Properties

Label 513.2.g.c.505.7
Level $513$
Weight $2$
Character 513.505
Analytic conductor $4.096$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(64,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-1,0,-17,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 505.7
Character \(\chi\) \(=\) 513.505
Dual form 513.2.g.c.64.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0973467 - 0.168609i) q^{2} +(0.981047 - 1.69922i) q^{4} +1.90563 q^{5} +(1.69446 - 2.93489i) q^{7} -0.771394 q^{8} +(-0.185507 - 0.321308i) q^{10} +(0.311589 - 0.539688i) q^{11} +(-1.84489 + 3.19545i) q^{13} -0.659800 q^{14} +(-1.88700 - 3.26838i) q^{16} +(3.04830 - 5.27981i) q^{17} +(-1.14464 + 4.20592i) q^{19} +(1.86952 - 3.23810i) q^{20} -0.121329 q^{22} +(-3.92442 + 6.79729i) q^{23} -1.36856 q^{25} +0.718377 q^{26} +(-3.32469 - 5.75853i) q^{28} +1.18459 q^{29} +(-0.910124 - 1.57638i) q^{31} +(-1.13878 + 1.97243i) q^{32} -1.18697 q^{34} +(3.22902 - 5.59282i) q^{35} +5.63896 q^{37} +(0.820586 - 0.216435i) q^{38} -1.46999 q^{40} +4.03639 q^{41} +(-2.54719 - 4.41186i) q^{43} +(-0.611367 - 1.05892i) q^{44} +1.52812 q^{46} +12.8718 q^{47} +(-2.24237 - 3.88391i) q^{49} +(0.133225 + 0.230752i) q^{50} +(3.61985 + 6.26977i) q^{52} +(-1.93076 - 3.34418i) q^{53} +(0.593775 - 1.02845i) q^{55} +(-1.30709 + 2.26395i) q^{56} +(-0.115316 - 0.199733i) q^{58} -8.50437 q^{59} +3.64691 q^{61} +(-0.177195 + 0.306911i) q^{62} -7.10458 q^{64} +(-3.51569 + 6.08935i) q^{65} +(-0.523023 + 0.905902i) q^{67} +(-5.98105 - 10.3595i) q^{68} -1.25734 q^{70} +(-1.56289 + 2.70700i) q^{71} +(2.06890 - 3.58345i) q^{73} +(-0.548934 - 0.950782i) q^{74} +(6.02386 + 6.07121i) q^{76} +(-1.05595 - 1.82896i) q^{77} +(8.16729 + 14.1462i) q^{79} +(-3.59593 - 6.22834i) q^{80} +(-0.392929 - 0.680574i) q^{82} +(-5.35528 + 9.27561i) q^{83} +(5.80894 - 10.0614i) q^{85} +(-0.495921 + 0.858960i) q^{86} +(-0.240358 + 0.416312i) q^{88} +(5.25259 + 9.09775i) q^{89} +(6.25218 + 10.8291i) q^{91} +(7.70007 + 13.3369i) q^{92} +(-1.25303 - 2.17031i) q^{94} +(-2.18127 + 8.01495i) q^{95} +(-7.34332 - 12.7190i) q^{97} +(-0.436576 + 0.756171i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - q^{2} - 17 q^{4} + 6 q^{5} + q^{7} + 36 q^{8} - 8 q^{10} - 7 q^{11} - 4 q^{13} + 2 q^{14} - 11 q^{16} + 7 q^{17} + 7 q^{19} + 3 q^{20} + 16 q^{22} - 5 q^{23} + 18 q^{25} + 4 q^{26} - 10 q^{28}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0973467 0.168609i −0.0688345 0.119225i 0.829554 0.558426i \(-0.188595\pi\)
−0.898389 + 0.439202i \(0.855261\pi\)
\(3\) 0 0
\(4\) 0.981047 1.69922i 0.490524 0.849612i
\(5\) 1.90563 0.852225 0.426113 0.904670i \(-0.359883\pi\)
0.426113 + 0.904670i \(0.359883\pi\)
\(6\) 0 0
\(7\) 1.69446 2.93489i 0.640445 1.10928i −0.344889 0.938644i \(-0.612083\pi\)
0.985334 0.170639i \(-0.0545833\pi\)
\(8\) −0.771394 −0.272729
\(9\) 0 0
\(10\) −0.185507 0.321308i −0.0586625 0.101606i
\(11\) 0.311589 0.539688i 0.0939477 0.162722i −0.815221 0.579150i \(-0.803385\pi\)
0.909169 + 0.416428i \(0.136718\pi\)
\(12\) 0 0
\(13\) −1.84489 + 3.19545i −0.511681 + 0.886258i 0.488227 + 0.872717i \(0.337644\pi\)
−0.999908 + 0.0135411i \(0.995690\pi\)
\(14\) −0.659800 −0.176339
\(15\) 0 0
\(16\) −1.88700 3.26838i −0.471750 0.817096i
\(17\) 3.04830 5.27981i 0.739321 1.28054i −0.213481 0.976947i \(-0.568480\pi\)
0.952802 0.303594i \(-0.0981866\pi\)
\(18\) 0 0
\(19\) −1.14464 + 4.20592i −0.262599 + 0.964905i
\(20\) 1.86952 3.23810i 0.418037 0.724061i
\(21\) 0 0
\(22\) −0.121329 −0.0258674
\(23\) −3.92442 + 6.79729i −0.818297 + 1.41733i 0.0886387 + 0.996064i \(0.471748\pi\)
−0.906936 + 0.421269i \(0.861585\pi\)
\(24\) 0 0
\(25\) −1.36856 −0.273712
\(26\) 0.718377 0.140885
\(27\) 0 0
\(28\) −3.32469 5.75853i −0.628307 1.08826i
\(29\) 1.18459 0.219972 0.109986 0.993933i \(-0.464919\pi\)
0.109986 + 0.993933i \(0.464919\pi\)
\(30\) 0 0
\(31\) −0.910124 1.57638i −0.163463 0.283126i 0.772645 0.634838i \(-0.218933\pi\)
−0.936108 + 0.351711i \(0.885600\pi\)
\(32\) −1.13878 + 1.97243i −0.201310 + 0.348679i
\(33\) 0 0
\(34\) −1.18697 −0.203563
\(35\) 3.22902 5.59282i 0.545803 0.945359i
\(36\) 0 0
\(37\) 5.63896 0.927039 0.463520 0.886087i \(-0.346586\pi\)
0.463520 + 0.886087i \(0.346586\pi\)
\(38\) 0.820586 0.216435i 0.133117 0.0351104i
\(39\) 0 0
\(40\) −1.46999 −0.232426
\(41\) 4.03639 0.630378 0.315189 0.949029i \(-0.397932\pi\)
0.315189 + 0.949029i \(0.397932\pi\)
\(42\) 0 0
\(43\) −2.54719 4.41186i −0.388442 0.672802i 0.603798 0.797138i \(-0.293653\pi\)
−0.992240 + 0.124335i \(0.960320\pi\)
\(44\) −0.611367 1.05892i −0.0921671 0.159638i
\(45\) 0 0
\(46\) 1.52812 0.225308
\(47\) 12.8718 1.87754 0.938772 0.344539i \(-0.111965\pi\)
0.938772 + 0.344539i \(0.111965\pi\)
\(48\) 0 0
\(49\) −2.24237 3.88391i −0.320339 0.554844i
\(50\) 0.133225 + 0.230752i 0.0188408 + 0.0326333i
\(51\) 0 0
\(52\) 3.61985 + 6.26977i 0.501983 + 0.869461i
\(53\) −1.93076 3.34418i −0.265211 0.459359i 0.702408 0.711775i \(-0.252108\pi\)
−0.967619 + 0.252416i \(0.918775\pi\)
\(54\) 0 0
\(55\) 0.593775 1.02845i 0.0800646 0.138676i
\(56\) −1.30709 + 2.26395i −0.174668 + 0.302534i
\(57\) 0 0
\(58\) −0.115316 0.199733i −0.0151417 0.0262262i
\(59\) −8.50437 −1.10717 −0.553587 0.832791i \(-0.686741\pi\)
−0.553587 + 0.832791i \(0.686741\pi\)
\(60\) 0 0
\(61\) 3.64691 0.466939 0.233469 0.972364i \(-0.424992\pi\)
0.233469 + 0.972364i \(0.424992\pi\)
\(62\) −0.177195 + 0.306911i −0.0225038 + 0.0389778i
\(63\) 0 0
\(64\) −7.10458 −0.888073
\(65\) −3.51569 + 6.08935i −0.436068 + 0.755291i
\(66\) 0 0
\(67\) −0.523023 + 0.905902i −0.0638974 + 0.110674i −0.896204 0.443641i \(-0.853686\pi\)
0.832307 + 0.554315i \(0.187020\pi\)
\(68\) −5.98105 10.3595i −0.725309 1.25627i
\(69\) 0 0
\(70\) −1.25734 −0.150280
\(71\) −1.56289 + 2.70700i −0.185481 + 0.321262i −0.943738 0.330693i \(-0.892718\pi\)
0.758258 + 0.651955i \(0.226051\pi\)
\(72\) 0 0
