\) 0 0
\(475\) −31.1433 11.7889i −1.42895 0.540912i
\(476\) −3.47000 −0.159047
\(477\) 0 0
\(478\) 3.01025 5.21391i 0.137686 0.238479i
\(479\) 19.9654 0.912242 0.456121 0.889918i \(-0.349238\pi\)
0.456121 + 0.889918i \(0.349238\pi\)
\(480\) 0 0
\(481\) 2.05836 3.56519i 0.0938533 0.162559i
\(482\) 1.94475 + 3.36840i 0.0885807 + 0.153426i
\(483\) 0 0
\(484\) 15.5286 0.705847
\(485\) −11.4327 19.8021i −0.519134 0.899167i
\(486\) 0 0
\(487\) 0.541412 0.0245337 0.0122669 0.999925i \(-0.496095\pi\)
0.0122669 + 0.999925i \(0.496095\pi\)
\(488\) 5.93214 0.268535
\(489\) 0 0
\(490\) −4.57394 + 7.92229i −0.206629 + 0.357893i
\(491\) 7.34369 0.331416 0.165708 0.986175i \(-0.447009\pi\)
0.165708 + 0.986175i \(0.447009\pi\)
\(492\) 0 0
\(493\) −15.3946 + 26.6643i −0.693340 + 1.20090i
\(494\) −2.00398 0.758583i −0.0901635 0.0341302i
\(495\) 0 0
\(496\) −13.8241 + 23.9440i −0.620718 + 1.07512i
\(497\) −1.39873 2.42268i −0.0627418 0.108672i
\(498\) 0 0
\(499\) −11.9475 −0.534842 −0.267421 0.963580i \(-0.586171\pi\)
−0.267421 + 0.963580i \(0.586171\pi\)
\(500\) 8.73863 15.1358i 0.390803 0.676891i
\(501\) 0 0
\(502\) −2.60437 + 4.51091i −0.116239 + 0.201332i
\(503\) −14.7358 25.5232i −0.657038 1.13802i −0.981379 0.192083i \(-0.938476\pi\)
0.324341 0.945940i \(-0.394858\pi\)
\(504\) 0 0
\(505\) −26.8900 −1.19659
\(506\) −1.35900 + 2.35386i −0.0604151 + 0.104642i
\(507\) 0 0
\(508\) −3.53559 −0.156866
\(509\) 8.95222 15.5057i 0.396800 0.687278i −0.596529 0.802592i \(-0.703454\pi\)
0.993329 + 0.115314i \(0.0367873\pi\)
\(510\) 0 0
\(511\) −0.461426 0.799214i −0.0204123 0.0353552i
\(512\) −22.0823 −0.975909
\(513\) 0 0
\(514\) 6.36470 0.280735
\(515\) −24.5639 42.5459i −1.08242 1.87480i
\(516\) 0 0
\(517\) −2.74583 + 4.75592i −0.120762 + 0.209165i
\(518\) −0.287708 −0.0126412
\(519\) 0 0
\(520\) 3.37515 5.84593i 0.148010 0.256361i
\(521\) 27.8411 1.21974 0.609871 0.792501i \(-0.291221\pi\)
0.609871 + 0.792501i \(0.291221\pi\)
\(522\) 0 0
\(523\) −12.9624 22.4515i −0.566805 0.981735i −0.996879 0.0789417i \(-0.974846\pi\)
0.430074 0.902794i \(-0.358487\pi\)
\(524\) 2.82057 4.88537i 0.123217 0.213418i
\(525\) 0 0
\(526\) −3.61607 + 6.26321i −0.157668 + 0.273089i
\(527\) 64.5844 2.81334
\(528\) 0 0
\(529\) 1.41352 + 2.44829i 0.0614573 + 0.106447i
\(530\) 0.335162 0.580517i 0.0145585 0.0252161i
\(531\) 0 0
\(532\) −0.326485 2.00107i −0.0141549 0.0867574i
\(533\) −3.67751 + 6.36964i −0.159291 + 0.275900i
\(534\) 0 0
\(535\) −42.7048 −1.84629
\(536\) 0.572549 0.991684i 0.0247304 0.0428342i
\(537\) 0 0
\(538\) 8.58948 0.370319
\(539\) 11.3196 0.487571
\(540\) 0 0
\(541\) −12.3043 21.3116i −0.529001 0.916257i −0.999428 0.0338181i \(-0.989233\pi\)
0.470427 0.882439i \(-0.344100\pi\)
\(542\) −8.18831 −0.351718
\(543\) 0 0
\(544\) 15.1048 + 26.1622i 0.647611 + 1.12170i
\(545\) −27.1120 + 46.9593i −1.16135 + 2.01151i
\(546\) 0 0
