Properties

Label 513.2.bo.a.71.5
Level $513$
Weight $2$
Character 513.71
Analytic conductor $4.096$
Analytic rank $0$
Dimension $108$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [513,2,Mod(71,513)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(513, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([15, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("513.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.bo (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(18\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 71.5
Character \(\chi\) \(=\) 513.71
Dual form 513.2.bo.a.224.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28121 - 1.07506i) q^{2} +(0.138440 + 0.785130i) q^{4} +(0.199661 + 0.548565i) q^{5} +(-1.25763 + 2.17828i) q^{7} +(-1.00580 + 1.74210i) q^{8} +(0.333933 - 0.917472i) q^{10} +0.404547i q^{11} +(2.33106 - 6.40453i) q^{13} +(3.95307 - 1.43880i) q^{14} +(4.65983 - 1.69604i) q^{16} +(-1.57381 - 4.32400i) q^{17} +(-3.47008 - 2.63790i) q^{19} +(-0.403054 + 0.232703i) q^{20} +(0.434912 - 0.518308i) q^{22} +(6.06451 - 1.06934i) q^{23} +(3.56916 - 2.99488i) q^{25} +(-9.87182 + 5.69950i) q^{26} +(-1.88434 - 0.685845i) q^{28} +(-0.264049 - 1.49750i) q^{29} +2.99963i q^{31} +(-4.01296 - 1.46060i) q^{32} +(-2.63218 + 7.23187i) q^{34} +(-1.44603 - 0.254974i) q^{35} -7.01209i q^{37} +(1.60999 + 7.11024i) q^{38} +(-1.15648 - 0.203918i) q^{40} +(-3.94971 - 3.31420i) q^{41} +(-0.105574 + 0.598738i) q^{43} +(-0.317622 + 0.0560053i) q^{44} +(-8.91949 - 5.14967i) q^{46} +(4.36769 - 0.770141i) q^{47} +(0.336719 + 0.583215i) q^{49} -7.79251 q^{50} +(5.35110 + 0.943543i) q^{52} +(2.63029 - 2.20707i) q^{53} +(-0.221920 + 0.0807723i) q^{55} +(-2.52986 - 4.38185i) q^{56} +(-1.27160 + 2.20247i) q^{58} +(1.31593 - 7.46301i) q^{59} +(-10.7552 - 3.91458i) q^{61} +(3.22478 - 3.84315i) q^{62} +(-1.38769 - 2.40355i) q^{64} +3.97872 q^{65} +(1.54091 + 1.83638i) q^{67} +(3.17702 - 1.83425i) q^{68} +(1.57855 + 1.88124i) q^{70} +(-5.10921 - 4.28714i) q^{71} +(-2.34660 + 13.3082i) q^{73} +(-7.53841 + 8.98393i) q^{74} +(1.59070 - 3.08966i) q^{76} +(-0.881218 - 0.508771i) q^{77} +(-0.472257 - 1.29752i) q^{79} +(1.86078 + 2.21759i) q^{80} +(1.49743 + 8.49234i) q^{82} +(11.3968 + 6.57996i) q^{83} +(2.05776 - 1.72667i) q^{85} +(0.778940 - 0.653608i) q^{86} +(-0.704762 - 0.406895i) q^{88} +(1.53648 + 8.71380i) q^{89} +(11.0193 + 13.1323i) q^{91} +(1.67914 + 4.61339i) q^{92} +(-6.42386 - 3.70882i) q^{94} +(0.754220 - 2.43025i) q^{95} +(-2.35590 + 2.80765i) q^{97} +(0.195584 - 1.10921i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 9 q^{2} - 3 q^{4} + 9 q^{5} + 3 q^{7} - 12 q^{10} - 6 q^{13} + 9 q^{14} - 9 q^{16} - 27 q^{17} - 15 q^{19} + 18 q^{20} + 30 q^{22} + 45 q^{23} - 3 q^{25} + 72 q^{26} - 36 q^{28} + 9 q^{29} + 9 q^{32}+ \cdots + 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28121 1.07506i −0.905949 0.760182i 0.0653946 0.997859i \(-0.479169\pi\)
−0.971344 + 0.237678i \(0.923614\pi\)
\(3\) 0 0
\(4\) 0.138440 + 0.785130i 0.0692198 + 0.392565i
\(5\) 0.199661 + 0.548565i 0.0892912 + 0.245326i 0.976298 0.216431i \(-0.0694416\pi\)
−0.887007 + 0.461757i \(0.847219\pi\)
\(6\) 0 0
\(7\) −1.25763 + 2.17828i −0.475341 + 0.823314i −0.999601 0.0282440i \(-0.991008\pi\)
0.524261 + 0.851558i \(0.324342\pi\)
\(8\) −1.00580 + 1.74210i −0.355605 + 0.615927i
\(9\) 0 0
\(10\) 0.333933 0.917472i 0.105599 0.290130i
\(11\) 0.404547i 0.121975i 0.998139 + 0.0609877i \(0.0194250\pi\)
−0.998139 + 0.0609877i \(0.980575\pi\)
\(12\) 0 0
\(13\) 2.33106 6.40453i 0.646519 1.77630i 0.0163159 0.999867i \(-0.494806\pi\)
0.630203 0.776430i \(-0.282972\pi\)
\(14\) 3.95307 1.43880i 1.05650 0.384536i
\(15\) 0 0
\(16\) 4.65983 1.69604i 1.16496 0.424010i
\(17\) −1.57381 4.32400i −0.381704 1.04872i −0.970639 0.240542i \(-0.922675\pi\)
0.588935 0.808181i \(-0.299548\pi\)
\(18\) 0 0
\(19\) −3.47008 2.63790i −0.796091 0.605176i
\(20\) −0.403054 + 0.232703i −0.0901255 + 0.0520340i
\(21\) 0 0
\(22\) 0.434912 0.518308i 0.0927235 0.110504i
\(23\) 6.06451 1.06934i 1.26454 0.222972i 0.499136 0.866524i \(-0.333651\pi\)
0.765403 + 0.643552i \(0.222540\pi\)
\(24\) 0 0
\(25\) 3.56916 2.99488i 0.713833 0.598977i
\(26\) −9.87182 + 5.69950i −1.93602 + 1.11776i
\(27\) 0 0
\(28\) −1.88434 0.685845i −0.356107 0.129612i
\(29\) −0.264049 1.49750i −0.0490327 0.278078i 0.950427 0.310948i \(-0.100646\pi\)
−0.999460 + 0.0328698i \(0.989535\pi\)
\(30\) 0 0
\(31\) 2.99963i 0.538750i 0.963035 + 0.269375i \(0.0868171\pi\)
−0.963035 + 0.269375i \(0.913183\pi\)
\(32\) −4.01296 1.46060i −0.709398 0.258200i
\(33\) 0 0
\(34\) −2.63218 + 7.23187i −0.451416 + 1.24025i
\(35\) −1.44603 0.254974i −0.244424 0.0430985i
\(36\) 0 0
\(37\) 7.01209i 1.15278i −0.817175 0.576390i \(-0.804461\pi\)
0.817175 0.576390i \(-0.195539\pi\)
\(38\) 1.60999 + 7.11024i 0.261174 + 1.15343i
\(39\) 0 0
\(40\) −1.15648 0.203918i −0.182855 0.0322423i
\(41\) −3.94971 3.31420i −0.616841 0.517591i 0.279968 0.960009i \(-0.409676\pi\)
−0.896809 + 0.442418i \(0.854121\pi\)
\(42\) 0 0
\(43\) −0.105574 + 0.598738i −0.0160998 + 0.0913066i −0.991799 0.127808i \(-0.959206\pi\)
0.975699 + 0.219115i \(0.0703169\pi\)
\(44\) −0.317622 + 0.0560053i −0.0478833 + 0.00844312i
\(45\) 0 0
\(46\) −8.91949 5.14967i −1.31511 0.759278i
\(47\) 4.36769 0.770141i 0.637093 0.112337i 0.154233 0.988034i \(-0.450709\pi\)
0.482860 + 0.875698i \(0.339598\pi\)
\(48\) 0 0
\(49\) 0.336719 + 0.583215i 0.0481028 + 0.0833164i
\(50\) −7.79251 −1.10203