\(73\) 2.06890 3.58345i 0.242147 0.419411i −0.719179 0.694825i \(-0.755482\pi\)
0.961326 + 0.275414i \(0.0888151\pi\)
\(74\) −0.548934 0.950782i −0.0638123 0.110526i
\(75\) 0 0
\(76\) 6.02386 + 6.07121i 0.690984 + 0.696416i
\(77\) −1.05595 1.82896i −0.120337 0.208429i
\(78\) 0 0
\(79\) 8.16729 + 14.1462i 0.918892 + 1.59157i 0.801100 + 0.598530i \(0.204248\pi\)
0.117792 + 0.993038i \(0.462418\pi\)
\(80\) −3.59593 6.22834i −0.402038 0.696350i
\(81\) 0 0
\(82\) −0.392929 0.680574i −0.0433918 0.0751568i
\(83\) −5.35528 + 9.27561i −0.587818 + 1.01813i 0.406700 + 0.913562i \(0.366679\pi\)
−0.994518 + 0.104569i \(0.966654\pi\)
\(84\) 0 0
\(85\) 5.80894 10.0614i 0.630068 1.09131i
\(86\) −0.495921 + 0.858960i −0.0534765 + 0.0926240i
\(87\) 0 0
\(88\) −0.240358 + 0.416312i −0.0256222 + 0.0443790i
\(89\) 5.25259 + 9.09775i 0.556773 + 0.964359i 0.997763 + 0.0668472i \(0.0212940\pi\)
−0.440990 + 0.897512i \(0.645373\pi\)
\(90\) 0 0
\(91\) 6.25218 + 10.8291i 0.655407 + 1.13520i
\(92\) 7.70007 + 13.3369i 0.802788 + 1.39047i
\(93\) 0 0
\(94\) −1.25303 2.17031i −0.129240 0.223850i
\(95\) −2.18127 + 8.01495i −0.223794 + 0.822316i
\(96\) 0 0
\(97\) −7.34332 12.7190i −0.745602 1.29142i −0.949913 0.312514i \(-0.898829\pi\)
0.204312 0.978906i \(-0.434504\pi\)
\(98\) −0.436576 + 0.756171i −0.0441008 + 0.0763848i
\(99\) 0 0
\(100\) −1.34262 + 2.32549i −0.134262 + 0.232549i
\(101\) −8.53801 −0.849563 −0.424782 0.905296i \(-0.639649\pi\)
−0.424782 + 0.905296i \(0.639649\pi\)
\(102\) 0 0
\(103\) 6.69656 + 11.5988i 0.659832 + 1.14286i 0.980659 + 0.195725i \(0.0627059\pi\)
−0.320827 + 0.947138i \(0.603961\pi\)
\(104\) 1.42314 2.46495i 0.139550 0.241708i
\(105\) 0 0
\(106\) −0.375907 + 0.651090i −0.0365113 + 0.0632395i
\(107\) −10.1943 −0.985524 −0.492762 0.870164i \(-0.664013\pi\)
−0.492762 + 0.870164i \(0.664013\pi\)
\(108\) 0 0
\(109\) −0.945297 + 1.63730i −0.0905431 + 0.156825i −0.907740 0.419534i \(-0.862194\pi\)
0.817197 + 0.576359i \(0.195527\pi\)
\(110\) −0.231208 −0.0220448
\(111\) 0 0
\(112\) −12.7898 −1.20852
\(113\) 4.93706 + 8.55125i 0.464440 + 0.804434i 0.999176 0.0405856i \(-0.0129223\pi\)
−0.534736 + 0.845019i \(0.679589\pi\)
\(114\) 0 0
\(115\) −7.47850 + 12.9531i −0.697374 + 1.20789i
\(116\) 1.16214 2.01288i 0.107902 0.186891i
\(117\) 0 0
\(118\) 0.827873 + 1.43392i 0.0762118 + 0.132003i
\(119\) −10.3304 17.8928i −0.946988 1.64023i
\(120\) 0 0
\(121\) 5.30582 + 9.18996i 0.482348 + 0.835451i
\(122\) −0.355014 0.614903i −0.0321415 0.0556707i
\(123\) 0 0
\(124\) −3.57150 −0.320730
\(125\) −12.1361 −1.08549
\(126\) 0 0
\(127\) −4.32772 7.49583i −0.384023 0.665148i 0.607610 0.794236i \(-0.292128\pi\)
−0.991633 + 0.129088i \(0.958795\pi\)
\(128\) 2.96917 + 5.14275i 0.262440 + 0.454559i
\(129\) 0 0
\(130\) 1.36896 0.120066
\(131\) −2.08447 −0.182121 −0.0910604 0.995845i \(-0.529026\pi\)
−0.0910604 + 0.995845i \(0.529026\pi\)
\(132\) 0 0
\(133\) 10.4044 + 10.4862i 0.902172 + 0.909265i
\(134\) 0.203658 0.0175934
\(135\) 0 0
\(136\) −2.35144 + 4.07281i −0.201634 + 0.349241i
\(137\) 17.0350 1.45540 0.727700 0.685896i \(-0.240589\pi\)
0.727700 + 0.685896i \(0.240589\pi\)
\(138\) 0 0
\(139\) −1.13106 + 1.95905i −0.0959351 + 0.166164i −0.909998 0.414612i \(-0.863917\pi\)
0.814063 + 0.580776i \(0.197251\pi\)
\(140\) −6.33563 10.9736i −0.535459 0.927442i
\(141\) 0 0
\(142\) 0.608568 0.0510699
\(143\) 1.14970 + 1.99133i 0.0961425 + 0.166524i
\(144\) 0 0
\(145\) 2.25739 0.187466
\(146\) −0.805604 −0.0666723
\(147\) 0 0
\(148\) 5.53209 9.58186i 0.454735 0.787624i
\(149\) −2.40529 −0.197049 −0.0985246 0.995135i \(-0.531412\pi\)
−0.0985246 + 0.995135i \(0.531412\pi\)
\(150\) 0 0
\(151\) 3.86313 6.69114i 0.314377 0.544517i −0.664928 0.746908i \(-0.731538\pi\)
0.979305 + 0.202391i \(0.0648710\pi\)
\(152\) 0.882971 3.24442i 0.0716184 0.263157i
\(153\) 0 0
\(154\) −0.205586 + 0.356086i −0.0165666 + 0.0286942i
\(155\) −1.73436 3.00401i −0.139307 0.241288i
\(156\) 0 0
\(157\) −5.43874 −0.434058 −0.217029 0.976165i \(-0.569637\pi\)
−0.217029 + 0.976165i \(0.569637\pi\)
\(158\) 1.59012 2.75417i 0.126503 0.219110i
\(159\) 0 0
\(160\) −2.17010 + 3.75872i −0.171561 + 0.297153i
\(161\) 13.2995 + 23.0354i 1.04815 + 1.81545i
\(162\) 0 0
\(163\) −7.27424 −0.569763 −0.284881 0.958563i \(-0.591954\pi\)
−0.284881 + 0.958563i \(0.591954\pi\)
\(164\) 3.95989 6.85873i 0.309216 0.535577i
\(165\) 0 0
\(166\) 2.08527 0.161849
\(167\) −2.23165 + 3.86534i −0.172691 + 0.299109i −0.939360 0.342934i \(-0.888579\pi\)
0.766669 + 0.642042i \(0.221913\pi\)
\(168\) 0 0
\(169\) −0.307257 0.532185i −0.0236352 0.0409373i
\(170\) −2.26192 −0.173482
\(171\) 0 0
\(172\) −9.99565 −0.762161
\(173\) 6.00303 + 10.3976i 0.456402 + 0.790512i 0.998768 0.0496308i \(-0.0158045\pi\)
−0.542365 + 0.840143i \(0.682471\pi\)
\(174\) 0 0
\(175\) −2.31897 + 4.01657i −0.175298 + 0.303624i
\(176\) −2.35188 −0.177279
\(177\) 0 0
\(178\) 1.02264 1.77127i 0.0766504 0.132762i
\(179\) −20.0123 −1.49579 −0.747897 0.663815i \(-0.768936\pi\)
−0.747897 + 0.663815i \(0.768936\pi\)
\(180\) 0 0
\(181\) −6.04514 10.4705i −0.449332 0.778265i 0.549011 0.835815i \(-0.315005\pi\)
−0.998343 + 0.0575498i \(0.981671\pi\)
\(182\) 1.21726 2.10836i 0.0902293 0.156282i
\(183\) 0 0
\(184\) 3.02727 5.24339i 0.223173 0.386548i
\(185\) 10.7458 0.790046
\(186\) 0 0
\(187\) −1.89963 3.29026i −0.138915 0.240608i
\(188\) 12.6278 21.8721i 0.920980 1.59518i
\(189\) 0 0
\(190\) 1.56374 0.412446i 0.113445 0.0299220i
\(191\) −1.34685 + 2.33282i −0.0974548 + 0.168797i −0.910631 0.413222i \(-0.864403\pi\)
0.813176 + 0.582018i \(0.197737\pi\)
\(192\) 0 0
\(193\) 12.5244 0.901523 0.450762 0.892644i \(-0.351152\pi\)
0.450762 + 0.892644i \(0.351152\pi\)
\(194\) −1.42970 + 2.47631i −0.102646 + 0.177789i
\(195\) 0 0
\(196\) −8.79950 −0.628536
\(197\) 11.8545 0.844595 0.422297 0.906457i \(-0.361224\pi\)
0.422297 + 0.906457i \(0.361224\pi\)