\(547\) 12.8871 0.551014 0.275507 0.961299i \(-0.411154\pi\)
0.275507 + 0.961299i \(0.411154\pi\)
\(548\) −3.96465 + 6.86697i −0.169361 + 0.293343i
\(549\) 0 0
\(550\) 4.62308 0.197129
\(551\) −16.8252 6.36895i −0.716776 0.271327i
\(552\) 0 0
\(553\) 2.46137 0.104668
\(554\) 10.9777 0.466399
\(555\) 0 0
\(556\) −16.0842 27.8586i −0.682121 1.18147i
\(557\) 11.8767 + 20.5710i 0.503231 + 0.871622i 0.999993 + 0.00373498i \(0.00118888\pi\)
−0.496762 + 0.867887i \(0.665478\pi\)
\(558\) 0 0
\(559\) 13.3080 0.562868
\(560\) 2.83563 0.119827
\(561\) 0 0
\(562\) −5.34234 9.25321i −0.225353 0.390323i
\(563\) −13.3440 23.1125i −0.562383 0.974077i −0.997288 0.0735999i \(-0.976551\pi\)
0.434904 0.900477i \(-0.356782\pi\)
\(564\) 0 0
\(565\) 5.20772 + 9.02003i 0.219090 + 0.379476i
\(566\) 2.97090 + 5.14574i 0.124876 + 0.216292i
\(567\) 0 0
\(568\) −8.02294 + 13.8961i −0.336635 + 0.583069i
\(569\) −6.57047 + 11.3804i −0.275448 + 0.477090i −0.970248 0.242113i \(-0.922160\pi\)
0.694800 + 0.719203i \(0.255493\pi\)
\(570\) 0 0
\(571\) −1.08070 1.87182i −0.0452258 0.0783333i 0.842526 0.538655i \(-0.181067\pi\)
−0.887752 + 0.460322i \(0.847734\pi\)
\(572\) −4.02769 −0.168406
\(573\) 0 0
\(574\) 0.514024 0.0214550
\(575\) −17.1562 + 29.7154i −0.715463 + 1.23922i
\(576\) 0 0
\(577\) 4.53956 0.188985 0.0944923 0.995526i \(-0.469877\pi\)
0.0944923 + 0.995526i \(0.469877\pi\)
\(578\) 7.16772 12.4149i 0.298138 0.516390i
\(579\) 0 0
\(580\) 13.6640 23.6668i 0.567368 0.982710i
\(581\) −0.0462667 0.0801364i −0.00191947 0.00332462i
\(582\) 0 0
\(583\) −0.829462 −0.0343528
\(584\) −2.64668 + 4.58418i −0.109520 + 0.189695i
\(585\) 0 0
\(586\) −0.148496 + 0.257202i −0.00613430 + 0.0106249i
\(587\) 12.1339 + 21.0165i 0.500819 + 0.867444i 1.00000 0.000946197i \(0.000301184\pi\)
−0.499180 + 0.866498i \(0.666365\pi\)
\(588\) 0 0
\(589\) 6.07663 + 37.2444i 0.250383 + 1.53463i
\(590\) 6.89781 + 11.9474i 0.283978 + 0.491865i
\(591\) 0 0
\(592\) −4.95960 8.59028i −0.203838 0.353058i
\(593\) −16.5350 28.6395i −0.679013 1.17608i −0.975279 0.220979i \(-0.929075\pi\)
0.296266 0.955106i \(-0.404259\pi\)
\(594\) 0 0
\(595\) −3.31193 5.73644i −0.135776 0.235171i
\(596\) −1.71917 + 2.97769i −0.0704199 + 0.121971i
\(597\) 0 0
\(598\) −1.10395 + 1.91210i −0.0451440 + 0.0781917i
\(599\) −6.64241 + 11.5050i −0.271401 + 0.470081i −0.969221 0.246193i \(-0.920820\pi\)
0.697820 + 0.716274i \(0.254154\pi\)
\(600\) 0 0
\(601\) −7.35146 + 12.7331i −0.299872 + 0.519394i −0.976106 0.217293i \(-0.930277\pi\)
0.676234 + 0.736687i \(0.263611\pi\)
\(602\) −0.465032 0.805459i −0.0189533 0.0328280i
\(603\) 0 0
\(604\) 10.4283 + 18.0623i 0.424321 + 0.734946i
\(605\) 14.8213 + 25.6712i 0.602571 + 1.04368i
\(606\) 0 0
\(607\) −1.19304 2.06641i −0.0484241 0.0838729i 0.840797 0.541350i \(-0.182087\pi\)
−0.889221 + 0.457477i \(0.848753\pi\)