\(51\) 0 0
\(52\) 5.35110 + 0.943543i 0.742064 + 0.130846i
\(53\) 2.63029 2.20707i 0.361297 0.303165i −0.444010 0.896022i \(-0.646445\pi\)
0.805308 + 0.592857i \(0.202000\pi\)
\(54\) 0 0
\(55\) −0.221920 + 0.0807723i −0.0299237 + 0.0108913i
\(56\) −2.52986 4.38185i −0.338067 0.585550i
\(57\) 0 0
\(58\) −1.27160 + 2.20247i −0.166969 + 0.289198i
\(59\) 1.31593 7.46301i 0.171320 0.971602i −0.770987 0.636851i \(-0.780237\pi\)
0.942307 0.334751i \(-0.108652\pi\)
\(60\) 0 0
\(61\) −10.7552 3.91458i −1.37706 0.501211i −0.455778 0.890094i \(-0.650639\pi\)
−0.921287 + 0.388883i \(0.872861\pi\)
\(62\) 3.22478 3.84315i 0.409548 0.488080i
\(63\) 0 0
\(64\) −1.38769 2.40355i −0.173461 0.300443i
\(65\) 3.97872 0.493500
\(66\) 0 0
\(67\) 1.54091 + 1.83638i 0.188252 + 0.224349i 0.851913 0.523684i \(-0.175443\pi\)
−0.663661 + 0.748033i \(0.730998\pi\)
\(68\) 3.17702 1.83425i 0.385271 0.222436i
\(69\) 0 0
\(70\) 1.57855 + 1.88124i 0.188673 + 0.224852i
\(71\) −5.10921 4.28714i −0.606352 0.508790i 0.287128 0.957892i \(-0.407299\pi\)
−0.893480 + 0.449102i \(0.851744\pi\)
\(72\) 0 0
\(73\) −2.34660 + 13.3082i −0.274649 + 1.55761i 0.465426 + 0.885087i \(0.345901\pi\)
−0.740075 + 0.672524i \(0.765210\pi\)
\(74\) −7.53841 + 8.98393i −0.876323 + 1.04436i
\(75\) 0 0
\(76\) 1.59070 3.08966i 0.182466 0.354408i
\(77\) −0.881218 0.508771i −0.100424 0.0579799i
\(78\) 0 0
\(79\) −0.472257 1.29752i −0.0531331 0.145982i 0.910287 0.413978i \(-0.135861\pi\)
−0.963420 + 0.267996i \(0.913639\pi\)
\(80\) 1.86078 + 2.21759i 0.208041 + 0.247934i
\(81\) 0 0
\(82\) 1.49743 + 8.49234i 0.165363 + 0.937822i
\(83\) 11.3968 + 6.57996i 1.25096 + 0.722245i 0.971301 0.237853i \(-0.0764437\pi\)
0.279664 + 0.960098i \(0.409777\pi\)
\(84\) 0 0
\(85\) 2.05776 1.72667i 0.223196 0.187284i
\(86\) 0.778940 0.653608i 0.0839953 0.0704804i
\(87\) 0 0
\(88\) −0.704762 0.406895i −0.0751279 0.0433751i
\(89\) 1.53648 + 8.71380i 0.162866 + 0.923661i 0.951237 + 0.308461i \(0.0998138\pi\)
−0.788371 + 0.615201i \(0.789075\pi\)
\(90\) 0 0
\(91\) 11.0193 + 13.1323i 1.15513 + 1.37663i
\(92\) 1.67914 + 4.61339i 0.175062 + 0.480979i
\(93\) 0 0
\(94\) −6.42386 3.70882i −0.662570 0.382535i
\(95\) 0.754220 2.43025i 0.0773813 0.249339i
\(96\) 0 0
\(97\) −2.35590 + 2.80765i −0.239206 + 0.285074i −0.872270 0.489025i \(-0.837353\pi\)
0.633064 + 0.774099i \(0.281797\pi\)
\(98\) 0.195584 1.10921i 0.0197570 0.112047i
\(99\) 0 0
\(100\) 2.84549 + 2.38765i 0.284549 + 0.238765i
\(101\) −5.71285 6.80830i −0.568449 0.677452i 0.402863 0.915260i \(-0.368015\pi\)
−0.971312 + 0.237809i \(0.923571\pi\)
\(102\) 0 0
\(103\) −0.240253 + 0.138710i −0.0236728 + 0.0136675i −0.511790 0.859111i \(-0.671017\pi\)
0.488117 + 0.872778i \(0.337684\pi\)
\(104\) 8.81277 + 10.5026i 0.864163 + 1.02987i
\(105\) 0 0
\(106\) −5.74267 −0.557777
\(107\) −2.99056 5.17980i −0.289108 0.500750i 0.684489 0.729023i \(-0.260025\pi\)
−0.973597 + 0.228273i \(0.926692\pi\)
\(108\) 0 0
\(109\) 5.96323 7.10670i 0.571174 0.680698i −0.400698 0.916210i \(-0.631232\pi\)
0.971871 + 0.235512i \(0.0756767\pi\)
\(110\) 0.371160 + 0.135091i 0.0353888 + 0.0128805i
\(111\) 0 0
\(112\) −2.16590 + 12.2834i −0.204658 + 1.16068i
\(113\) 10.0435 17.3958i 0.944812 1.63646i 0.188684 0.982038i \(-0.439578\pi\)
0.756128 0.654424i \(-0.227089\pi\)
\(114\) 0 0
\(115\) 1.79745 + 3.11327i 0.167613 + 0.290314i
\(116\) 1.13917 0.414626i 0.105770 0.0384970i
\(117\) 0 0
\(118\) −9.70916 + 8.14695i −0.893801 + 0.749988i
\(119\) 11.3982 + 2.00980i 1.04487 + 0.184238i
\(120\) 0 0
\(121\) 10.8363 0.985122
\(122\) 9.57125 + 16.5779i 0.866540 + 1.50089i
\(123\) 0 0
\(124\) −2.35510 + 0.415268i −0.211494 + 0.0372922i
\(125\) 4.88331 + 2.81938i 0.436777 + 0.252173i
\(126\) 0 0
\(127\) 14.8487 2.61823i 1.31761 0.232331i 0.529735 0.848163i \(-0.322291\pi\)
0.787877 + 0.615833i \(0.211180\pi\)
\(128\) −2.28917 + 12.9825i −0.202336 + 1.14751i
\(129\) 0 0
\(130\) −5.09756 4.27736i −0.447086 0.375149i
\(131\) −8.30606 1.46458i −0.725704 0.127961i −0.201420 0.979505i \(-0.564556\pi\)
−0.524283 + 0.851544i \(0.675667\pi\)
\(132\) 0 0
\(133\) 10.1102 4.24131i 0.876665 0.367768i
\(134\) 4.00935i 0.346355i
\(135\) 0 0
\(136\) 9.11579 + 1.60736i 0.781672 + 0.137830i
\(137\) −5.33163 + 14.6485i −0.455512 + 1.25151i 0.473281 + 0.880911i \(0.343069\pi\)
−0.928793 + 0.370598i \(0.879153\pi\)
\(138\) 0 0
\(139\) 5.28626 + 1.92404i 0.448375 + 0.163195i 0.556331 0.830961i \(-0.312209\pi\)
−0.107957 + 0.994156i \(0.534431\pi\)
\(140\) 1.17062i 0.0989355i
\(141\) 0 0
\(142\) 1.93703 + 10.9854i 0.162552 + 0.921876i
\(143\) 2.59093 + 0.943022i 0.216665 + 0.0788595i
\(144\) 0 0
\(145\) 0.768753 0.443840i 0.0638415 0.0368589i
\(146\) 17.3136 14.5279i 1.43289 1.20233i
\(147\) 0 0
\(148\) 5.50540 0.970751i 0.452541 0.0797952i
\(149\) −13.0336 + 15.5328i −1.06775 + 1.27250i −0.107251 + 0.994232i \(0.534205\pi\)
−0.960503 + 0.278268i \(0.910240\pi\)
\(150\) 0 0
\(151\) −0.772652 + 0.446091i −0.0628775 + 0.0363023i −0.531109 0.847303i \(-0.678225\pi\)
0.468232 + 0.883606i \(0.344891\pi\)
\(152\) 8.08572 3.39203i 0.655839 0.275130i
\(153\) 0 0
\(154\) 0.582062 + 1.59920i 0.0469039 + 0.128867i
\(155\) −1.64549 + 0.598911i −0.132169 + 0.0481057i
\(156\) 0 0
\(157\) −6.33046 + 2.30410i −0.505226 + 0.183887i −0.582043 0.813158i \(-0.697746\pi\)
0.0768172 + 0.997045i \(0.475524\pi\)
\(158\) −0.789848 + 2.17009i −0.0628369 + 0.172643i
\(159\) 0 0
\(160\) 2.49299i 0.197089i
\(161\) −5.29761 + 14.5551i −0.417510 + 1.14710i