\(198\) 0 0
\(199\) 3.01833 + 5.22790i 0.213964 + 0.370596i 0.952952 0.303123i \(-0.0980292\pi\)
−0.738988 + 0.673719i \(0.764696\pi\)
\(200\) 1.05570 0.0746492
\(201\) 0 0
\(202\) 0.831147 + 1.43959i 0.0584793 + 0.101289i
\(203\) 2.00723 3.47663i 0.140880 0.244012i
\(204\) 0 0
\(205\) 7.69188 0.537224
\(206\) 1.30378 2.25821i 0.0908385 0.157337i
\(207\) 0 0
\(208\) 13.9253 0.965543
\(209\) 1.91323 + 1.92827i 0.132341 + 0.133381i
\(210\) 0 0
\(211\) −5.65425 −0.389255 −0.194627 0.980877i \(-0.562350\pi\)
−0.194627 + 0.980877i \(0.562350\pi\)
\(212\) −7.57669 −0.520369
\(213\) 0 0
\(214\) 0.992386 + 1.71886i 0.0678381 + 0.117499i
\(215\) −4.85401 8.40739i −0.331040 0.573379i
\(216\) 0 0
\(217\) −6.16867 −0.418757
\(218\) 0.368086 0.0249300
\(219\) 0 0
\(220\) −1.16504 2.01791i −0.0785471 0.136048i
\(221\) 11.2476 + 19.4813i 0.756593 + 1.31046i
\(222\) 0 0
\(223\) −14.5197 25.1489i −0.972312 1.68409i −0.688535 0.725203i \(-0.741746\pi\)
−0.283777 0.958890i \(-0.591587\pi\)
\(224\) 3.85923 + 6.68439i 0.257856 + 0.446619i
\(225\) 0 0
\(226\) 0.961214 1.66487i 0.0639390 0.110746i
\(227\) 11.5488 20.0031i 0.766522 1.32765i −0.172916 0.984937i \(-0.555319\pi\)
0.939438 0.342718i \(-0.111348\pi\)
\(228\) 0 0
\(229\) −1.94136 3.36253i −0.128289 0.222202i 0.794725 0.606970i \(-0.207615\pi\)
−0.923014 + 0.384767i \(0.874282\pi\)
\(230\) 2.91203 0.192014
\(231\) 0 0
\(232\) −0.913783 −0.0599928
\(233\) 3.05545 5.29220i 0.200169 0.346703i −0.748414 0.663232i \(-0.769184\pi\)
0.948583 + 0.316529i \(0.102517\pi\)
\(234\) 0 0
\(235\) 24.5289 1.60009
\(236\) −8.34319 + 14.4508i −0.543095 + 0.940669i
\(237\) 0 0
\(238\) −2.01127 + 3.48361i −0.130371 + 0.225809i
\(239\) 9.61029 + 16.6455i 0.621638 + 1.07671i 0.989181 + 0.146702i \(0.0468659\pi\)
−0.367543 + 0.930007i \(0.619801\pi\)
\(240\) 0 0
\(241\) 10.6740 0.687573 0.343786 0.939048i \(-0.388290\pi\)
0.343786 + 0.939048i \(0.388290\pi\)
\(242\) 1.03301 1.78922i 0.0664044 0.115016i
\(243\) 0 0
\(244\) 3.57779 6.19691i 0.229044 0.396717i
\(245\) −4.27314 7.40130i −0.273001 0.472852i
\(246\) 0 0
\(247\) −11.3281 11.4171i −0.720787 0.726454i
\(248\) 0.702064 + 1.21601i 0.0445811 + 0.0772168i
\(249\) 0 0
\(250\) 1.18141 + 2.04627i 0.0747192 + 0.129417i
\(251\) −9.04512 15.6666i −0.570923 0.988867i −0.996471 0.0839318i \(-0.973252\pi\)
0.425549 0.904936i \(-0.360081\pi\)
\(252\) 0 0
\(253\) 2.44561 + 4.23592i 0.153754 + 0.266310i
\(254\) −0.842579 + 1.45939i −0.0528681 + 0.0915702i
\(255\) 0 0
\(256\) −6.52650 + 11.3042i −0.407906 + 0.706515i
\(257\) 11.6856 20.2401i 0.728930 1.26254i −0.228406 0.973566i \(-0.573351\pi\)
0.957336 0.288978i \(-0.0933154\pi\)
\(258\) 0 0
\(259\) 9.55498 16.5497i 0.593718 1.02835i
\(260\) 6.89811 + 11.9479i 0.427803 + 0.740976i
\(261\) 0 0
\(262\) 0.202916 + 0.351461i 0.0125362 + 0.0217133i
\(263\) −12.1983 21.1280i −0.752177 1.30281i −0.946766 0.321924i \(-0.895670\pi\)
0.194589 0.980885i \(-0.437663\pi\)
\(264\) 0 0
\(265\) −3.67933 6.37279i −0.226019 0.391477i
\(266\) 0.755235 2.77507i 0.0463064 0.170150i
\(267\) 0 0
\(268\) 1.02622 + 1.77746i 0.0626864 + 0.108576i
\(269\) −12.5243 + 21.6927i −0.763620 + 1.32263i 0.177354 + 0.984147i \(0.443246\pi\)
−0.940973 + 0.338481i \(0.890087\pi\)
\(270\) 0 0
\(271\) −1.42509 + 2.46833i −0.0865679 + 0.149940i −0.906058 0.423153i \(-0.860923\pi\)
0.819490 + 0.573093i \(0.194257\pi\)
\(272\) −23.0086 −1.39510
\(273\) 0 0
\(274\) −1.65830 2.87226i −0.100182 0.173520i
\(275\) −0.426429 + 0.738596i −0.0257146 + 0.0445390i
\(276\) 0 0
\(277\) −1.14916 + 1.99041i −0.0690465 + 0.119592i −0.898482 0.439011i \(-0.855329\pi\)
0.829435 + 0.558603i \(0.188662\pi\)
\(278\) 0.440419 0.0264146
\(279\) 0 0
\(280\) −2.49084 + 4.31427i −0.148856 + 0.257827i
\(281\) −14.1908 −0.846554 −0.423277 0.906000i \(-0.639120\pi\)
−0.423277 + 0.906000i \(0.639120\pi\)
\(282\) 0 0
\(283\) −8.27764 −0.492055 −0.246027 0.969263i \(-0.579125\pi\)
−0.246027 + 0.969263i \(0.579125\pi\)
\(284\) 3.06654 + 5.31140i 0.181965 + 0.315173i
\(285\) 0 0
\(286\) 0.223838 0.387700i 0.0132358 0.0229252i
\(287\) 6.83949 11.8464i 0.403723 0.699268i
\(288\) 0 0
\(289\) −10.0842 17.4664i −0.593190 1.02744i
\(290\) −0.219749 0.380617i −0.0129041 0.0223506i
\(291\) 0 0
\(292\) −4.05939 7.03106i −0.237558 0.411462i
\(293\) −9.90459 17.1553i −0.578632 1.00222i −0.995637 0.0933160i \(-0.970253\pi\)
0.417004 0.908905i \(-0.363080\pi\)
\(294\) 0 0
\(295\) −16.2062 −0.943562
\(296\) −4.34986 −0.252830
\(297\) 0 0
\(298\) 0.234147 + 0.405555i 0.0135638 + 0.0234932i
\(299\) −14.4803 25.0805i −0.837415 1.45044i
\(300\) 0 0
\(301\) −17.2644 −0.995104
\(302\) −1.50425 −0.0865600
\(303\) 0 0
\(304\) 15.9065 4.19545i 0.912301 0.240626i
\(305\) 6.94967 0.397937
\(306\) 0 0
\(307\) −9.08098 + 15.7287i −0.518279 + 0.897685i 0.481496 + 0.876448i \(0.340094\pi\)
−0.999774 + 0.0212367i \(0.993240\pi\)
\(308\) −4.14374 −0.236112
\(309\) 0 0
\(310\) −0.337669 + 0.584860i −0.0191783 + 0.0332178i
\(311\) 1.15887 + 2.00723i 0.0657137 + 0.113820i 0.897010 0.442010i \(-0.145734\pi\)
−0.831297 + 0.555829i \(0.812401\pi\)
\(312\) 0 0
\(313\) 18.7101 1.05756 0.528779 0.848759i \(-0.322650\pi\)
0.528779 + 0.848759i \(0.322650\pi\)
\(314\) 0.529443 + 0.917023i 0.0298782 + 0.0517506i
\(315\) 0 0
\(316\) 32.0500 1.80295
\(317\) 14.3891 0.808171 0.404086 0.914721i \(-0.367590\pi\)
0.404086 + 0.914721i \(0.367590\pi\)
\(318\) 0 0
\(319\) 0.369105 0.639308i 0.0206659 0.0357944i
\(320\) −13.5387 −0.756838
\(321\) 0 0
\(322\) 2.58933 4.48485i 0.144298 0.249931i
\(323\) 18.7172 + 18.8644i 1.04146 + 1.04964i
\(324\) 0 0
\(325\) 2.52485 4.37316i 0.140053 0.242580i
\(326\) 0.708124 + 1.22651i 0.0392194 + 0.0679299i
\(327\) 0 0
\(328\) −3.11365 −0.171922
\(329\) 21.8107 37.7773i 1.20246 2.08273i
\(330\) 0 0
\(331\) −14.2961 + 24.7615i −0.785784 + 1.36102i 0.142746 + 0.989759i \(0.454407\pi\)