\(608\) −13.6660 + 11.1721i −0.554229 + 0.453090i
\(609\) 0 0
\(610\) 2.73014 + 4.72874i 0.110540 + 0.191461i
\(611\) −2.23051 + 3.86336i −0.0902368 + 0.156295i
\(612\) 0 0
\(613\) 2.16079 3.74260i 0.0872736 0.151162i −0.819084 0.573673i \(-0.805518\pi\)
0.906358 + 0.422511i \(0.138851\pi\)
\(614\) 1.70599 0.0688482
\(615\) 0 0
\(616\) 0.291880 + 0.505552i 0.0117602 + 0.0203693i
\(617\) −4.80522 + 8.32289i −0.193451 + 0.335067i −0.946392 0.323021i \(-0.895301\pi\)
0.752941 + 0.658088i \(0.228635\pi\)
\(618\) 0 0
\(619\) −1.79677 + 3.11209i −0.0722182 + 0.125086i −0.899873 0.436152i \(-0.856341\pi\)
0.827655 + 0.561237i \(0.189674\pi\)
\(620\) −57.3241 −2.30219
\(621\) 0 0
\(622\) 6.08687 10.5428i 0.244061 0.422727i
\(623\) 2.00317 0.0802554
\(624\) 0 0
\(625\) −4.83530 −0.193412
\(626\) −3.40988 5.90608i −0.136286 0.236055i
\(627\) 0 0
\(628\) 19.3425 33.5022i 0.771850 1.33688i
\(629\) −11.5853 + 20.0664i −0.461938 + 0.800100i
\(630\) 0 0
\(631\) 12.6319 + 21.8792i 0.502870 + 0.870996i 0.999994 + 0.00331669i \(0.00105574\pi\)
−0.497125 + 0.867679i \(0.665611\pi\)
\(632\) −7.05903 12.2266i −0.280793 0.486348i
\(633\) 0 0
\(634\) −0.251872 0.436254i −0.0100031 0.0173259i
\(635\) −3.37454 5.84487i −0.133915 0.231947i
\(636\) 0 0
\(637\) 9.19523 0.364328
\(638\) 2.49762 0.0988818
\(639\) 0 0
\(640\) −17.6177 30.5148i −0.696402 1.20620i
\(641\) −11.6521 20.1821i −0.460231 0.797144i 0.538741 0.842472i \(-0.318900\pi\)
−0.998972 + 0.0453273i \(0.985567\pi\)
\(642\) 0 0
\(643\) 17.2596 0.680651 0.340325 0.940308i \(-0.389463\pi\)
0.340325 + 0.940308i \(0.389463\pi\)
\(644\) −2.08918 −0.0823251
\(645\) 0 0
\(646\) 11.2793 + 4.26963i 0.443777 + 0.167986i
\(647\) 35.6673 1.40223 0.701114 0.713049i \(-0.252686\pi\)
0.701114 + 0.713049i \(0.252686\pi\)
\(648\) 0 0
\(649\) 8.53539 14.7837i 0.335043 0.580312i
\(650\) 3.75545 0.147301
\(651\) 0 0
\(652\) −5.04415 + 8.73673i −0.197544 + 0.342157i
\(653\) 8.46548 + 14.6626i 0.331280 + 0.573794i 0.982763 0.184869i \(-0.0591862\pi\)
−0.651483 + 0.758663i \(0.725853\pi\)
\(654\) 0 0
\(655\) 10.7684 0.420754
\(656\) 8.86092 + 15.3476i 0.345961 + 0.599222i
\(657\) 0 0
\(658\) 0.311770 0.0121540
\(659\) 4.52365 0.176216 0.0881082 0.996111i \(-0.471918\pi\)
0.0881082 + 0.996111i \(0.471918\pi\)
\(660\) 0 0
\(661\) −10.0400 + 17.3898i −0.390510 + 0.676384i −0.992517 0.122107i \(-0.961035\pi\)
0.602007 + 0.798491i \(0.294368\pi\)
\(662\) 6.22996 0.242134
\(663\) 0 0
\(664\) −0.265379 + 0.459651i −0.0102987 + 0.0178379i
\(665\) 2.99646 2.44965i 0.116198 0.0949933i
\(666\) 0 0
\(667\) −9.26864 + 16.0537i −0.358883 + 0.621604i
\(668\) 1.39689 + 2.41948i 0.0540473 + 0.0936127i
\(669\) 0 0
\(670\) 1.05401 0.0407201
\(671\) 3.37829 5.85137i 0.130417 0.225890i
\(672\) 0 0
\(673\) 8.72911 15.1193i 0.336482 0.582805i −0.647286 0.762247i \(-0.724096\pi\)
0.983768 + 0.179443i \(0.0574294\pi\)