\(162\) 0 0
\(163\) 7.41814 12.8486i 0.581034 1.00638i −0.414323 0.910130i \(-0.635982\pi\)
0.995357 0.0962505i \(-0.0306850\pi\)
\(164\) 2.05528 3.55985i 0.160491 0.277978i
\(165\) 0 0
\(166\) −7.52784 20.6826i −0.584273 1.60528i
\(167\) −0.834702 4.73383i −0.0645912 0.366315i −0.999921 0.0125388i \(-0.996009\pi\)
0.935330 0.353776i \(-0.115102\pi\)
\(168\) 0 0
\(169\) −25.6256 21.5024i −1.97120 1.65403i
\(170\) −4.49269 −0.344574
\(171\) 0 0
\(172\) −0.484702 −0.0369582
\(173\) 6.00586 + 5.03951i 0.456617 + 0.383147i 0.841884 0.539658i \(-0.181446\pi\)
−0.385268 + 0.922805i \(0.625891\pi\)
\(174\) 0 0
\(175\) 2.03501 + 11.5411i 0.153832 + 0.872426i
\(176\) 0.686127 + 1.88512i 0.0517188 + 0.142096i
\(177\) 0 0
\(178\) 7.39931 12.8160i 0.554602 0.960599i
\(179\) 0.189879 0.328881i 0.0141923 0.0245817i −0.858842 0.512240i \(-0.828816\pi\)
0.873034 + 0.487659i \(0.162149\pi\)
\(180\) 0 0
\(181\) −4.35197 + 11.9569i −0.323479 + 0.888752i 0.666241 + 0.745736i \(0.267902\pi\)
−0.989720 + 0.143015i \(0.954320\pi\)
\(182\) 28.6715i 2.12527i
\(183\) 0 0
\(184\) −4.23681 + 11.6406i −0.312342 + 0.858153i
\(185\) 3.84658 1.40004i 0.282807 0.102933i
\(186\) 0 0
\(187\) 1.74926 0.636678i 0.127918 0.0465585i
\(188\) 1.20932 + 3.32259i 0.0881989 + 0.242325i
\(189\) 0 0
\(190\) −3.57898 + 2.30282i −0.259646 + 0.167064i
\(191\) −16.9778 + 9.80211i −1.22847 + 0.709256i −0.966709 0.255878i \(-0.917636\pi\)
−0.261758 + 0.965134i \(0.584302\pi\)
\(192\) 0 0
\(193\) 0.0560858 0.0668404i 0.00403714 0.00481128i −0.764022 0.645190i \(-0.776778\pi\)
0.768059 + 0.640379i \(0.221223\pi\)
\(194\) 6.03679 1.06445i 0.433416 0.0764230i
\(195\) 0 0
\(196\) −0.411284 + 0.345108i −0.0293774 + 0.0246506i
\(197\) −12.6355 + 7.29511i −0.900242 + 0.519755i −0.877279 0.479981i \(-0.840643\pi\)
−0.0229632 + 0.999736i \(0.507310\pi\)
\(198\) 0 0
\(199\) 8.66420 + 3.15351i 0.614189 + 0.223547i 0.630335 0.776323i \(-0.282917\pi\)
−0.0161461 + 0.999870i \(0.505140\pi\)
\(200\) 1.62752 + 9.23012i 0.115083 + 0.652668i
\(201\) 0 0
\(202\) 14.8645i 1.04586i
\(203\) 3.59405 + 1.30813i 0.252253 + 0.0918125i
\(204\) 0 0
\(205\) 1.02945 2.82839i 0.0718998 0.197543i
\(206\) 0.456935 + 0.0805699i 0.0318362 + 0.00561357i
\(207\) 0 0
\(208\) 33.7976i 2.34344i
\(209\) 1.06716 1.40381i 0.0738167 0.0971036i
\(210\) 0 0
\(211\) −6.98414 1.23149i −0.480808 0.0847794i −0.0720091 0.997404i \(-0.522941\pi\)
−0.408799 + 0.912625i \(0.634052\pi\)
\(212\) 2.09697 + 1.75957i 0.144021 + 0.120848i
\(213\) 0 0
\(214\) −1.73707 + 9.85142i −0.118744 + 0.673429i
\(215\) −0.349525 + 0.0616307i −0.0238374 + 0.00420318i
\(216\) 0 0
\(217\) −6.53405 3.77244i −0.443560 0.256090i
\(218\) −15.2802 + 2.69432i −1.03491 + 0.182482i
\(219\) 0 0
\(220\) −0.0941393 0.163054i −0.00634687 0.0109931i
\(221\) −31.3618 −2.10962
\(222\) 0 0
\(223\) 13.6087 + 2.39958i 0.911306 + 0.160688i 0.609596 0.792712i \(-0.291332\pi\)
0.301710 + 0.953400i \(0.402443\pi\)
\(224\) 8.22843 6.90448i 0.549785 0.461325i
\(225\) 0 0
\(226\) −31.5693 + 11.4903i −2.09996 + 0.764323i
\(227\) −4.85622 8.41122i −0.322319 0.558272i 0.658647 0.752452i \(-0.271129\pi\)
−0.980966 + 0.194179i \(0.937796\pi\)
\(228\) 0 0
\(229\) 1.12422 1.94720i 0.0742903 0.128675i −0.826487 0.562956i \(-0.809664\pi\)
0.900777 + 0.434281i \(0.142998\pi\)
\(230\) 1.04405 5.92111i 0.0688427 0.390426i
\(231\) 0 0
\(232\) 2.87437 + 1.04619i 0.188712 + 0.0686855i
\(233\) 18.5722 22.1335i 1.21671 1.45002i 0.360992 0.932569i \(-0.382438\pi\)
0.855715 0.517447i \(-0.173118\pi\)
\(234\) 0 0
\(235\) 1.29453 + 2.24219i 0.0844459 + 0.146265i
\(236\) 6.04161 0.393275
\(237\) 0 0
\(238\) −12.4427 14.8287i −0.806543 0.961200i
\(239\) 8.75151 5.05269i 0.566088 0.326831i −0.189497 0.981881i \(-0.560686\pi\)
0.755585 + 0.655050i \(0.227353\pi\)
\(240\) 0 0
\(241\) −4.27935 5.09993i −0.275657 0.328516i 0.610398 0.792095i \(-0.291009\pi\)
−0.886056 + 0.463579i \(0.846565\pi\)
\(242\) −13.8836 11.6497i −0.892471 0.748872i
\(243\) 0 0
\(244\) 1.58451 8.98618i 0.101438 0.575281i
\(245\) −0.252701 + 0.301158i −0.0161445 + 0.0192403i
\(246\) 0 0
\(247\) −24.9835 + 16.0751i −1.58966 + 1.02284i
\(248\) −5.22567 3.01704i −0.331830 0.191582i
\(249\) 0 0
\(250\) −3.22553 8.86206i −0.204000 0.560486i
\(251\) −12.9843 15.4741i −0.819561 0.976714i 0.180416 0.983590i \(-0.442256\pi\)
−0.999976 + 0.00687624i \(0.997811\pi\)
\(252\) 0 0
\(253\) 0.432597 + 2.45338i 0.0271971 + 0.154243i
\(254\) −21.8390 12.6088i −1.37030 0.791145i
\(255\) 0 0
\(256\) 12.6378 10.6044i 0.789861 0.662772i
\(257\) 12.8250 10.7615i 0.800004 0.671283i −0.148196 0.988958i \(-0.547346\pi\)
0.948200 + 0.317675i \(0.102902\pi\)
\(258\) 0 0
\(259\) 15.2743 + 8.81863i 0.949100 + 0.547963i
\(260\) 0.550813 + 3.12381i 0.0341600 + 0.193731i
\(261\) 0 0
\(262\) 9.06726 + 10.8059i 0.560177 + 0.667593i
\(263\) −0.131317 0.360791i −0.00809736 0.0222473i 0.935578 0.353120i \(-0.114879\pi\)
−0.943675 + 0.330873i \(0.892657\pi\)
\(264\) 0 0
\(265\) 1.73589 + 1.00222i 0.106635 + 0.0615656i
\(266\) −17.5129 5.43506i −1.07378 0.333245i
\(267\) 0 0
\(268\) −1.22847 + 1.46404i −0.0750410 + 0.0894304i
\(269\) −5.48235 + 31.0919i −0.334265 + 1.89571i 0.100110 + 0.994976i \(0.468080\pi\)
−0.434375 + 0.900732i \(0.643031\pi\)
\(270\) 0 0
\(271\) −7.01972 5.89025i −0.426418 0.357807i 0.404180 0.914679i \(-0.367557\pi\)
−0.830598 + 0.556872i \(0.812001\pi\)
\(272\) −14.6673 17.4799i −0.889338 1.05987i
\(273\) 0 0
\(274\) 22.5790 13.0360i 1.36405 0.787532i