−0.928530 + 0.371258i \(0.878927\pi\)
\(332\) 10.5076 + 18.1996i 0.576677 + 0.998834i
\(333\) 0 0
\(334\) 0.868977 0.0475483
\(335\) −0.996689 + 1.72632i −0.0544550 + 0.0943188i
\(336\) 0 0
\(337\) 20.3107 1.10640 0.553199 0.833049i \(-0.313407\pi\)
0.553199 + 0.833049i \(0.313407\pi\)
\(338\) −0.0598209 + 0.103613i −0.00325383 + 0.00563580i
\(339\) 0 0
\(340\) −11.3977 19.7414i −0.618126 1.07063i
\(341\) −1.13434 −0.0614279
\(342\) 0 0
\(343\) 8.52398 0.460251
\(344\) 1.96488 + 3.40328i 0.105939 + 0.183493i
\(345\) 0 0
\(346\) 1.16875 2.02434i 0.0628325 0.108829i
\(347\) 35.7597 1.91968 0.959841 0.280544i \(-0.0905149\pi\)
0.959841 + 0.280544i \(0.0905149\pi\)
\(348\) 0 0
\(349\) −1.94971 + 3.37700i −0.104366 + 0.180767i −0.913479 0.406886i \(-0.866615\pi\)
0.809113 + 0.587653i \(0.199948\pi\)
\(350\) 0.902976 0.0482661
\(351\) 0 0
\(352\) 0.709663 + 1.22917i 0.0378252 + 0.0655151i
\(353\) −5.00251 + 8.66460i −0.266257 + 0.461170i −0.967892 0.251366i \(-0.919120\pi\)
0.701635 + 0.712536i \(0.252454\pi\)
\(354\) 0 0
\(355\) −2.97829 + 5.15856i −0.158071 + 0.273788i
\(356\) 20.6121 1.09244
\(357\) 0 0
\(358\) 1.94814 + 3.37427i 0.102962 + 0.178336i
\(359\) −2.25793 + 3.91084i −0.119169 + 0.206406i −0.919439 0.393234i \(-0.871356\pi\)
0.800270 + 0.599640i \(0.204690\pi\)
\(360\) 0 0
\(361\) −16.3796 9.62856i −0.862083 0.506766i
\(362\) −1.17695 + 2.03854i −0.0618591 + 0.107143i
\(363\) 0 0
\(364\) 24.5348 1.28597
\(365\) 3.94257 6.82874i 0.206364 0.357432i
\(366\) 0 0
\(367\) −23.4866 −1.22599 −0.612996 0.790086i \(-0.710036\pi\)
−0.612996 + 0.790086i \(0.710036\pi\)
\(368\) 29.6215 1.54413
\(369\) 0 0
\(370\) −1.04607 1.81184i −0.0543825 0.0941932i
\(371\) −13.0864 −0.679412
\(372\) 0 0
\(373\) −12.2017 21.1340i −0.631782 1.09428i −0.987187 0.159566i \(-0.948991\pi\)
0.355406 0.934712i \(-0.384343\pi\)
\(374\) −0.369846 + 0.640592i −0.0191243 + 0.0331242i
\(375\) 0 0
\(376\) −9.92922 −0.512061
\(377\) −2.18544 + 3.78529i −0.112556 + 0.194952i
\(378\) 0 0
\(379\) −17.7118 −0.909793 −0.454896 0.890544i \(-0.650324\pi\)
−0.454896 + 0.890544i \(0.650324\pi\)
\(380\) 11.4793 + 11.5695i 0.588874 + 0.593503i
\(381\) 0 0
\(382\) 0.524447 0.0268330
\(383\) −4.07577 −0.208262 −0.104131 0.994564i \(-0.533206\pi\)
−0.104131 + 0.994564i \(0.533206\pi\)
\(384\) 0 0
\(385\) −2.01225 3.48532i −0.102554 0.177629i
\(386\) −1.21921 2.11173i −0.0620559 0.107484i
\(387\) 0 0
\(388\) −28.8166 −1.46294
\(389\) −5.31159 −0.269308 −0.134654 0.990893i \(-0.542992\pi\)
−0.134654 + 0.990893i \(0.542992\pi\)
\(390\) 0 0
\(391\) 23.9256 + 41.4403i 1.20997 + 2.09573i
\(392\) 1.72975 + 2.99602i 0.0873657 + 0.151322i
\(393\) 0 0
\(394\) −1.15399 1.99877i −0.0581373 0.100697i
\(395\) 15.5639 + 26.9574i 0.783103 + 1.35637i
\(396\) 0 0
\(397\) 9.38913 16.2624i 0.471227 0.816189i −0.528232 0.849100i \(-0.677145\pi\)
0.999458 + 0.0329117i \(0.0104780\pi\)
\(398\) 0.587649 1.01784i 0.0294562 0.0510196i
\(399\) 0 0
\(400\) 2.58248 + 4.47298i 0.129124 + 0.223649i
\(401\) −20.9083 −1.04411 −0.522055 0.852912i \(-0.674834\pi\)
−0.522055 + 0.852912i \(0.674834\pi\)
\(402\) 0 0
\(403\) 6.71633 0.334564
\(404\) −8.37619 + 14.5080i −0.416731 + 0.721799i
\(405\) 0 0
\(406\) −0.781590 −0.0387897
\(407\) 1.75704 3.04328i 0.0870932 0.150850i
\(408\) 0 0
\(409\) 0.569856 0.987019i 0.0281776 0.0488050i −0.851593 0.524204i \(-0.824363\pi\)
0.879770 + 0.475399i \(0.157696\pi\)
\(410\) −0.748780 1.29692i −0.0369796 0.0640505i
\(411\) 0 0
\(412\) 26.2786 1.29465
\(413\) −14.4103 + 24.9594i −0.709084 + 1.22817i
\(414\) 0 0
\(415\) −10.2052 + 17.6759i −0.500953 + 0.867676i
\(416\) −4.20186 7.27783i −0.206013 0.356825i
\(417\) 0 0
\(418\) 0.138878 0.510299i 0.00679275 0.0249596i
\(419\) −3.86547 6.69519i −0.188840 0.327081i 0.756023 0.654545i \(-0.227140\pi\)
−0.944864 + 0.327463i \(0.893806\pi\)
\(420\) 0 0
\(421\) 6.69993 + 11.6046i 0.326535 + 0.565575i 0.981822 0.189805i \(-0.0607856\pi\)
−0.655287 + 0.755380i \(0.727452\pi\)
\(422\) 0.550423 + 0.953361i 0.0267942 + 0.0464089i
\(423\) 0 0
\(424\) 1.48938 + 2.57968i 0.0723307 + 0.125280i
\(425\) −4.17178 + 7.22574i −0.202361 + 0.350500i
\(426\) 0 0
\(427\) 6.17953 10.7033i 0.299048 0.517967i
\(428\) −10.0011 + 17.3225i −0.483423 + 0.837313i
\(429\) 0 0
\(430\) −0.945043 + 1.63686i −0.0455740 + 0.0789365i
\(431\) −17.1747 29.7474i −0.827275 1.43288i −0.900168 0.435542i \(-0.856557\pi\)
0.0728934 0.997340i \(-0.476777\pi\)
\(432\) 0 0
\(433\) −0.930181 1.61112i −0.0447016 0.0774255i 0.842809 0.538213i \(-0.180900\pi\)
−0.887511 + 0.460787i \(0.847567\pi\)
\(434\) 0.600500 + 1.04010i 0.0288249 + 0.0499262i
\(435\) 0 0
\(436\) 1.85476 + 3.21254i 0.0888270 + 0.153853i
\(437\) −24.0968 24.2863i −1.15271 1.16177i
\(438\) 0 0
\(439\) 7.53926 + 13.0584i 0.359829 + 0.623243i 0.987932 0.154888i \(-0.0495016\pi\)
−0.628103 + 0.778130i \(0.716168\pi\)
\(440\) −0.458034 + 0.793338i −0.0218359 + 0.0378209i
\(441\) 0 0
\(442\) 2.18983 3.79289i 0.104159 0.180409i
\(443\) −5.10805 −0.242691 −0.121345 0.992610i \(-0.538721\pi\)
−0.121345 + 0.992610i \(0.538721\pi\)
\(444\) 0 0
\(445\) 10.0095 + 17.3370i 0.474496 + 0.821851i
\(446\) −2.82689 + 4.89632i −0.133857 + 0.231848i
\(447\) 0 0
\(448\) −12.0384 + 20.8511i −0.568762 + 0.985124i
\(449\) 13.4001 0.632392 0.316196 0.948694i \(-0.397594\pi\)
0.316196 + 0.948694i \(0.397594\pi\)
\(450\) 0 0
\(451\) 1.25770 2.17839i 0.0592226 0.102577i
\(452\) 19.3740 0.911275
\(453\) 0 0
\(454\) −4.49696 −0.211053
\(455\) 11.9144 + 20.6363i 0.558554 + 0.967445i
\(456\) 0 0
\(457\) −12.1509 + 21.0459i −0.568394 + 0.984487i 0.428331 + 0.903622i \(0.359102\pi\)
−0.996725 + 0.0808654i \(0.974232\pi\)
\(458\) −0.377970 + 0.654663i −0.0176614 + 0.0305904i
\(459\) 0 0
\(460\) 14.6735 + 25.4153i 0.684156 + 1.18499i
\(461\) 2.28981 + 3.96607i 0.106647 + 0.184719i 0.914410 0.404789i \(-0.132655\pi\)