\(674\) 6.77287 + 11.7310i 0.260881 + 0.451860i
\(675\) 0 0
\(676\) 20.9399 0.805382
\(677\) 20.4904 35.4905i 0.787511 1.36401i −0.139976 0.990155i \(-0.544703\pi\)
0.927487 0.373854i \(-0.121964\pi\)
\(678\) 0 0
\(679\) 1.60629 0.0616436
\(680\) −18.9968 + 32.9034i −0.728493 + 1.26179i
\(681\) 0 0
\(682\) −2.61954 4.53717i −0.100307 0.173737i
\(683\) −20.9461 −0.801480 −0.400740 0.916192i \(-0.631247\pi\)
−0.400740 + 0.916192i \(0.631247\pi\)
\(684\) 0 0
\(685\) −15.1362 −0.578325
\(686\) −0.645521 1.11807i −0.0246461 0.0426883i
\(687\) 0 0
\(688\) 16.0327 27.7695i 0.611242 1.05870i
\(689\) −0.673794 −0.0256695
\(690\) 0 0
\(691\) −10.5768 + 18.3195i −0.402359 + 0.696907i −0.994010 0.109288i \(-0.965143\pi\)
0.591651 + 0.806194i \(0.298476\pi\)
\(692\) 41.7437 1.58686
\(693\) 0 0
\(694\) 1.88242 + 3.26044i 0.0714556 + 0.123765i
\(695\) 30.7031 53.1793i 1.16463 2.01720i
\(696\) 0 0
\(697\) 20.6986 35.8510i 0.784015 1.35795i
\(698\) 6.40610 0.242475
\(699\) 0 0
\(700\) 1.77675 + 3.07742i 0.0671548 + 0.116316i
\(701\) 1.32346 2.29231i 0.0499865 0.0865792i −0.839950 0.542665i \(-0.817415\pi\)
0.889936 + 0.456085i \(0.150749\pi\)
\(702\) 0 0
\(703\) −12.6619 4.79300i −0.477552 0.180771i
\(704\) −3.98543 + 6.90297i −0.150207 + 0.260165i
\(705\) 0 0
\(706\) 6.26920 0.235944
\(707\) 0.944501 1.63592i 0.0355216 0.0615252i
\(708\) 0 0
\(709\) 26.8452 1.00819 0.504097 0.863647i \(-0.331825\pi\)
0.504097 + 0.863647i \(0.331825\pi\)
\(710\) −14.7695 −0.554291
\(711\) 0 0
\(712\) −5.74496 9.95056i −0.215301 0.372913i
\(713\) 38.8843 1.45623
\(714\) 0 0
\(715\) −3.84422 6.65839i −0.143766 0.249010i
\(716\) 11.8390 20.5057i 0.442442 0.766333i
\(717\) 0 0
\(718\) −2.83914 −0.105956
\(719\) −1.94193 + 3.36352i −0.0724217 + 0.125438i −0.899962 0.435968i \(-0.856406\pi\)
0.827540 + 0.561406i \(0.189739\pi\)
\(720\) 0 0
\(721\) 3.45120 0.128529
\(722\) −1.40095 + 6.90623i −0.0521381 + 0.257023i
\(723\) 0 0
\(724\) 4.88543 0.181566
\(725\) 31.5302 1.17100
\(726\) 0 0
\(727\) 26.1519 + 45.2965i 0.969922 + 1.67995i 0.695766 + 0.718269i \(0.255065\pi\)
0.274156 + 0.961685i \(0.411602\pi\)
\(728\) 0.237102 + 0.410673i 0.00878758 + 0.0152205i
\(729\) 0 0
\(730\) −4.87230 −0.180332
\(731\) −74.9031 −2.77039
\(732\) 0 0
\(733\) 3.06517 + 5.30902i 0.113215 + 0.196093i 0.917065 0.398739i \(-0.130552\pi\)
−0.803850 + 0.594832i \(0.797219\pi\)
\(734\) −4.59485 7.95852i −0.169599 0.293754i
\(735\) 0 0
\(736\) 9.09410 + 15.7515i 0.335213 + 0.580606i
\(737\) −0.652121 1.12951i −0.0240212 0.0416059i
\(738\) 0 0
\(739\) −6.68714 + 11.5825i −0.245990 + 0.426068i −0.962410 0.271602i \(-0.912447\pi\)
0.716419 + 0.697670i \(0.245780\pi\)
\(740\) 10.2830 17.8106i 0.378009 0.654731i
\(741\) 0 0
\(742\) 0.0235449 + 0.0407809i 0.000864360 + 0.00149712i
\(743\) 2.74391 0.100664 0.0503321 0.998733i \(-0.483972\pi\)
0.0503321 + 0.998733i \(0.483972\pi\)