\(275\) 1.21157 + 1.44389i 0.0730604 + 0.0870700i
\(276\) 0 0
\(277\) 12.7744 0.767542 0.383771 0.923428i \(-0.374625\pi\)
0.383771 + 0.923428i \(0.374625\pi\)
\(278\) −4.70433 8.14814i −0.282147 0.488693i
\(279\) 0 0
\(280\) 1.89861 2.26268i 0.113464 0.135221i
\(281\) 2.26386 + 0.823978i 0.135051 + 0.0491544i 0.408661 0.912686i \(-0.365996\pi\)
−0.273611 + 0.961841i \(0.588218\pi\)
\(282\) 0 0
\(283\) −4.81731 + 27.3203i −0.286359 + 1.62402i 0.414030 + 0.910263i \(0.364121\pi\)
−0.700390 + 0.713761i \(0.746990\pi\)
\(284\) 2.65864 4.60491i 0.157761 0.273251i
\(285\) 0 0
\(286\) −2.30571 3.99361i −0.136340 0.236147i
\(287\) 12.1865 4.43554i 0.719349 0.261822i
\(288\) 0 0
\(289\) −3.19732 + 2.68287i −0.188078 + 0.157816i
\(290\) −1.46209 0.257805i −0.0858566 0.0151388i
\(291\) 0 0
\(292\) −10.7736 −0.630475
\(293\) −15.6142 27.0446i −0.912193 1.57996i −0.810960 0.585101i \(-0.801055\pi\)
−0.101233 0.994863i \(-0.532279\pi\)
\(294\) 0 0
\(295\) 4.35669 0.768201i 0.253656 0.0447264i
\(296\) 12.2158 + 7.05278i 0.710028 + 0.409935i
\(297\) 0 0
\(298\) 33.3975 5.88888i 1.93466 0.341133i
\(299\) 7.28813 41.3330i 0.421483 2.39035i
\(300\) 0 0
\(301\) −1.17145 0.982961i −0.0675211 0.0566569i
\(302\) 1.46950 + 0.259112i 0.0845602 + 0.0149102i
\(303\) 0 0
\(304\) −20.6440 6.40679i −1.18401 0.367454i
\(305\) 6.68152i 0.382583i
\(306\) 0 0
\(307\) −11.1605 1.96789i −0.636961 0.112313i −0.154164 0.988045i \(-0.549268\pi\)
−0.482798 + 0.875732i \(0.660379\pi\)
\(308\) 0.277456 0.762305i 0.0158095 0.0434363i
\(309\) 0 0
\(310\) 2.75208 + 1.00168i 0.156308 + 0.0568913i
\(311\) 24.3216i 1.37915i 0.724214 + 0.689576i \(0.242203\pi\)
−0.724214 + 0.689576i \(0.757797\pi\)
\(312\) 0 0
\(313\) −2.25649 12.7972i −0.127545 0.723341i −0.979764 0.200157i \(-0.935855\pi\)
0.852219 0.523185i \(-0.175256\pi\)
\(314\) 10.5877 + 3.85360i 0.597497 + 0.217471i
\(315\) 0 0
\(316\) 0.953339 0.550411i 0.0536295 0.0309630i
\(317\) −2.68688 + 2.25456i −0.150910 + 0.126629i −0.715117 0.699005i \(-0.753627\pi\)
0.564207 + 0.825634i \(0.309182\pi\)
\(318\) 0 0
\(319\) 0.605807 0.106820i 0.0339187 0.00598078i
\(320\) 1.04143 1.24113i 0.0582179 0.0693814i
\(321\) 0 0
\(322\) 22.4349 12.9528i 1.25025 0.721831i
\(323\) −5.94505 + 19.1562i −0.330791 + 1.06588i
\(324\) 0 0
\(325\) −10.8609 29.8401i −0.602454 1.65523i
\(326\) −23.3172 + 8.48676i −1.29142 + 0.470038i
\(327\) 0 0
\(328\) 9.74631 3.54737i 0.538150 0.195871i
\(329\) −3.81536 + 10.4826i −0.210348 + 0.577926i
\(330\) 0 0
\(331\) 14.5165i 0.797901i 0.916973 + 0.398950i \(0.130625\pi\)
−0.916973 + 0.398950i \(0.869375\pi\)
\(332\) −3.58835 + 9.85892i −0.196937 + 0.541079i
\(333\) 0 0
\(334\) −4.01972 + 6.96236i −0.219949 + 0.380964i
\(335\) −0.699714 + 1.21194i −0.0382295 + 0.0662154i
\(336\) 0 0
\(337\) −3.62311 9.95441i −0.197363 0.542251i 0.801048 0.598600i \(-0.204276\pi\)
−0.998411 + 0.0563492i \(0.982054\pi\)
\(338\) 9.71528 + 55.0981i 0.528441 + 2.99694i
\(339\) 0 0
\(340\) 1.64054 + 1.37657i 0.0889705 + 0.0746551i
\(341\) −1.21349 −0.0657143
\(342\) 0 0
\(343\) −19.3007 −1.04214
\(344\) −0.936876 0.786133i −0.0505130 0.0423854i
\(345\) 0 0
\(346\) −2.27696 12.9133i −0.122410 0.694224i
\(347\) 12.5772 + 34.5556i 0.675179 + 1.85504i 0.488353 + 0.872646i \(0.337598\pi\)
0.186826 + 0.982393i \(0.440180\pi\)
\(348\) 0 0
\(349\) −10.4080 + 18.0272i −0.557129 + 0.964976i 0.440606 + 0.897701i \(0.354764\pi\)
−0.997734 + 0.0672748i \(0.978570\pi\)
\(350\) 9.80012 16.9743i 0.523838 0.907315i
\(351\) 0 0
\(352\) 0.590881 1.62343i 0.0314940 0.0865292i
\(353\) 0.532095i 0.0283205i 0.999900 + 0.0141603i \(0.00450751\pi\)
−0.999900 + 0.0141603i \(0.995492\pi\)
\(354\) 0 0
\(355\) 1.33166 3.65871i 0.0706772 0.194184i
\(356\) −6.62876 + 2.41267i −0.351324 + 0.127871i
\(357\) 0 0
\(358\) −0.596841 + 0.217232i −0.0315440 + 0.0114811i
\(359\) 9.26844 + 25.4648i 0.489170 + 1.34398i 0.901433 + 0.432918i \(0.142516\pi\)
−0.412264 + 0.911064i \(0.635262\pi\)
\(360\) 0 0
\(361\) 5.08294 + 18.3075i 0.267523 + 0.963551i
\(362\) 18.4302 10.6407i 0.968669 0.559261i
\(363\) 0 0
\(364\) −8.78502 + 10.4696i −0.460460 + 0.548755i
\(365\) −7.76895 + 1.36988i −0.406646 + 0.0717026i
\(366\) 0 0
\(367\) −17.6986 + 14.8509i −0.923857 + 0.775208i −0.974704 0.223498i \(-0.928252\pi\)
0.0508471 + 0.998706i \(0.483808\pi\)
\(368\) 26.4460 15.2686i 1.37859 0.795930i
\(369\) 0 0
\(370\) −6.43340 2.34156i −0.334456 0.121732i
\(371\) 1.49970 + 8.50519i 0.0778603 + 0.441568i
\(372\) 0 0
\(373\) 25.0670i 1.29792i −0.760823 0.648959i \(-0.775205\pi\)
0.760823 0.648959i \(-0.224795\pi\)
\(374\) −2.92563 1.06484i −0.151281 0.0550616i
\(375\) 0 0
\(376\) −3.05137 + 8.38358i −0.157363 + 0.432350i
\(377\) −10.2063 1.79964i −0.525650 0.0926862i
\(378\) 0 0
\(379\) 19.7225i 1.01308i −0.862217 0.506538i \(-0.830925\pi\)
0.862217 0.506538i \(-0.169075\pi\)
\(380\) 2.01248 + 0.255718i 0.103238 + 0.0131180i
\(381\) 0 0
\(382\) 32.2898 + 5.69357i 1.65209 + 0.291308i
\(383\) 16.3804 + 13.7448i 0.836999 + 0.702325i 0.956887 0.290462i \(-0.0938090\pi\)
−0.119888 + 0.992787i \(0.538253\pi\)
\(384\) 0 0
\(385\) 0.103149 0.584987i 0.00525696 0.0298137i
\(386\) −0.143715 + 0.0253408i −0.00731489 + 0.00128981i
\(387\) 0 0
\(388\) −2.53052 1.46100i −0.128468 0.0741710i
\(389\) 25.6112 4.51595i 1.29854 0.228968i 0.518706 0.854953i \(-0.326414\pi\)
0.779835 + 0.625985i \(0.215303\pi\)
\(390\) 0 0
\(391\) −14.1682 24.5400i −0.716515 1.24104i
\(392\) −1.35469 −0.0684224