−0.807763 + 0.589508i \(0.799322\pi\)
\(462\) 0 0
\(463\) −14.8382 25.7005i −0.689589 1.19440i −0.971971 0.235101i \(-0.924458\pi\)
0.282382 0.959302i \(-0.408875\pi\)
\(464\) −2.23532 3.87168i −0.103772 0.179738i
\(465\) 0 0
\(466\) −1.18975 −0.0551142
\(467\) −38.8322 −1.79694 −0.898469 0.439037i \(-0.855320\pi\)
−0.898469 + 0.439037i \(0.855320\pi\)
\(468\) 0 0
\(469\) 1.77248 + 3.07002i 0.0818455 + 0.141761i
\(470\) −2.38781 4.13581i −0.110141 0.190771i
\(471\) 0 0
\(472\) 6.56022 0.301959
\(473\) −3.17470 −0.145973
\(474\) 0 0
\(475\) 1.56651 5.75606i 0.0718766 0.264106i
\(476\) −40.5385 −1.85808
\(477\) 0 0
\(478\) 1.87106 3.24077i 0.0855803 0.148229i
\(479\) −9.99299 −0.456591 −0.228296 0.973592i \(-0.573315\pi\)
−0.228296 + 0.973592i \(0.573315\pi\)
\(480\) 0 0
\(481\) −10.4033 + 18.0190i −0.474349 + 0.821596i
\(482\) −1.03908 1.79974i −0.0473287 0.0819758i
\(483\) 0 0
\(484\) 20.8211 0.946412
\(485\) −13.9937 24.2378i −0.635421 1.10058i
\(486\) 0 0
\(487\) −17.8510 −0.808906 −0.404453 0.914559i \(-0.632538\pi\)
−0.404453 + 0.914559i \(0.632538\pi\)
\(488\) −2.81320 −0.127348
\(489\) 0 0
\(490\) −0.831953 + 1.44098i −0.0375838 + 0.0650971i
\(491\) 13.4844 0.608544 0.304272 0.952585i \(-0.401587\pi\)
0.304272 + 0.952585i \(0.401587\pi\)
\(492\) 0 0
\(493\) 3.61097 6.25439i 0.162630 0.281684i
\(494\) −0.822285 + 3.02144i −0.0369964 + 0.135941i
\(495\) 0 0
\(496\) −3.43481 + 5.94927i −0.154228 + 0.267130i
\(497\) 5.29650 + 9.17380i 0.237580 + 0.411501i
\(498\) 0 0
\(499\) 15.2752 0.683811 0.341905 0.939734i \(-0.388928\pi\)
0.341905 + 0.939734i \(0.388928\pi\)
\(500\) −11.9061 + 20.6220i −0.532458 + 0.922245i
\(501\) 0 0
\(502\) −1.76103 + 3.05019i −0.0785984 + 0.136136i
\(503\) −0.700770 1.21377i −0.0312458 0.0541193i 0.849980 0.526816i \(-0.176614\pi\)
−0.881225 + 0.472696i \(0.843281\pi\)
\(504\) 0 0
\(505\) −16.2703 −0.724019
\(506\) 0.476144 0.824706i 0.0211672 0.0366627i
\(507\) 0 0
\(508\) −16.9828 −0.753490
\(509\) 7.65770 13.2635i 0.339421 0.587895i −0.644903 0.764265i \(-0.723102\pi\)
0.984324 + 0.176370i \(0.0564354\pi\)
\(510\) 0 0
\(511\) −7.01134 12.1440i −0.310163 0.537219i
\(512\) 14.4180 0.637192
\(513\) 0 0
\(514\) −4.55023 −0.200702
\(515\) 12.7612 + 22.1030i 0.562325 + 0.973976i
\(516\) 0 0
\(517\) 4.01071 6.94675i 0.176391 0.305518i
\(518\) −3.72058 −0.163473
\(519\) 0 0
\(520\) 2.71198 4.69729i 0.118928 0.205990i
\(521\) −23.8486 −1.04483 −0.522414 0.852692i \(-0.674968\pi\)
−0.522414 + 0.852692i \(0.674968\pi\)
\(522\) 0 0
\(523\) 7.28432 + 12.6168i 0.318521 + 0.551694i 0.980180 0.198111i \(-0.0634805\pi\)
−0.661659 + 0.749805i \(0.730147\pi\)
\(524\) −2.04496 + 3.54198i −0.0893345 + 0.154732i
\(525\) 0 0
\(526\) −2.37492 + 4.11348i −0.103552 + 0.179356i
\(527\) −11.0973 −0.483407
\(528\) 0 0
\(529\) −19.3021 33.4322i −0.839221 1.45357i
\(530\) −0.716341 + 1.24074i −0.0311159 + 0.0538943i
\(531\) 0 0
\(532\) 28.0255 7.39192i 1.21506 0.320480i
\(533\) −7.44671 + 12.8981i −0.322553 + 0.558678i
\(534\) 0 0
\(535\) −19.4267 −0.839889
\(536\) 0.403456 0.698807i 0.0174267 0.0301839i
\(537\) 0 0
\(538\) 4.87680 0.210254
\(539\) −2.79480 −0.120380
\(540\) 0 0
\(541\) 20.7123 + 35.8747i 0.890490 + 1.54237i 0.839289 + 0.543686i \(0.182972\pi\)
0.0512015 + 0.998688i \(0.483695\pi\)
\(542\) 0.554911 0.0238355
\(543\) 0 0
\(544\) 6.94268 + 12.0251i 0.297665 + 0.515571i
\(545\) −1.80139 + 3.12010i −0.0771631 + 0.133650i
\(546\) 0 0
\(547\) 34.3461 1.46853 0.734266 0.678862i \(-0.237526\pi\)
0.734266 + 0.678862i \(0.237526\pi\)
\(548\) 16.7122 28.9463i 0.713908 1.23652i
\(549\) 0 0
\(550\) 0.166046 0.00708021
\(551\) −1.35593 + 4.98228i −0.0577645 + 0.212252i
\(552\) 0 0
\(553\) 55.3565 2.35400
\(554\) 0.447469 0.0190111
\(555\) 0 0
\(556\) 2.21924 + 3.84384i 0.0941168 + 0.163015i
\(557\) −2.91894 5.05575i −0.123679 0.214219i 0.797537 0.603271i \(-0.206136\pi\)
−0.921216 + 0.389052i \(0.872803\pi\)
\(558\) 0 0
\(559\) 18.7971 0.795035
\(560\) −24.3726 −1.02993
\(561\) 0 0
\(562\) 1.38143 + 2.39271i 0.0582721 + 0.100930i
\(563\) −17.0958 29.6108i −0.720503 1.24795i −0.960799 0.277247i \(-0.910578\pi\)
0.240296 0.970700i \(-0.422756\pi\)
\(564\) 0 0
\(565\) 9.40823 + 16.2955i 0.395807 + 0.685559i
\(566\) 0.805801 + 1.39569i 0.0338704 + 0.0586652i
\(567\) 0 0
\(568\) 1.20560 2.08817i 0.0505860 0.0876175i
\(569\) 20.3407 35.2311i 0.852727 1.47697i −0.0260109 0.999662i \(-0.508280\pi\)
0.878738 0.477305i \(-0.158386\pi\)
\(570\) 0 0
\(571\) 2.75438 + 4.77073i 0.115267 + 0.199649i 0.917887 0.396843i \(-0.129894\pi\)
−0.802619 + 0.596492i \(0.796561\pi\)
\(572\) 4.51163 0.188641
\(573\) 0 0
\(574\) −2.66321 −0.111160
\(575\) 5.37080 9.30250i 0.223978 0.387941i
\(576\) 0 0
\(577\) −39.7898 −1.65647 −0.828235 0.560381i \(-0.810655\pi\)
−0.828235 + 0.560381i \(0.810655\pi\)
\(578\) −1.96333 + 3.40059i −0.0816639 + 0.141446i
\(579\) 0 0
\(580\) 2.21461 3.83581i 0.0919565 0.159273i
\(581\) 18.1486 + 31.4343i 0.752930 + 1.30411i
\(582\) 0 0
\(583\) −2.40642 −0.0996638
\(584\) −1.59594 + 2.76425i −0.0660405 + 0.114385i
\(585\) 0 0
\(586\) −1.92836 + 3.34002i −0.0796598 + 0.137975i
\(587\) 2.86972 + 4.97050i 0.118446 + 0.205154i 0.919152 0.393903i \(-0.128875\pi\)
−0.800706 + 0.599057i \(0.795542\pi\)
\(588\) 0 0
\(589\) 7.67191 2.02352i 0.316115 0.0833776i
\(590\) 1.57762 + 2.73252i 0.0649497 + 0.112496i
\(591\) 0 0
\(592\) −10.6407 18.4303i −0.437331 0.757480i
\(593\) 13.0607 + 22.6219i 0.536340 + 0.928968i 0.999097 + 0.0424831i \(0.0135269\pi\)
−0.462757 + 0.886485i \(0.653140\pi\)
\(594\) 0 0
\(595\) −19.6860 34.0971i −0.807047 1.39785i
\(596\) −2.35970 + 4.08713i −0.0966573 + 0.167415i
\(597\) 0 0
\(598\) −2.81921 + 4.88301i −0.115286 + 0.199681i
\(599\) −18.0733 + 31.3039i −0.738456 + 1.27904i 0.214734 + 0.976673i \(0.431112\pi\)
−0.953190 + 0.302371i \(0.902222\pi\)
\(600\) 0 0