\(744\) 0 0
\(745\) −6.56344 −0.240466
\(746\) −4.29724 + 7.44304i −0.157333 + 0.272509i
\(747\) 0 0
\(748\) 22.6696 0.828881
\(749\) 1.49999 2.59806i 0.0548085 0.0949311i
\(750\) 0 0
\(751\) 10.4736 18.1408i 0.382187 0.661967i −0.609188 0.793026i \(-0.708504\pi\)
0.991375 + 0.131059i \(0.0418377\pi\)
\(752\) 5.37439 + 9.30871i 0.195984 + 0.339454i
\(753\) 0 0
\(754\) 2.02888 0.0738875
\(755\) −19.9065 + 34.4791i −0.724473 + 1.25482i
\(756\) 0 0
\(757\) 3.65990 6.33913i 0.133021 0.230400i −0.791819 0.610756i \(-0.790865\pi\)
0.924840 + 0.380357i \(0.124199\pi\)
\(758\) 5.39274 + 9.34049i 0.195873 + 0.339262i
\(759\) 0 0
\(760\) −20.7620 7.85920i −0.753118 0.285083i
\(761\) −6.05266 10.4835i −0.219409 0.380027i 0.735219 0.677830i \(-0.237079\pi\)
−0.954627 + 0.297803i \(0.903746\pi\)
\(762\) 0 0
\(763\) −1.90460 3.29886i −0.0689510 0.119427i
\(764\) −3.17391 5.49737i −0.114828 0.198888i
\(765\) 0 0
\(766\) 0.524540 + 0.908530i 0.0189524 + 0.0328265i
\(767\) 6.93352 12.0092i 0.250355 0.433627i
\(768\) 0 0
\(769\) 14.4830 25.0852i 0.522269 0.904597i −0.477395 0.878689i \(-0.658419\pi\)
0.999664 0.0259081i \(-0.00824772\pi\)
\(770\) −0.268663 + 0.465339i −0.00968195 + 0.0167696i
\(771\) 0 0
\(772\) 0.463529 0.802856i 0.0166828 0.0288954i
\(773\) −21.7876 37.7372i −0.783645 1.35731i −0.929805 0.368052i \(-0.880025\pi\)
0.146160 0.989261i \(-0.453309\pi\)
\(774\) 0 0
\(775\) −33.0693 57.2777i −1.18788 2.05748i
\(776\) −4.60671 7.97906i −0.165371 0.286432i
\(777\) 0 0
\(778\) −3.55421 6.15608i −0.127425 0.220706i
\(779\) 22.6220 + 8.56327i 0.810517 + 0.306811i
\(780\) 0 0
\(781\) 9.13796 + 15.8274i 0.326982 + 0.566349i
\(782\) 6.21352 10.7621i 0.222195 0.384853i
\(783\) 0 0
\(784\) 11.0779 19.1875i 0.395639 0.685267i
\(785\) 73.8457 2.63567
\(786\) 0 0
\(787\) 3.10060 + 5.37040i 0.110525 + 0.191434i 0.915982 0.401220i \(-0.131414\pi\)
−0.805457 + 0.592654i \(0.798080\pi\)
\(788\) 2.46213 4.26454i 0.0877098 0.151918i
\(789\) 0 0
\(790\) 6.49754 11.2541i 0.231172 0.400402i
\(791\) −0.731677 −0.0260155
\(792\) 0 0
\(793\) 2.74427 4.75322i 0.0974520 0.168792i
\(794\) 11.8380 0.420115
\(795\) 0 0
\(796\) 0.395995 0.0140357
\(797\) 19.1606 + 33.1871i 0.678702 + 1.17555i 0.975372 + 0.220566i \(0.0707904\pi\)
−0.296671 + 0.954980i \(0.595876\pi\)
\(798\) 0 0
\(799\) 12.5543 21.7446i 0.444138 0.769269i
\(800\) 15.4683 26.7918i 0.546885 0.947233i
\(801\) 0 0
\(802\) −7.11006 12.3150i −0.251065 0.434857i
\(803\) 3.01451 + 5.22128i 0.106380 + 0.184255i
\(804\) 0 0
\(805\) −1.99401 3.45373i −0.0702797 0.121728i
\(806\) −2.12792 3.68566i −0.0749527 0.129822i
\(807\) 0 0
\(808\) −10.8350 −0.381175
\(809\) 36.9557 1.29929 0.649647 0.760236i \(-0.274917\pi\)
0.649647 + 0.760236i \(0.274917\pi\)
\(810\) 0 0
\(811\) 21.0016 + 36.3759i 0.737467 + 1.27733i 0.953632 + 0.300974i \(0.0973118\pi\)