\(393\) 0 0
\(394\) 24.0313 + 4.23738i 1.21068 + 0.213476i
\(395\) 0.617480 0.518127i 0.0310688 0.0260698i
\(396\) 0 0
\(397\) 2.93642 1.06877i 0.147375 0.0536400i −0.267280 0.963619i \(-0.586125\pi\)
0.414654 + 0.909979i \(0.363903\pi\)
\(398\) −7.71042 13.3548i −0.386488 0.669417i
\(399\) 0 0
\(400\) 11.5523 20.0091i 0.577613 1.00045i
\(401\) 1.57136 8.91162i 0.0784700 0.445025i −0.920106 0.391670i \(-0.871897\pi\)
0.998576 0.0533550i \(-0.0169915\pi\)
\(402\) 0 0
\(403\) 19.2112 + 6.99232i 0.956980 + 0.348312i
\(404\) 4.55452 5.42787i 0.226596 0.270046i
\(405\) 0 0
\(406\) −3.19840 5.53980i −0.158734 0.274935i
\(407\) 2.83672 0.140611
\(408\) 0 0
\(409\) 24.5093 + 29.2091i 1.21191 + 1.44430i 0.861543 + 0.507684i \(0.169498\pi\)
0.350366 + 0.936613i \(0.386057\pi\)
\(410\) −4.35962 + 2.51703i −0.215306 + 0.124307i
\(411\) 0 0
\(412\) −0.142166 0.169427i −0.00700401 0.00834705i
\(413\) 14.6016 + 12.2522i 0.718498 + 0.602891i
\(414\) 0 0
\(415\) −1.33403 + 7.56566i −0.0654850 + 0.371384i
\(416\) −18.7089 + 22.2964i −0.917279 + 1.09317i
\(417\) 0 0
\(418\) −2.87643 + 0.651315i −0.140691 + 0.0318569i
\(419\) 10.2452 + 5.91508i 0.500512 + 0.288971i 0.728925 0.684594i \(-0.240020\pi\)
−0.228413 + 0.973564i \(0.573354\pi\)
\(420\) 0 0
\(421\) −1.20018 3.29748i −0.0584934 0.160709i 0.907004 0.421122i \(-0.138364\pi\)
−0.965497 + 0.260413i \(0.916141\pi\)
\(422\) 7.62419 + 9.08616i 0.371140 + 0.442307i
\(423\) 0 0
\(424\) 1.19940 + 6.80211i 0.0582478 + 0.330340i
\(425\) −18.5670 10.7197i −0.900634 0.519981i
\(426\) 0 0
\(427\) 22.0532 18.5048i 1.06723 0.895511i
\(428\) 3.65280 3.06507i 0.176565 0.148156i
\(429\) 0 0
\(430\) 0.514071 + 0.296799i 0.0247907 + 0.0143129i
\(431\) −0.452949 2.56880i −0.0218178 0.123735i 0.971954 0.235173i \(-0.0755655\pi\)
−0.993771 + 0.111438i \(0.964454\pi\)
\(432\) 0 0
\(433\) 3.13200 + 3.73257i 0.150514 + 0.179376i 0.836033 0.548679i \(-0.184869\pi\)
−0.685519 + 0.728055i \(0.740425\pi\)
\(434\) 4.31587 + 11.8578i 0.207169 + 0.569191i
\(435\) 0 0
\(436\) 6.40523 + 3.69806i 0.306755 + 0.177105i
\(437\) −23.8652 12.2869i −1.14163 0.587763i
\(438\) 0 0
\(439\) −10.5687 + 12.5953i −0.504418 + 0.601142i −0.956823 0.290670i \(-0.906122\pi\)
0.452405 + 0.891813i \(0.350566\pi\)
\(440\) 0.0824944 0.467849i 0.00393276 0.0223038i
\(441\) 0 0
\(442\) 40.1809 + 33.7158i 1.91121 + 1.60370i
\(443\) 10.5311 + 12.5505i 0.500349 + 0.596293i 0.955818 0.293959i \(-0.0949729\pi\)
−0.455469 + 0.890252i \(0.650528\pi\)
\(444\) 0 0
\(445\) −4.47331 + 2.58267i −0.212055 + 0.122430i
\(446\) −14.8559 17.7045i −0.703445 0.838334i
\(447\) 0 0
\(448\) 6.98081 0.329812
\(449\) −12.6656 21.9375i −0.597728 1.03529i −0.993156 0.116798i \(-0.962737\pi\)
0.395428 0.918497i \(-0.370596\pi\)
\(450\) 0 0
\(451\) 1.34075 1.59784i 0.0631334 0.0752394i
\(452\) 15.0484 + 5.47717i 0.707817 + 0.257625i
\(453\) 0 0
\(454\) −2.82074 + 15.9972i −0.132384 + 0.750787i
\(455\) −5.00377 + 8.66679i −0.234580 + 0.406305i
\(456\) 0 0
\(457\) 10.8524 + 18.7969i 0.507654 + 0.879282i 0.999961 + 0.00886020i \(0.00282033\pi\)
−0.492307 + 0.870422i \(0.663846\pi\)
\(458\) −3.53371 + 1.28616i −0.165119 + 0.0600985i
\(459\) 0 0
\(460\) −2.19549 + 1.84223i −0.102365 + 0.0858945i
\(461\) 22.9177 + 4.04101i 1.06738 + 0.188208i 0.679630 0.733555i \(-0.262140\pi\)
0.387753 + 0.921763i \(0.373251\pi\)
\(462\) 0 0
\(463\) 25.0104 1.16233 0.581165 0.813785i \(-0.302597\pi\)
0.581165 + 0.813785i \(0.302597\pi\)
\(464\) −3.77024 6.53024i −0.175029 0.303159i
\(465\) 0 0
\(466\) −47.5897 + 8.39135i −2.20455 + 0.388722i
\(467\) −13.6784 7.89724i −0.632961 0.365440i 0.148937 0.988847i \(-0.452415\pi\)
−0.781898 + 0.623406i \(0.785748\pi\)
\(468\) 0 0
\(469\) −5.93805 + 1.04704i −0.274194 + 0.0483477i
\(470\) 0.751930 4.26441i 0.0346840 0.196703i
\(471\) 0 0
\(472\) 11.6778 + 9.79881i 0.537513 + 0.451027i
\(473\) −0.242217 0.0427094i −0.0111372 0.00196378i
\(474\) 0 0
\(475\) −20.2855 + 0.977385i −0.930763 + 0.0448455i
\(476\) 9.22728i 0.422931i
\(477\) 0 0
\(478\) −16.6444 2.93486i −0.761298 0.134237i
\(479\) −8.78811 + 24.1451i −0.401539 + 1.10322i 0.559986 + 0.828502i \(0.310806\pi\)
−0.961525 + 0.274717i \(0.911416\pi\)
\(480\) 0 0
\(481\) −44.9091 16.3456i −2.04768 0.745295i
\(482\) 11.1346i 0.507168i
\(483\) 0 0
\(484\) 1.50018 + 8.50794i 0.0681900 + 0.386724i
\(485\) −2.01056 0.731785i −0.0912949 0.0332286i
\(486\) 0 0
\(487\) −17.2791 + 9.97610i −0.782991 + 0.452060i −0.837489 0.546454i \(-0.815977\pi\)
0.0544981 + 0.998514i \(0.482644\pi\)
\(488\) 17.6372 14.7994i 0.798400 0.669938i
\(489\) 0 0
\(490\) 0.647525 0.114176i 0.0292522 0.00515795i
\(491\) 27.0303 32.2134i 1.21986 1.45377i 0.368143 0.929769i \(-0.379994\pi\)
0.851716 0.524003i \(-0.175562\pi\)
\(492\) 0 0
\(493\) −6.05961 + 3.49851i −0.272911 + 0.157565i
\(494\) 49.2907 + 6.26318i 2.21769 + 0.281794i
\(495\) 0 0
\(496\) 5.08750 + 13.9778i 0.228435 + 0.627621i
\(497\) 15.7641 5.73767i 0.707117 0.257370i
\(498\) 0 0
\(499\) −5.31693 + 1.93520i −0.238018 + 0.0866316i −0.458275 0.888810i \(-0.651533\pi\)
0.220257 + 0.975442i \(0.429310\pi\)
\(500\) −1.53754 + 4.22435i −0.0687608 + 0.188919i
\(501\) 0 0
\(502\) 33.7843i 1.50787i
\(503\) 1.26270 3.46923i 0.0563009 0.154685i −0.908354 0.418202i \(-0.862660\pi\)
0.964655 + 0.263517i \(0.0848825\pi\)
\(504\) 0 0
\(505\) 2.59416 4.49322i 0.115439 0.199946i
\(506\) 2.08328 3.60835i 0.0926132 0.160411i
\(507\) 0 0
\(508\) 4.11131 + 11.2957i 0.182410 + 0.501167i