\(601\) −20.5640 + 35.6178i −0.838821 + 1.45288i 0.0520595 + 0.998644i \(0.483421\pi\)
−0.890881 + 0.454237i \(0.849912\pi\)
\(602\) 1.68063 + 2.91094i 0.0684975 + 0.118641i
\(603\) 0 0
\(604\) −7.57983 13.1286i −0.308419 0.534197i
\(605\) 10.1110 + 17.5127i 0.411069 + 0.711992i
\(606\) 0 0
\(607\) −18.4789 32.0064i −0.750035 1.29910i −0.947805 0.318850i \(-0.896703\pi\)
0.197770 0.980248i \(-0.436630\pi\)
\(608\) −6.99238 7.04735i −0.283578 0.285808i
\(609\) 0 0
\(610\) −0.676527 1.17178i −0.0273918 0.0474440i
\(611\) −23.7471 + 41.1311i −0.960704 + 1.66399i
\(612\) 0 0
\(613\) 16.4713 28.5292i 0.665270 1.15228i −0.313942 0.949442i \(-0.601650\pi\)
0.979212 0.202839i \(-0.0650169\pi\)
\(614\) 3.53601 0.142702
\(615\) 0 0
\(616\) 0.814553 + 1.41085i 0.0328193 + 0.0568446i
\(617\) −6.58944 + 11.4132i −0.265281 + 0.459480i −0.967637 0.252346i \(-0.918798\pi\)
0.702356 + 0.711826i \(0.252131\pi\)
\(618\) 0 0
\(619\) −15.4316 + 26.7283i −0.620249 + 1.07430i 0.369190 + 0.929354i \(0.379635\pi\)
−0.989439 + 0.144949i \(0.953698\pi\)
\(620\) −6.80597 −0.273334
\(621\) 0 0
\(622\) 0.225625 0.390794i 0.00904675 0.0156694i
\(623\) 35.6011 1.42633
\(624\) 0 0
\(625\) −16.2842 −0.651369
\(626\) −1.82137 3.15470i −0.0727966 0.126087i
\(627\) 0 0
\(628\) −5.33566 + 9.24163i −0.212916 + 0.368781i
\(629\) 17.1892 29.7726i 0.685379 1.18711i
\(630\) 0 0
\(631\) −9.33975 16.1769i −0.371810 0.643993i 0.618034 0.786151i \(-0.287929\pi\)
−0.989844 + 0.142158i \(0.954596\pi\)
\(632\) −6.30020 10.9123i −0.250609 0.434067i
\(633\) 0 0
\(634\) −1.40073 2.42613i −0.0556301 0.0963541i
\(635\) −8.24705 14.2843i −0.327274 0.566856i
\(636\) 0 0
\(637\) 16.5478 0.655646
\(638\) −0.143724 −0.00569011
\(639\) 0 0
\(640\) 5.65815 + 9.80020i 0.223658 + 0.387387i
\(641\) −12.3252 21.3478i −0.486815 0.843188i 0.513070 0.858347i \(-0.328508\pi\)
−0.999885 + 0.0151588i \(0.995175\pi\)
\(642\) 0 0
\(643\) 5.23393 0.206406 0.103203 0.994660i \(-0.467091\pi\)
0.103203 + 0.994660i \(0.467091\pi\)
\(644\) 52.1898 2.05657
\(645\) 0 0
\(646\) 1.35865 4.99229i 0.0534555 0.196419i
\(647\) 7.54367 0.296572 0.148286 0.988944i \(-0.452624\pi\)
0.148286 + 0.988944i \(0.452624\pi\)
\(648\) 0 0
\(649\) −2.64987 + 4.58971i −0.104016 + 0.180162i
\(650\) −0.983143 −0.0385620
\(651\) 0 0
\(652\) −7.13638 + 12.3606i −0.279482 + 0.484077i
\(653\) −9.82702 17.0209i −0.384561 0.666079i 0.607147 0.794589i \(-0.292314\pi\)
−0.991708 + 0.128510i \(0.958980\pi\)
\(654\) 0 0
\(655\) −3.97223 −0.155208
\(656\) −7.61668 13.1925i −0.297381 0.515080i
\(657\) 0 0
\(658\) −8.49280 −0.331084
\(659\) 34.9152 1.36010 0.680051 0.733165i \(-0.261958\pi\)
0.680051 + 0.733165i \(0.261958\pi\)
\(660\) 0 0
\(661\) 12.1794 21.0954i 0.473725 0.820515i −0.525823 0.850594i \(-0.676243\pi\)
0.999548 + 0.0300790i \(0.00957589\pi\)
\(662\) 5.56671 0.216356
\(663\) 0 0
\(664\) 4.13103 7.15515i 0.160315 0.277674i
\(665\) 19.8269 + 19.9828i 0.768854 + 0.774899i
\(666\) 0 0
\(667\) −4.64881 + 8.05198i −0.180003 + 0.311774i
\(668\) 4.37872 + 7.58416i 0.169418 + 0.293440i
\(669\) 0 0
\(670\) 0.388098 0.0149935
\(671\) 1.13634 1.96819i 0.0438678 0.0759812i
\(672\) 0 0
\(673\) −7.88496 + 13.6572i −0.303943 + 0.526445i −0.977025 0.213123i \(-0.931637\pi\)
0.673083 + 0.739567i \(0.264970\pi\)
\(674\) −1.97718 3.42458i −0.0761583 0.131910i
\(675\) 0 0
\(676\) −1.20573 −0.0463744
\(677\) 19.7783 34.2569i 0.760140 1.31660i −0.182638 0.983180i \(-0.558464\pi\)
0.942778 0.333421i \(-0.108203\pi\)
\(678\) 0 0
\(679\) −49.7718 −1.91007
\(680\) −4.48098 + 7.76128i −0.171838 + 0.297632i
\(681\) 0 0
\(682\) 0.110424 + 0.191260i 0.00422836 + 0.00732374i
\(683\) −4.78389 −0.183051 −0.0915253 0.995803i \(-0.529174\pi\)
−0.0915253 + 0.995803i \(0.529174\pi\)
\(684\) 0 0
\(685\) 32.4625 1.24033
\(686\) −0.829781 1.43722i −0.0316812 0.0548734i
\(687\) 0 0
\(688\) −9.61310 + 16.6504i −0.366496 + 0.634789i
\(689\) 14.2482 0.542814
\(690\) 0 0
\(691\) 8.12539 14.0736i 0.309104 0.535384i −0.669062 0.743206i \(-0.733304\pi\)
0.978167 + 0.207822i \(0.0666375\pi\)
\(692\) 23.5570 0.895504
\(693\) 0 0
\(694\) −3.48109 6.02943i −0.132140 0.228874i
\(695\) −2.15538 + 3.73323i −0.0817583 + 0.141610i
\(696\) 0 0
\(697\) 12.3041 21.3114i 0.466052 0.807225i
\(698\) 0.759192 0.0287358
\(699\) 0 0
\(700\) 4.55004 + 7.88089i 0.171975 + 0.297870i
\(701\) 11.1768 19.3588i 0.422142 0.731171i −0.574007 0.818850i \(-0.694612\pi\)
0.996149 + 0.0876795i \(0.0279451\pi\)
\(702\) 0 0
\(703\) −6.45460 + 23.7170i −0.243440 + 0.894505i
\(704\) −2.21371 + 3.83426i −0.0834323 + 0.144509i
\(705\) 0 0
\(706\) 1.94791 0.0733106
\(707\) −14.4673 + 25.0581i −0.544098 + 0.942406i
\(708\) 0 0
\(709\) −16.7749 −0.629993 −0.314996 0.949093i \(-0.602003\pi\)
−0.314996 + 0.949093i \(0.602003\pi\)
\(710\) 1.15971 0.0435231
\(711\) 0 0
\(712\) −4.05181 7.01795i −0.151848 0.263009i
\(713\) 14.2868 0.535046
\(714\) 0 0
\(715\) 2.19090 + 3.79475i 0.0819350 + 0.141916i
\(716\) −19.6331 + 34.0055i −0.733722 + 1.27084i
\(717\) 0 0
\(718\) 0.879207 0.0328117
\(719\) 24.2869 42.0661i 0.905747 1.56880i 0.0858361 0.996309i \(-0.472644\pi\)
0.819911 0.572491i \(-0.194023\pi\)
\(720\) 0 0
\(721\) 45.3882 1.69034
\(722\) −0.0289680 + 3.69906i −0.00107808 + 0.137665i
\(723\) 0 0
\(724\) −23.7223 −0.881631
\(725\) −1.62118 −0.0602091
\(726\) 0 0
\(727\) −15.7902 27.3495i −0.585627 1.01434i −0.994797 0.101877i \(-0.967515\pi\)
0.409170 0.912458i \(-0.365818\pi\)
\(728\) −4.82290 8.35350i −0.178748 0.309601i
\(729\) 0 0
\(730\) −1.53519 −0.0568198
\(731\) −31.0583 −1.14873
\(732\) 0 0
\(733\) −17.0488 29.5294i −0.629712 1.09069i −0.987609 0.156932i \(-0.949840\pi\)
0.357898 0.933761i \(-0.383494\pi\)
\(734\) 2.28634 + 3.96007i 0.0843905 + 0.146169i
\(735\) 0 0
\(736\) −8.93810 15.4812i −0.329463 0.570646i
\(737\) 0.325936 + 0.564538i 0.0120060 + 0.0207950i
\(738\) 0 0
\(739\) 16.0360 27.7752i 0.589894 1.02173i −0.404352 0.914603i \(-0.632503\pi\)