−0.216165 + 0.976357i \(0.569355\pi\)
\(812\) 0.959889 + 1.66258i 0.0336855 + 0.0583450i
\(813\) 0 0
\(814\) 1.87960 0.0658800
\(815\) −19.2575 −0.674562
\(816\) 0 0
\(817\) −7.04750 43.1950i −0.246561 1.51120i
\(818\) −0.850402 −0.0297336
\(819\) 0 0
\(820\) −18.3717 + 31.8208i −0.641569 + 1.11123i
\(821\) 17.7203 0.618444 0.309222 0.950990i \(-0.399931\pi\)
0.309222 + 0.950990i \(0.399931\pi\)
\(822\) 0 0
\(823\) 14.6013 25.2903i 0.508971 0.881563i −0.490975 0.871174i \(-0.663359\pi\)
0.999946 0.0103898i \(-0.00330724\pi\)
\(824\) −9.89779 17.1435i −0.344806 0.597221i
\(825\) 0 0
\(826\) −0.969133 −0.0337204
\(827\) −7.34515 12.7222i −0.255416 0.442393i 0.709593 0.704612i \(-0.248879\pi\)
−0.965008 + 0.262219i \(0.915546\pi\)
\(828\) 0 0
\(829\) −2.88680 −0.100263 −0.0501314 0.998743i \(-0.515964\pi\)
−0.0501314 + 0.998743i \(0.515964\pi\)
\(830\) −0.488541 −0.0169575
\(831\) 0 0
\(832\) −3.23747 + 5.60746i −0.112239 + 0.194404i
\(833\) −51.7547 −1.79319
\(834\) 0 0
\(835\) −2.66652 + 4.61855i −0.0922788 + 0.159831i
\(836\) 2.13294 + 13.0730i 0.0737692 + 0.452140i
\(837\) 0 0
\(838\) 1.97391 3.41892i 0.0681877 0.118105i
\(839\) −7.55921 13.0929i −0.260973 0.452019i 0.705528 0.708682i \(-0.250710\pi\)
−0.966501 + 0.256664i \(0.917377\pi\)
\(840\) 0 0
\(841\) −11.9658 −0.412614
\(842\) 4.79644 8.30768i 0.165296 0.286301i
\(843\) 0 0
\(844\) −7.93749 + 13.7481i −0.273220 + 0.473230i
\(845\) 19.9861 + 34.6170i 0.687543 + 1.19086i
\(846\) 0 0
\(847\) −2.08237 −0.0715511
\(848\) −0.811749 + 1.40599i −0.0278756 + 0.0482819i
\(849\) 0 0
\(850\) −21.1373 −0.725002
\(851\) −6.97517 + 12.0814i −0.239106 + 0.414143i
\(852\) 0 0
\(853\) −13.0507 22.6045i −0.446848 0.773964i 0.551331 0.834287i \(-0.314120\pi\)
−0.998179 + 0.0603231i \(0.980787\pi\)
\(854\) −0.383581 −0.0131259
\(855\) 0 0
\(856\) −17.2075 −0.588139
\(857\) 20.8227 + 36.0660i 0.711291 + 1.23199i 0.964373 + 0.264547i \(0.0852224\pi\)
−0.253082 + 0.967445i \(0.581444\pi\)
\(858\) 0 0
\(859\) −4.72015 + 8.17554i −0.161049 + 0.278946i −0.935245 0.354000i \(-0.884821\pi\)
0.774196 + 0.632946i \(0.218155\pi\)
\(860\) 66.4828 2.26704
\(861\) 0 0
\(862\) −3.53451 + 6.12196i −0.120386 + 0.208515i
\(863\) −31.0403 −1.05662 −0.528311 0.849051i \(-0.677175\pi\)
−0.528311 + 0.849051i \(0.677175\pi\)
\(864\) 0 0
\(865\) 39.8422 + 69.0088i 1.35468 + 2.34637i
\(866\) −4.94349 + 8.56238i −0.167987 + 0.290962i
\(867\) 0 0
\(868\) 2.01349 3.48746i 0.0683422 0.118372i
\(869\) −16.0802 −0.545483
\(870\) 0 0
\(871\) −0.529735 0.917528i −0.0179494 0.0310892i
\(872\) −10.9245 + 18.9218i −0.369950 + 0.640772i
\(873\) 0 0
\(874\) 6.79090 + 2.57061i 0.229706 + 0.0869522i
\(875\) −1.17184 + 2.02969i −0.0396154 + 0.0686159i
\(876\) 0 0
\(877\) −41.4554 −1.39985 −0.699924 0.714217i \(-0.746783\pi\)
−0.699924 + 0.714217i \(0.746783\pi\)
\(878\) −0.361069 + 0.625390i −0.0121855 + 0.0211059i