\(509\) −0.901032 5.11001i −0.0399376 0.226497i 0.958306 0.285745i \(-0.0922410\pi\)
−0.998243 + 0.0592476i \(0.981130\pi\)
\(510\) 0 0
\(511\) −26.0380 21.8484i −1.15185 0.966518i
\(512\) −1.22629 −0.0541947
\(513\) 0 0
\(514\) −28.0008 −1.23506
\(515\) −0.124061 0.104099i −0.00546676 0.00458716i
\(516\) 0 0
\(517\) 0.311558 + 1.76693i 0.0137023 + 0.0777097i
\(518\) −10.0890 27.7193i −0.443285 1.21792i
\(519\) 0 0
\(520\) −4.00181 + 6.93134i −0.175491 + 0.303960i
\(521\) −18.4067 + 31.8814i −0.806413 + 1.39675i 0.108919 + 0.994051i \(0.465261\pi\)
−0.915333 + 0.402698i \(0.868072\pi\)
\(522\) 0 0
\(523\) −2.82677 + 7.76649i −0.123606 + 0.339605i −0.986027 0.166587i \(-0.946725\pi\)
0.862421 + 0.506192i \(0.168947\pi\)
\(524\) 6.72409i 0.293743i
\(525\) 0 0
\(526\) −0.219627 + 0.603421i −0.00957621 + 0.0263104i
\(527\) 12.9704 4.72084i 0.565000 0.205643i
\(528\) 0 0
\(529\) 14.0219 5.10356i 0.609648 0.221894i
\(530\) −1.14659 3.15023i −0.0498046 0.136837i
\(531\) 0 0
\(532\) 4.72963 + 7.35065i 0.205056 + 0.318691i
\(533\) −30.4329 + 17.5704i −1.31819 + 0.761060i
\(534\) 0 0
\(535\) 2.24436 2.67472i 0.0970320 0.115638i
\(536\) −4.74901 + 0.837379i −0.205126 + 0.0361693i
\(537\) 0 0
\(538\) 40.4497 33.9413i 1.74391 1.46331i
\(539\) −0.235938 + 0.136219i −0.0101626 + 0.00586735i
\(540\) 0 0
\(541\) −10.7032 3.89566i −0.460168 0.167487i 0.101526 0.994833i \(-0.467628\pi\)
−0.561693 + 0.827346i \(0.689850\pi\)
\(542\) 2.66135 + 15.0932i 0.114315 + 0.648310i
\(543\) 0 0
\(544\) 19.6507i 0.842518i
\(545\) 5.08911 + 1.85228i 0.217993 + 0.0793431i
\(546\) 0 0
\(547\) 0.617530 1.69665i 0.0264037 0.0725435i −0.925790 0.378037i \(-0.876599\pi\)
0.952194 + 0.305493i \(0.0988214\pi\)
\(548\) −12.2391 2.15809i −0.522829 0.0921889i
\(549\) 0 0
\(550\) 3.15244i 0.134420i
\(551\) −3.03398 + 5.89297i −0.129252 + 0.251049i
\(552\) 0 0
\(553\) 3.42028 + 0.603088i 0.145445 + 0.0256459i
\(554\) −16.3667 13.7333i −0.695354 0.583471i
\(555\) 0 0
\(556\) −0.778795 + 4.41677i −0.0330283 + 0.187313i
\(557\) 2.75569 0.485903i 0.116763 0.0205884i −0.114962 0.993370i \(-0.536674\pi\)
0.231724 + 0.972782i \(0.425563\pi\)
\(558\) 0 0
\(559\) 3.58853 + 2.07184i 0.151779 + 0.0876296i
\(560\) −7.17070 + 1.26439i −0.303018 + 0.0534302i
\(561\) 0 0
\(562\) −2.01465 3.48947i −0.0849828 0.147195i
\(563\) 36.2091 1.52603 0.763017 0.646379i \(-0.223717\pi\)
0.763017 + 0.646379i \(0.223717\pi\)
\(564\) 0 0
\(565\) 11.5480 + 2.03623i 0.485829 + 0.0856648i
\(566\) 35.5429 29.8241i 1.49398 1.25360i
\(567\) 0 0
\(568\) 12.6075 4.58876i 0.528999 0.192540i
\(569\) −7.47528 12.9476i −0.313380 0.542790i 0.665712 0.746209i \(-0.268128\pi\)
−0.979092 + 0.203419i \(0.934795\pi\)
\(570\) 0 0
\(571\) −7.37174 + 12.7682i −0.308498 + 0.534334i −0.978034 0.208446i \(-0.933160\pi\)
0.669536 + 0.742779i \(0.266493\pi\)
\(572\) −0.381707 + 2.16477i −0.0159600 + 0.0905136i
\(573\) 0 0
\(574\) −20.3820 7.41842i −0.850726 0.309639i
\(575\) 18.4427 21.9792i 0.769114 0.916594i
\(576\) 0 0
\(577\) −18.2291 31.5737i −0.758886 1.31443i −0.943419 0.331603i \(-0.892411\pi\)
0.184533 0.982826i \(-0.440923\pi\)
\(578\) 6.98067 0.290358
\(579\) 0 0
\(580\) 0.454898 + 0.542126i 0.0188886 + 0.0225106i
\(581\) −28.6661 + 16.5504i −1.18927 + 0.686625i
\(582\) 0 0
\(583\) 0.892863 + 1.06407i 0.0369786 + 0.0440694i
\(584\) −20.8241 17.4735i −0.861707 0.723058i
\(585\) 0 0
\(586\) −9.06955 + 51.4360i −0.374660 + 2.12480i
\(587\) 1.91259 2.27934i 0.0789410 0.0940782i −0.725128 0.688614i \(-0.758220\pi\)
0.804069 + 0.594535i \(0.202664\pi\)
\(588\) 0 0
\(589\) 7.91274 10.4090i 0.326039 0.428894i
\(590\) −6.40767 3.69947i −0.263800 0.152305i
\(591\) 0 0
\(592\) −11.8928 32.6751i −0.488790 1.34294i
\(593\) −1.72884 2.06035i −0.0709948 0.0846083i 0.729378 0.684111i \(-0.239810\pi\)
−0.800373 + 0.599503i \(0.795365\pi\)
\(594\) 0 0
\(595\) 1.17326 + 6.65391i 0.0480991 + 0.272784i
\(596\) −13.9997 8.08272i −0.573449 0.331081i
\(597\) 0 0
\(598\) −53.7731 + 45.1210i −2.19894 + 1.84513i
\(599\) −18.1064 + 15.1931i −0.739809 + 0.620773i −0.932786 0.360430i \(-0.882630\pi\)
0.192978 + 0.981203i \(0.438186\pi\)
\(600\) 0 0
\(601\) −13.4725 7.77837i −0.549556 0.317286i 0.199387 0.979921i \(-0.436105\pi\)
−0.748943 + 0.662634i \(0.769438\pi\)
\(602\) 0.444124 + 2.51875i 0.0181011 + 0.102657i
\(603\) 0 0
\(604\) −0.457205 0.544875i −0.0186034 0.0221707i
\(605\) 2.16360 + 5.94444i 0.0879627 + 0.241676i
\(606\) 0 0
\(607\) −4.10356 2.36919i −0.166558 0.0961626i 0.414404 0.910093i \(-0.363990\pi\)
−0.580962 + 0.813931i \(0.697324\pi\)
\(608\) 10.0724 + 15.6542i 0.408489 + 0.634862i
\(609\) 0 0
\(610\) −7.18304 + 8.56041i −0.290833 + 0.346601i
\(611\) 5.24894 29.7682i 0.212350 1.20429i
\(612\) 0 0
\(613\) 29.7951 + 25.0010i 1.20341 + 1.00978i 0.999526 + 0.0307869i \(0.00980132\pi\)
0.203885 + 0.978995i \(0.434643\pi\)
\(614\) 12.1833 + 14.5194i 0.491676 + 0.585957i
\(615\) 0 0
\(616\) 1.77266 1.02345i 0.0714227 0.0412359i
\(617\) −4.98288 5.93837i −0.200603 0.239070i 0.656359 0.754449i \(-0.272096\pi\)
−0.856962 + 0.515379i \(0.827651\pi\)
\(618\) 0 0
\(619\) 26.3144 1.05767 0.528833 0.848726i \(-0.322630\pi\)
0.528833 + 0.848726i \(0.322630\pi\)
\(620\) −0.698024 1.20901i −0.0280333 0.0485551i
\(621\) 0 0
\(622\) 26.1472 31.1610i 1.04841 1.24944i
\(623\) −20.9135 7.61188i −0.837880 0.304963i
\(624\) 0 0
\(625\) 3.47371 19.7004i 0.138949 0.788016i
\(626\) −10.8667 + 18.8217i −0.434322 + 0.752268i
\(627\) 0 0