0.994246 0.107123i \(-0.0341637\pi\)
\(740\) 10.5421 18.2595i 0.387536 0.671233i
\(741\) 0 0
\(742\) 1.27392 + 2.20649i 0.0467670 + 0.0810028i
\(743\) 19.2215 0.705170 0.352585 0.935780i \(-0.385303\pi\)
0.352585 + 0.935780i \(0.385303\pi\)
\(744\) 0 0
\(745\) −4.58360 −0.167930
\(746\) −2.37560 + 4.11465i −0.0869768 + 0.150648i
\(747\) 0 0
\(748\) −7.45452 −0.272564
\(749\) −17.2739 + 29.9192i −0.631174 + 1.09323i
\(750\) 0 0
\(751\) −11.1484 + 19.3096i −0.406811 + 0.704618i −0.994530 0.104447i \(-0.966693\pi\)
0.587719 + 0.809065i \(0.300026\pi\)
\(752\) −24.2891 42.0700i −0.885732 1.53413i
\(753\) 0 0
\(754\) 0.850980 0.0309909
\(755\) 7.36171 12.7509i 0.267920 0.464051i
\(756\) 0 0
\(757\) 12.7479 22.0801i 0.463331 0.802513i −0.535793 0.844349i \(-0.679987\pi\)
0.999124 + 0.0418359i \(0.0133207\pi\)
\(758\) 1.72418 + 2.98637i 0.0626252 + 0.108470i
\(759\) 0 0
\(760\) 1.68262 6.18268i 0.0610350 0.224269i
\(761\) −6.39108 11.0697i −0.231676 0.401275i 0.726625 0.687034i \(-0.241088\pi\)
−0.958302 + 0.285759i \(0.907754\pi\)
\(762\) 0 0
\(763\) 3.20353 + 5.54868i 0.115976 + 0.200876i
\(764\) 2.64265 + 4.57721i 0.0956078 + 0.165598i
\(765\) 0 0
\(766\) 0.396763 + 0.687214i 0.0143356 + 0.0248301i
\(767\) 15.6896 27.1753i 0.566520 0.981242i
\(768\) 0 0
\(769\) −0.952422 + 1.64964i −0.0343452 + 0.0594877i −0.882687 0.469961i \(-0.844268\pi\)
0.848342 + 0.529449i \(0.177601\pi\)
\(770\) −0.391772 + 0.678570i −0.0141185 + 0.0244539i
\(771\) 0 0
\(772\) 12.2870 21.2817i 0.442218 0.765945i
\(773\) −16.8937 29.2607i −0.607623 1.05243i −0.991631 0.129104i \(-0.958790\pi\)
0.384008 0.923330i \(-0.374544\pi\)
\(774\) 0 0
\(775\) 1.24556 + 2.15737i 0.0447419 + 0.0774952i
\(776\) 5.66460 + 9.81137i 0.203347 + 0.352208i
\(777\) 0 0
\(778\) 0.517066 + 0.895584i 0.0185377 + 0.0321082i
\(779\) −4.62023 + 16.9768i −0.165537 + 0.608255i
\(780\) 0 0
\(781\) 0.973958 + 1.68695i 0.0348510 + 0.0603636i
\(782\) 4.65815 8.06816i 0.166575 0.288517i
\(783\) 0 0
\(784\) −8.46273 + 14.6579i −0.302240 + 0.523496i
\(785\) −10.3642 −0.369916
\(786\) 0 0
\(787\) −0.571053 0.989094i −0.0203559 0.0352574i 0.855668 0.517525i \(-0.173147\pi\)
−0.876024 + 0.482268i \(0.839813\pi\)
\(788\) 11.6298 20.1434i 0.414294 0.717578i
\(789\) 0 0
\(790\) 3.03018 5.24843i 0.107809 0.186731i
\(791\) 33.4626 1.18979
\(792\) 0 0
\(793\) −6.72815 + 11.6535i −0.238924 + 0.413828i
\(794\) −3.65600 −0.129747
\(795\) 0 0
\(796\) 11.8445 0.419817
\(797\) 14.0447 + 24.3261i 0.497488 + 0.861674i 0.999996 0.00289827i \(-0.000922550\pi\)
−0.502508 + 0.864573i \(0.667589\pi\)
\(798\) 0 0
\(799\) 39.2371 67.9606i 1.38811 2.40427i
\(800\) 1.55849 2.69939i 0.0551010 0.0954377i
\(801\) 0 0
\(802\) 2.03535 + 3.52533i 0.0718708 + 0.124484i
\(803\) −1.28930 2.23313i −0.0454983 0.0788053i
\(804\) 0 0
\(805\) 25.3440 + 43.8971i 0.893259 + 1.54717i
\(806\) −0.653812 1.13244i −0.0230296 0.0398884i
\(807\) 0 0
\(808\) 6.58616 0.231700
\(809\) 19.5465 0.687217 0.343609 0.939113i \(-0.388351\pi\)
0.343609 + 0.939113i \(0.388351\pi\)
\(810\) 0 0
\(811\) 11.5944 + 20.0821i 0.407134 + 0.705176i 0.994567 0.104096i \(-0.0331950\pi\)
−0.587433 + 0.809272i \(0.699862\pi\)
\(812\) −3.93838 6.82148i −0.138210 0.239387i
\(813\) 0 0
\(814\) −0.684168 −0.0239801
\(815\) −13.8620 −0.485566
\(816\) 0 0
\(817\) 21.4716 5.66327i 0.751195 0.198133i
\(818\) −0.221894 −0.00775835
\(819\) 0 0
\(820\) 7.54610 13.0702i 0.263521 0.456432i
\(821\) 1.73188 0.0604429 0.0302214 0.999543i \(-0.490379\pi\)
0.0302214 + 0.999543i \(0.490379\pi\)
\(822\) 0 0
\(823\) 5.42401 9.39465i 0.189069 0.327477i −0.755871 0.654720i \(-0.772786\pi\)
0.944940 + 0.327243i \(0.106120\pi\)
\(824\) −5.16569 8.94723i −0.179955 0.311692i
\(825\) 0 0
\(826\) 5.61118 0.195238
\(827\) −23.9980 41.5658i −0.834493 1.44538i −0.894442 0.447183i \(-0.852427\pi\)
0.0599489 0.998201i \(-0.480906\pi\)
\(828\) 0 0
\(829\) −36.8202 −1.27882 −0.639409 0.768867i \(-0.720821\pi\)
−0.639409 + 0.768867i \(0.720821\pi\)
\(830\) 3.97377 0.137932
\(831\) 0 0
\(832\) 13.1072 22.7023i 0.454410 0.787061i
\(833\) −27.3417 −0.947333
\(834\) 0 0
\(835\) −4.25271 + 7.36592i −0.147171 + 0.254908i
\(836\) 5.15353 1.35928i 0.178239 0.0470117i
\(837\) 0 0
\(838\) −0.752581 + 1.30351i −0.0259975 + 0.0450290i
\(839\) 12.9609 + 22.4490i 0.447461 + 0.775025i 0.998220 0.0596394i \(-0.0189951\pi\)
−0.550759 + 0.834664i \(0.685662\pi\)
\(840\) 0 0
\(841\) −27.5968 −0.951612
\(842\) 1.30443 2.25934i 0.0449537 0.0778621i
\(843\) 0 0
\(844\) −5.54709 + 9.60784i −0.190939 + 0.330716i
\(845\) −0.585519 1.01415i −0.0201425 0.0348878i
\(846\) 0 0
\(847\) 35.9620 1.23567
\(848\) −7.28671 + 12.6210i −0.250227 + 0.433405i
\(849\) 0 0
\(850\) 1.62444 0.0557177
\(851\) −22.1296 + 38.3296i −0.758594 + 1.31392i
\(852\) 0 0
\(853\) −21.3868 37.0430i −0.732270 1.26833i −0.955911 0.293658i \(-0.905127\pi\)
0.223640 0.974672i \(-0.428206\pi\)
\(854\) −2.40623 −0.0823394
\(855\) 0 0
\(856\) 7.86385 0.268781
\(857\) −16.8665 29.2136i −0.576149 0.997919i −0.995916 0.0902869i \(-0.971222\pi\)
0.419767 0.907632i \(-0.362112\pi\)
\(858\) 0 0
\(859\) −4.24540 + 7.35325i −0.144851 + 0.250890i −0.929317 0.369282i \(-0.879604\pi\)
0.784466 + 0.620172i \(0.212937\pi\)
\(860\) −19.0480 −0.649533
\(861\) 0 0
\(862\) −3.34380 + 5.79162i −0.113890 + 0.197264i
\(863\) 1.25544 0.0427358 0.0213679 0.999772i \(-0.493198\pi\)
0.0213679 + 0.999772i \(0.493198\pi\)
\(864\) 0 0
\(865\) 11.4396 + 19.8139i 0.388958 + 0.673694i
\(866\) −0.181100 + 0.313675i −0.00615403 + 0.0106591i
\(867\) 0 0
\(868\) −6.05176 + 10.4819i −0.205410 + 0.355780i
\(869\) 10.1794 0.345311
\(870\) 0 0
\(871\) −1.92984 3.34258i −0.0653902 0.113259i
\(872\) 0.729197 1.26301i 0.0246937 0.0427708i
\(873\) 0 0
\(874\) −1.74915 + 6.42714i −0.0591658 + 0.217401i
\(875\) −20.5642 + 35.6182i −0.695196 + 1.20412i