\(879\) 0 0
\(880\) −18.5252 −0.624485
\(881\) −15.2233 −0.512886 −0.256443 0.966559i \(-0.582551\pi\)
−0.256443 + 0.966559i \(0.582551\pi\)
\(882\) 0 0
\(883\) −0.314882 0.545392i −0.0105966 0.0183539i 0.860678 0.509149i \(-0.170040\pi\)
−0.871275 + 0.490795i \(0.836706\pi\)
\(884\) 18.4151 0.619365
\(885\) 0 0
\(886\) −1.21694 2.10781i −0.0408840 0.0708132i
\(887\) −0.563597 + 0.976178i −0.0189237 + 0.0327769i −0.875332 0.483522i \(-0.839357\pi\)
0.856408 + 0.516299i \(0.172691\pi\)
\(888\) 0 0
\(889\) 0.474118 0.0159014
\(890\) 5.28798 9.15906i 0.177254 0.307012i
\(891\) 0 0
\(892\) −29.0600 −0.973000
\(893\) 13.7208 + 5.19385i 0.459151 + 0.173806i
\(894\) 0 0
\(895\) 45.1987 1.51083
\(896\) 2.47527 0.0826929
\(897\) 0 0
\(898\) 6.58973 + 11.4137i 0.219902 + 0.380881i
\(899\) −17.8657 30.9443i −0.595854 1.03205i
\(900\) 0 0
\(901\) 3.79240 0.126343
\(902\) −3.35813 −0.111814
\(903\) 0 0
\(904\) 2.09840 + 3.63453i 0.0697917 + 0.120883i
\(905\) 4.66290 + 8.07637i 0.155000 + 0.268468i
\(906\) 0 0
\(907\) −14.3660 24.8826i −0.477014 0.826213i 0.522639 0.852554i \(-0.324948\pi\)
−0.999653 + 0.0263414i \(0.991614\pi\)
\(908\) −1.10895 1.92075i −0.0368016 0.0637423i
\(909\) 0 0
\(910\) −0.218242 + 0.378006i −0.00723466 + 0.0125308i
\(911\) 19.6724 34.0735i 0.651774 1.12891i −0.330918 0.943660i \(-0.607358\pi\)
0.982692 0.185246i \(-0.0593083\pi\)
\(912\) 0 0
\(913\) 0.302262 + 0.523532i 0.0100034 + 0.0173264i
\(914\) −2.46599 −0.0815678
\(915\) 0 0
\(916\) −37.1908 −1.22882
\(917\) −0.378235 + 0.655122i −0.0124904 + 0.0216340i
\(918\) 0 0
\(919\) 14.3218 0.472433 0.236217 0.971700i \(-0.424093\pi\)
0.236217 + 0.971700i \(0.424093\pi\)
\(920\) −11.4374 + 19.8101i −0.377079 + 0.653120i
\(921\) 0 0
\(922\) 1.29288 2.23934i 0.0425788 0.0737487i
\(923\) 7.42300 + 12.8570i 0.244331 + 0.423194i
\(924\) 0 0
\(925\) 23.7283 0.780181
\(926\) −3.18850 + 5.52264i −0.104781 + 0.181485i
\(927\) 0 0
\(928\) 8.35672 14.4743i 0.274323 0.475141i
\(929\) 0.893942 + 1.54835i 0.0293293 + 0.0507998i 0.880317 0.474385i \(-0.157330\pi\)
−0.850988 + 0.525185i \(0.823996\pi\)
\(930\) 0 0
\(931\) −4.86950 29.8458i −0.159591 0.978156i
\(932\) 11.5179 + 19.9496i 0.377282 + 0.653472i
\(933\) 0 0
\(934\) −6.77773 11.7394i −0.221774 0.384124i
\(935\) 21.6369 + 37.4763i 0.707603 + 1.22560i
\(936\) 0 0
\(937\) 6.96721 + 12.0676i 0.227609 + 0.394230i 0.957099 0.289761i \(-0.0935759\pi\)
−0.729490 + 0.683991i \(0.760243\pi\)
\(938\) −0.0370219 + 0.0641238i −0.00120881 + 0.00209372i
\(939\) 0 0
\(940\) −11.1430 + 19.3002i −0.363443 + 0.629502i
\(941\) −22.7165 + 39.3461i −0.740535 + 1.28264i 0.211717 + 0.977331i \(0.432095\pi\)
−0.952252 + 0.305314i \(0.901239\pi\)
\(942\) 0 0
\(943\) 12.4620 21.5848i 0.405818 0.702897i
\(944\) −16.7062 28.9360i −0.543741 0.941787i
\(945\) 0 0
\(946\) 3.03806 + 5.26208i 0.0987759 + 0.171085i