\(628\) −2.68540 4.65126i −0.107159 0.185605i
\(629\) −30.3202 + 11.0357i −1.20895 + 0.440021i
\(630\) 0 0
\(631\) −4.47423 + 3.75433i −0.178116 + 0.149457i −0.727487 0.686121i \(-0.759312\pi\)
0.549371 + 0.835579i \(0.314867\pi\)
\(632\) 2.73540 + 0.482326i 0.108809 + 0.0191859i
\(633\) 0 0
\(634\) 5.86624 0.232978
\(635\) 4.40099 + 7.62273i 0.174648 + 0.302499i
\(636\) 0 0
\(637\) 4.52013 0.797021i 0.179094 0.0315791i
\(638\) −0.891002 0.514420i −0.0352751 0.0203661i
\(639\) 0 0
\(640\) −7.57882 + 1.33635i −0.299579 + 0.0528239i
\(641\) −0.555772 + 3.15194i −0.0219517 + 0.124494i −0.993814 0.111054i \(-0.964577\pi\)
0.971863 + 0.235548i \(0.0756885\pi\)
\(642\) 0 0
\(643\) −30.3291 25.4492i −1.19606 1.00362i −0.999734 0.0230796i \(-0.992653\pi\)
−0.196331 0.980538i \(-0.562903\pi\)
\(644\) −12.1610 2.14432i −0.479211 0.0844979i
\(645\) 0 0
\(646\) 28.2109 18.1517i 1.10994 0.714170i
\(647\) 27.5631i 1.08362i 0.840502 + 0.541808i \(0.182260\pi\)
−0.840502 + 0.541808i \(0.817740\pi\)
\(648\) 0 0
\(649\) 3.01914 + 0.532355i 0.118512 + 0.0208968i
\(650\) −18.1648 + 49.9074i −0.712482 + 1.95753i
\(651\) 0 0
\(652\) 11.1148 + 4.04545i 0.435289 + 0.158432i
\(653\) 13.3174i 0.521149i −0.965454 0.260574i \(-0.916088\pi\)
0.965454 0.260574i \(-0.0839119\pi\)
\(654\) 0 0
\(655\) −0.854980 4.84883i −0.0334068 0.189460i
\(656\) −24.0260 8.74475i −0.938057 0.341425i
\(657\) 0 0
\(658\) 16.1577 9.32866i 0.629893 0.363669i
\(659\) 8.52225 7.15102i 0.331980 0.278564i −0.461526 0.887127i \(-0.652698\pi\)
0.793506 + 0.608562i \(0.208254\pi\)
\(660\) 0 0
\(661\) 2.27762 0.401606i 0.0885892 0.0156207i −0.129178 0.991621i \(-0.541234\pi\)
0.217767 + 0.976001i \(0.430123\pi\)
\(662\) 15.6061 18.5987i 0.606550 0.722858i
\(663\) 0 0
\(664\) −22.9260 + 13.2363i −0.889700 + 0.513668i
\(665\) 4.34525 + 4.69927i 0.168501 + 0.182230i
\(666\) 0 0
\(667\) −3.20266 8.79923i −0.124007 0.340707i
\(668\) 3.60112 1.31070i 0.139331 0.0507125i
\(669\) 0 0
\(670\) 2.19939 0.800511i 0.0849697 0.0309264i
\(671\) 1.58363 4.35099i 0.0611354 0.167968i
\(672\) 0 0
\(673\) 16.1918i 0.624147i 0.950058 + 0.312073i \(0.101023\pi\)
−0.950058 + 0.312073i \(0.898977\pi\)
\(674\) −6.05963 + 16.6487i −0.233408 + 0.641284i
\(675\) 0 0
\(676\) 13.3346 23.0962i 0.512869 0.888316i
\(677\) 21.0773 36.5070i 0.810068 1.40308i −0.102748 0.994707i \(-0.532764\pi\)
0.912816 0.408371i \(-0.133903\pi\)
\(678\) 0 0
\(679\) −3.15301 8.66282i −0.121001 0.332449i
\(680\) 0.938329 + 5.32153i 0.0359833 + 0.204071i
\(681\) 0 0
\(682\) 1.55473 + 1.30458i 0.0595338 + 0.0499548i
\(683\) −13.0918 −0.500945 −0.250472 0.968124i \(-0.580586\pi\)
−0.250472 + 0.968124i \(0.580586\pi\)
\(684\) 0 0
\(685\) −9.10020 −0.347701
\(686\) 24.7282 + 20.7494i 0.944128 + 0.792217i
\(687\) 0 0
\(688\) 0.523528 + 2.96907i 0.0199593 + 0.113195i
\(689\) −8.00391 21.9906i −0.304925 0.837773i
\(690\) 0 0
\(691\) 13.9770 24.2089i 0.531710 0.920949i −0.467605 0.883938i \(-0.654883\pi\)
0.999315 0.0370110i \(-0.0117836\pi\)
\(692\) −3.12522 + 5.41305i −0.118803 + 0.205773i
\(693\) 0 0
\(694\) 21.0353 57.7940i 0.798489 2.19383i
\(695\) 3.28401i 0.124570i
\(696\) 0 0
\(697\) −8.11451 + 22.2944i −0.307359 + 0.844462i
\(698\) 32.7152 11.9073i 1.23829 0.450700i
\(699\) 0 0
\(700\) −8.77955 + 3.19550i −0.331836 + 0.120778i
\(701\) −5.74896 15.7951i −0.217135 0.596574i 0.782526 0.622618i \(-0.213931\pi\)
−0.999661 + 0.0260446i \(0.991709\pi\)
\(702\) 0 0
\(703\) −18.4972 + 24.3325i −0.697635 + 0.917718i
\(704\) 0.972347 0.561385i 0.0366467 0.0211580i
\(705\) 0 0
\(706\) 0.572034 0.681723i 0.0215288 0.0256570i
\(707\) 22.0151 3.88185i 0.827962 0.145992i
\(708\) 0 0
\(709\) 25.8623 21.7010i 0.971278 0.814999i −0.0114728 0.999934i \(-0.503652\pi\)
0.982751 + 0.184935i \(0.0592075\pi\)
\(710\) −5.63946 + 3.25595i −0.211645 + 0.122193i
\(711\) 0 0
\(712\) −16.7257 6.08767i −0.626824 0.228145i
\(713\) 3.20762 + 18.1913i 0.120126 + 0.681270i
\(714\) 0 0
\(715\) 1.60958i 0.0601948i
\(716\) 0.284501 + 0.103550i 0.0106323 + 0.00386984i
\(717\) 0 0
\(718\) 15.5014 42.5898i 0.578508 1.58944i
\(719\) −21.8362 3.85031i −0.814352 0.143592i −0.249065 0.968487i \(-0.580123\pi\)
−0.565287 + 0.824895i \(0.691234\pi\)
\(720\) 0 0
\(721\) 0.697785i 0.0259869i
\(722\) 13.1693 28.9201i 0.490112 1.07630i
\(723\) 0 0
\(724\) −9.99023 1.76155i −0.371284 0.0654674i
\(725\) −5.42726 4.55401i −0.201563 0.169132i
\(726\) 0 0
\(727\) −1.60278 + 9.08980i −0.0594437 + 0.337122i −0.999997 0.00252468i \(-0.999196\pi\)
0.940553 + 0.339647i \(0.110307\pi\)
\(728\) −33.9610 + 5.98823i −1.25868 + 0.221939i
\(729\) 0 0
\(730\) 11.4263 + 6.59699i 0.422907 + 0.244166i
\(731\) 2.75509 0.485797i 0.101901 0.0179678i
\(732\) 0 0
\(733\) −3.07982 5.33441i −0.113756 0.197031i 0.803526 0.595270i \(-0.202955\pi\)
−0.917282 + 0.398239i \(0.869621\pi\)
\(734\) 38.6411 1.42627
\(735\) 0 0
\(736\) −25.8985 4.56661i −0.954633 0.168328i
\(737\) −0.742901 + 0.623368i −0.0273651 + 0.0229621i
\(738\) 0 0
\(739\) 41.0076 14.9256i 1.50849 0.549045i 0.550247 0.835002i \(-0.314533\pi\)
0.958243 + 0.285956i \(0.0923112\pi\)
\(740\) 1.63173 + 2.82625i 0.0599838 + 0.103895i
\(741\) 0 0
\(742\) 7.22217 12.5092i 0.265134 0.459226i
\(743\) −5.37307 + 30.4722i −0.197119 + 1.11792i 0.712250 + 0.701926i \(0.247676\pi\)
−0.909369 + 0.415991i \(0.863435\pi\)
\(744\) 0 0
\(745\) −11.1231 4.04847i −0.407518 0.148324i
\(746\) −26.9485 + 32.1160i −0.986654 + 1.17585i
\(747\) 0 0
\(748\) 0.742042 + 1.28525i 0.0271317 + 0.0469935i