\(876\) 0 0
\(877\) −3.81281 −0.128750 −0.0643748 0.997926i \(-0.520505\pi\)
−0.0643748 + 0.997926i \(0.520505\pi\)
\(878\) 1.46785 2.54238i 0.0495374 0.0858012i
\(879\) 0 0
\(880\) −4.48182 −0.151082
\(881\) 17.1658 0.578331 0.289165 0.957279i \(-0.406622\pi\)
0.289165 + 0.957279i \(0.406622\pi\)
\(882\) 0 0
\(883\) −1.40205 2.42843i −0.0471829 0.0817231i 0.841469 0.540305i \(-0.181691\pi\)
−0.888652 + 0.458582i \(0.848358\pi\)
\(884\) 44.1376 1.48451
\(885\) 0 0
\(886\) 0.497252 + 0.861265i 0.0167055 + 0.0289348i
\(887\) −19.9965 + 34.6349i −0.671416 + 1.16293i 0.306087 + 0.952004i \(0.400980\pi\)
−0.977503 + 0.210923i \(0.932353\pi\)
\(888\) 0 0
\(889\) −29.3326 −0.983783
\(890\) 1.94878 3.37539i 0.0653234 0.113143i
\(891\) 0 0
\(892\) −56.9781 −1.90777
\(893\) −14.7336 + 54.1378i −0.493041 + 1.81165i
\(894\) 0 0
\(895\) −38.1362 −1.27475
\(896\) 20.1245 0.672313
\(897\) 0 0
\(898\) −1.30446 2.25939i −0.0435304 0.0753968i
\(899\) −1.07812 1.86736i −0.0359574 0.0622800i
\(900\) 0 0
\(901\) −23.5422 −0.784304
\(902\) −0.489730 −0.0163062
\(903\) 0 0
\(904\) −3.80842 6.59638i −0.126666 0.219392i
\(905\) −11.5198 19.9529i −0.382932 0.663257i
\(906\) 0 0
\(907\) 27.7430 + 48.0523i 0.921192 + 1.59555i 0.797574 + 0.603221i \(0.206116\pi\)
0.123618 + 0.992330i \(0.460550\pi\)
\(908\) −22.6599 39.2480i −0.751994 1.30249i
\(909\) 0 0
\(910\) 2.31965 4.01775i 0.0768957 0.133187i
\(911\) −1.10191 + 1.90856i −0.0365078 + 0.0632334i −0.883702 0.468050i \(-0.844957\pi\)
0.847194 + 0.531283i \(0.178290\pi\)
\(912\) 0 0
\(913\) 3.33729 + 5.78036i 0.110448 + 0.191302i
\(914\) 4.73139 0.156501
\(915\) 0 0
\(916\) −7.61826 −0.251714
\(917\) −3.53204 + 6.11767i −0.116638 + 0.202023i
\(918\) 0 0
\(919\) 23.5600 0.777173 0.388587 0.921412i \(-0.372963\pi\)
0.388587 + 0.921412i \(0.372963\pi\)
\(920\) 5.76887 9.99197i 0.190194 0.329426i
\(921\) 0 0
\(922\) 0.445812 0.772169i 0.0146820 0.0254300i
\(923\) −5.76672 9.98826i −0.189814 0.328768i
\(924\) 0 0
\(925\) −7.71726 −0.253742
\(926\) −2.88890 + 5.00372i −0.0949351 + 0.164432i
\(927\) 0 0
\(928\) −1.34899 + 2.33651i −0.0442826 + 0.0766997i
\(929\) −4.86468 8.42587i −0.159605 0.276444i 0.775121 0.631812i \(-0.217689\pi\)
−0.934726 + 0.355369i \(0.884355\pi\)
\(930\) 0 0
\(931\) 18.9021 4.98557i 0.619492 0.163395i
\(932\) −5.99508 10.3838i −0.196376 0.340132i
\(933\) 0 0
\(934\) 3.78018 + 6.54747i 0.123691 + 0.214240i
\(935\) −3.62000 6.27003i −0.118387 0.205052i
\(936\) 0 0
\(937\) 0.131215 + 0.227271i 0.00428661 + 0.00742463i 0.868161 0.496283i \(-0.165302\pi\)
−0.863874 + 0.503708i \(0.831969\pi\)
\(938\) 0.345090 0.597714i 0.0112676 0.0195160i
\(939\) 0 0
\(940\) 24.0640 41.6801i 0.784882 1.35946i
\(941\) 1.75150 3.03369i 0.0570974 0.0988956i −0.836064 0.548632i \(-0.815149\pi\)
0.893161 + 0.449737i \(0.148482\pi\)
\(942\) 0 0
\(943\) −15.8405 + 27.4365i −0.515837 + 0.893456i
\(944\) 16.0478 + 27.7955i 0.522310 + 0.904668i
\(945\) 0 0
\(946\) 0.309047 + 0.535285i 0.0100480 + 0.0174036i
\(947\) 4.20377 + 7.28114i 0.136604 + 0.236605i 0.926209 0.377010i \(-0.123048\pi\)
−0.789605 + 0.613616i \(0.789714\pi\)
\(948\) 0 0
\(949\) 7.63381 + 13.2221i 0.247804 + 0.429209i
\(950\) −1.12302 + 0.296205i −0.0364356 + 0.00961015i
\(951\) 0 0
\(952\) 7.96882 + 13.8024i 0.258271 + 0.447339i
\(953\) −1.92560 + 3.33524i −0.0623764 + 0.108039i −0.895527 0.445007i \(-0.853201\pi\)
0.833151 + 0.553046i \(0.186535\pi\)
\(954\) 0 0
\(955\) −2.56661 + 4.44550i −0.0830535 + 0.143853i
\(956\) 37.7126 1.21971
\(957\) 0 0
\(958\) 0.972785 + 1.68491i 0.0314293 + 0.0544371i
\(959\) 28.8651 49.9958i 0.932103 1.61445i
\(960\) 0 0
\(961\) 13.8433 23.9774i 0.446560 0.773464i
\(962\) 4.05090 0.130606
\(963\) 0 0
\(964\) 10.4717 18.1375i 0.337271 0.584170i
\(965\) 23.8668 0.768301
\(966\) 0 0
\(967\) 42.6171 1.37047 0.685236 0.728321i \(-0.259699\pi\)
0.685236 + 0.728321i \(0.259699\pi\)
\(968\) −4.09288 7.08908i −0.131550 0.227852i
\(969\) 0 0
\(970\) −2.72448 + 4.71894i −0.0874777 + 0.151516i
\(971\) −28.5146 + 49.3887i −0.915076 + 1.58496i −0.108286 + 0.994120i \(0.534536\pi\)
−0.806790 + 0.590838i \(0.798797\pi\)
\(972\) 0 0
\(973\) 3.83306 + 6.63905i 0.122882 + 0.212838i
\(974\) 1.73774 + 3.00985i 0.0556807 + 0.0964417i
\(975\) 0 0
\(976\) −6.88172 11.9195i −0.220278 0.381534i
\(977\) 12.6223 + 21.8624i 0.403822 + 0.699441i 0.994184 0.107698i \(-0.0343481\pi\)
−0.590361 + 0.807139i \(0.701015\pi\)
\(978\) 0 0
\(979\) 6.54659 0.209230
\(980\) −16.7686 −0.535654
\(981\) 0 0
\(982\) −1.31266 2.27360i −0.0418888 0.0725536i
\(983\) 1.33119 + 2.30569i 0.0424584 + 0.0735400i 0.886474 0.462779i \(-0.153148\pi\)
−0.844015 + 0.536319i \(0.819814\pi\)
\(984\) 0 0
\(985\) 22.5902 0.719785
\(986\) −1.40607 −0.0447783
\(987\) 0 0
\(988\) −30.5136 + 8.04818i −0.970767 + 0.256047i
\(989\) 39.9849 1.27145
\(990\) 0 0
\(991\) 10.1431 17.5684i 0.322207 0.558079i −0.658736 0.752374i \(-0.728909\pi\)
0.980943 + 0.194295i \(0.0622418\pi\)
\(992\) 4.14573 0.131627
\(993\) 0 0
\(994\) 1.03119 1.78608i 0.0327075 0.0566510i
\(995\) 5.75183 + 9.96246i 0.182345 + 0.315831i
\(996\) 0 0
\(997\) 28.4073 0.899668 0.449834 0.893112i \(-0.351483\pi\)
0.449834 + 0.893112i \(0.351483\pi\)
\(998\) −1.48699 2.57554i −0.0470698 0.0815273i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.g.c.505.7 32
3.2 odd 2 171.2.g.c.106.10 32
9.4 even 3 513.2.h.c.334.10 32
9.5 odd 6 171.2.h.c.49.7 yes 32
19.7 even 3 513.2.h.c.235.10 32
57.26 odd 6 171.2.h.c.7.7 yes 32
171.121 even 3 inner 513.2.g.c.64.7 32
171.140 odd 6 171.2.g.c.121.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.g.c.106.10 32 3.2 odd 2
171.2.g.c.121.10 yes 32 171.140 odd 6
171.2.h.c.7.7 yes 32 57.26 odd 6
171.2.h.c.49.7 yes 32 9.5 odd 6
513.2.g.c.64.7 32 171.121 even 3 inner
513.2.g.c.505.7 32 1.1 even 1 trivial
513.2.h.c.235.10 32 19.7 even 3
513.2.h.c.334.10 32 9.4 even 3