\(947\) −2.58749 4.48167i −0.0840823 0.145635i 0.820918 0.571047i \(-0.193463\pi\)
−0.905000 + 0.425412i \(0.860129\pi\)
\(948\) 0 0
\(949\) 2.44876 + 4.24138i 0.0794902 + 0.137681i
\(950\) −1.98877 12.1894i −0.0645241 0.395476i
\(951\) 0 0
\(952\) −1.33451 2.31144i −0.0432517 0.0749142i
\(953\) −12.9234 + 22.3840i −0.418630 + 0.725088i −0.995802 0.0915347i \(-0.970823\pi\)
0.577172 + 0.816622i \(0.304156\pi\)
\(954\) 0 0
\(955\) 6.05867 10.4939i 0.196054 0.339575i
\(956\) −30.2323 −0.977783
\(957\) 0 0
\(958\) 3.70247 + 6.41287i 0.119621 + 0.207190i
\(959\) 0.531655 0.920853i 0.0171680 0.0297359i
\(960\) 0 0
\(961\) −21.9755 + 38.0628i −0.708888 + 1.22783i
\(962\) 1.52685 0.0492276
\(963\) 0 0
\(964\) 9.76565 16.9146i 0.314531 0.544783i
\(965\) 1.76966 0.0569674
\(966\) 0 0
\(967\) 26.1397 0.840597 0.420299 0.907386i \(-0.361925\pi\)
0.420299 + 0.907386i \(0.361925\pi\)
\(968\) 5.97209 + 10.3440i 0.191950 + 0.332468i
\(969\) 0 0
\(970\) 4.24028 7.34438i 0.136147 0.235814i
\(971\) −6.28902 + 10.8929i −0.201824 + 0.349570i −0.949116 0.314926i \(-0.898020\pi\)
0.747292 + 0.664496i \(0.231354\pi\)
\(972\) 0 0
\(973\) 2.15687 + 3.73581i 0.0691461 + 0.119764i
\(974\) 0.100402 + 0.173901i 0.00321708 + 0.00557215i
\(975\) 0 0
\(976\) −6.61229 11.4528i −0.211654 0.366596i
\(977\) −18.8495 32.6483i −0.603050 1.04451i −0.992356 0.123405i \(-0.960619\pi\)
0.389307 0.921108i \(-0.372715\pi\)
\(978\) 0 0
\(979\) −13.0868 −0.418255
\(980\) 45.9366 1.46739
\(981\) 0 0
\(982\) 1.36185 + 2.35879i 0.0434583 + 0.0752719i
\(983\) −11.6223 20.1305i −0.370695 0.642063i 0.618977 0.785409i \(-0.287547\pi\)
−0.989673 + 0.143346i \(0.954214\pi\)
\(984\) 0 0
\(985\) 9.39991 0.299506
\(986\) −11.4194 −0.363668
\(987\) 0 0
\(988\) 1.73264 + 10.6196i 0.0551226 + 0.337853i
\(989\) −45.0968 −1.43400
\(990\) 0 0
\(991\) −11.8484 + 20.5220i −0.376376 + 0.651903i −0.990532 0.137282i \(-0.956163\pi\)
0.614156 + 0.789185i \(0.289497\pi\)
\(992\) −35.0586 −1.11311
\(993\) 0 0
\(994\) 0.518775 0.898545i 0.0164545 0.0285001i
\(995\) 0.377957 + 0.654641i 0.0119820 + 0.0207535i
\(996\) 0 0
\(997\) −18.9313 −0.599559 −0.299780 0.954008i \(-0.596913\pi\)
−0.299780 + 0.954008i \(0.596913\pi\)
\(998\) −2.21559 3.83752i −0.0701333 0.121475i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.g.c.505.9 32
3.2 odd 2 171.2.g.c.106.8 32
9.4 even 3 513.2.h.c.334.8 32
9.5 odd 6 171.2.h.c.49.9 yes 32
19.7 even 3 513.2.h.c.235.8 32
57.26 odd 6 171.2.h.c.7.9 yes 32
171.121 even 3 inner 513.2.g.c.64.9 32
171.140 odd 6 171.2.g.c.121.8 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.g.c.106.8 32 3.2 odd 2
171.2.g.c.121.8 yes 32 171.140 odd 6
171.2.h.c.7.9 yes 32 57.26 odd 6
171.2.h.c.49.9 yes 32 9.5 odd 6
513.2.g.c.64.9 32 171.121 even 3 inner
513.2.g.c.505.9 32 1.1 even 1 trivial
513.2.h.c.235.8 32 19.7 even 3
513.2.h.c.334.8 32 9.4 even 3