\(749\) 15.0441 0.549699
\(750\) 0 0
\(751\) 28.3565 + 33.7940i 1.03474 + 1.23316i 0.971963 + 0.235133i \(0.0755527\pi\)
0.0627816 + 0.998027i \(0.480003\pi\)
\(752\) 19.0465 10.9965i 0.694555 0.401001i
\(753\) 0 0
\(754\) 11.1416 + 13.2781i 0.405754 + 0.483558i
\(755\) −0.398978 0.334782i −0.0145203 0.0121840i
\(756\) 0 0
\(757\) 2.66165 15.0949i 0.0967392 0.548635i −0.897461 0.441093i \(-0.854591\pi\)
0.994201 0.107542i \(-0.0342980\pi\)
\(758\) −21.2029 + 25.2686i −0.770123 + 0.917797i
\(759\) 0 0
\(760\) 3.47515 + 3.75829i 0.126057 + 0.136327i
\(761\) 23.7318 + 13.7015i 0.860276 + 0.496680i 0.864105 0.503312i \(-0.167885\pi\)
−0.00382896 + 0.999993i \(0.501219\pi\)
\(762\) 0 0
\(763\) 7.98085 + 21.9272i 0.288926 + 0.793819i
\(764\) −10.0463 11.9727i −0.363463 0.433159i
\(765\) 0 0
\(766\) −6.21020 35.2198i −0.224384 1.27254i
\(767\) −44.7296 25.8246i −1.61509 0.932473i
\(768\) 0 0
\(769\) 11.6063 9.73884i 0.418534 0.351191i −0.409071 0.912502i \(-0.634147\pi\)
0.827605 + 0.561311i \(0.189703\pi\)
\(770\) −0.761051 + 0.638597i −0.0274264 + 0.0230135i
\(771\) 0 0
\(772\) 0.0602429 + 0.0347813i 0.00216819 + 0.00125181i
\(773\) 2.17005 + 12.3070i 0.0780513 + 0.442651i 0.998641 + 0.0521193i \(0.0165976\pi\)
−0.920590 + 0.390531i \(0.872291\pi\)
\(774\) 0 0
\(775\) 8.98355 + 10.7062i 0.322699 + 0.384577i
\(776\) −2.52165 6.92817i −0.0905219 0.248707i
\(777\) 0 0
\(778\) −37.6682 21.7477i −1.35047 0.779694i
\(779\) 4.96328 + 21.9195i 0.177828 + 0.785347i
\(780\) 0 0
\(781\) 1.73435 2.06692i 0.0620598 0.0739600i
\(782\) −8.22961 + 46.6724i −0.294290 + 1.66900i
\(783\) 0 0
\(784\) 2.55821 + 2.14659i 0.0913647 + 0.0766641i
\(785\) −2.52790 3.01263i −0.0902245 0.107525i
\(786\) 0 0
\(787\) 5.00564 2.89001i 0.178432 0.103018i −0.408124 0.912927i \(-0.633817\pi\)
0.586556 + 0.809909i \(0.300484\pi\)
\(788\) −7.47686 8.91058i −0.266352 0.317426i
\(789\) 0 0
\(790\) −1.34814 −0.0479645
\(791\) 25.2620 + 43.7551i 0.898215 + 1.55575i
\(792\) 0 0
\(793\) −50.1421 + 59.7570i −1.78060 + 2.12203i
\(794\) −4.91115 1.78751i −0.174290 0.0634364i
\(795\) 0 0
\(796\) −1.27645 + 7.23910i −0.0452425 + 0.256583i
\(797\) 15.0976 26.1497i 0.534783 0.926271i −0.464391 0.885630i \(-0.653727\pi\)
0.999174 0.0406406i \(-0.0129399\pi\)
\(798\) 0 0
\(799\) −10.2040 17.6738i −0.360991 0.625255i
\(800\) −18.6972 + 6.80524i −0.661047 + 0.240602i
\(801\) 0 0
\(802\) −11.5938 + 9.72832i −0.409390 + 0.343519i
\(803\) −5.38380 0.949310i −0.189990 0.0335004i
\(804\) 0 0
\(805\) −9.04212 −0.318693
\(806\) −17.0964 29.6118i −0.602195 1.04303i
\(807\) 0 0
\(808\) 17.6068 3.10455i 0.619404 0.109218i
\(809\) −11.2366 6.48747i −0.395059 0.228087i 0.289291 0.957241i \(-0.406581\pi\)
−0.684350 + 0.729154i \(0.739914\pi\)
\(810\) 0 0
\(811\) 55.4307 9.77392i 1.94643 0.343209i 0.946654 0.322251i \(-0.104440\pi\)
0.999780 0.0209574i \(-0.00667145\pi\)
\(812\) −0.529491 + 3.00289i −0.0185815 + 0.105381i
\(813\) 0 0
\(814\) −3.63442 3.04964i −0.127386 0.106890i
\(815\) 8.52941 + 1.50396i 0.298772 + 0.0526816i
\(816\) 0 0
\(817\) 1.94576 1.79918i 0.0680735 0.0629452i
\(818\) 63.7719i 2.22973i
\(819\) 0 0
\(820\) 2.36317 + 0.416690i 0.0825254 + 0.0145515i
\(821\) 4.62750 12.7139i 0.161501 0.443720i −0.832376 0.554211i \(-0.813020\pi\)
0.993877 + 0.110491i \(0.0352424\pi\)
\(822\) 0 0
\(823\) −4.57724 1.66598i −0.159552 0.0580724i 0.261009 0.965336i \(-0.415945\pi\)
−0.420562 + 0.907264i \(0.638167\pi\)
\(824\) 0.558060i 0.0194409i
\(825\) 0 0
\(826\) −5.53582 31.3952i −0.192616 1.09238i
\(827\) 22.6833 + 8.25604i 0.788775 + 0.287091i 0.704827 0.709380i \(-0.251025\pi\)
0.0839482 + 0.996470i \(0.473247\pi\)
\(828\) 0 0
\(829\) 45.1860 26.0882i 1.56938 0.906080i 0.573135 0.819461i \(-0.305727\pi\)
0.996242 0.0866187i \(-0.0276062\pi\)
\(830\) 9.84271 8.25901i 0.341645 0.286675i
\(831\) 0 0
\(832\) −18.6284 + 3.28468i −0.645822 + 0.113876i
\(833\) 1.99189 2.37384i 0.0690148 0.0822487i
\(834\) 0 0
\(835\) 2.43015 1.40305i 0.0840990 0.0485546i
\(836\) 1.24991 + 0.643513i 0.0432290 + 0.0222563i
\(837\) 0 0
\(838\) −6.76718 18.5927i −0.233768 0.642273i
\(839\) 9.47505 3.44864i 0.327115 0.119060i −0.173242 0.984879i \(-0.555424\pi\)
0.500357 + 0.865819i \(0.333202\pi\)
\(840\) 0 0
\(841\) 25.0783 9.12776i 0.864769 0.314750i
\(842\) −2.00730 + 5.51502i −0.0691762 + 0.190060i
\(843\) 0 0
\(844\) 5.65394i 0.194617i
\(845\) 6.67904 18.3505i 0.229766 0.631276i
\(846\) 0 0
\(847\) −13.6281 + 23.6046i −0.468268 + 0.811065i
\(848\) 8.51340 14.7456i 0.292352 0.506368i
\(849\) 0 0
\(850\) 12.2639 + 33.6948i 0.420648 + 1.15572i
\(851\) −7.49829 42.5249i −0.257038 1.45773i
\(852\) 0 0
\(853\) 3.07507 + 2.58029i 0.105288 + 0.0883475i 0.693912 0.720060i \(-0.255886\pi\)
−0.588624 + 0.808407i \(0.700330\pi\)
\(854\) −48.1485 −1.64761
\(855\) 0 0
\(856\) 12.0317 0.411234
\(857\) 14.4590 + 12.1326i 0.493911 + 0.414441i 0.855426 0.517926i \(-0.173296\pi\)
−0.361514 + 0.932367i \(0.617740\pi\)
\(858\) 0 0
\(859\) −5.24029 29.7192i −0.178796 1.01400i −0.933670 0.358135i \(-0.883413\pi\)
0.754874 0.655870i \(-0.227698\pi\)
\(860\) −0.0967763 0.265891i −0.00330004 0.00906680i
\(861\) 0 0
\(862\) −2.18129 + 3.77811i −0.0742952 + 0.128683i
\(863\) −2.77666 + 4.80931i −0.0945184 + 0.163711i −0.909408 0.415906i \(-0.863464\pi\)
0.814889 + 0.579617i \(0.196798\pi\)
\(864\) 0 0
\(865\) −1.56536 + 4.30080i −0.0532239 + 0.146231i
\(866\) 8.14928i 0.276924i
\(867\) 0 0
\(868\) 2.05728 5.65234i 0.0698287 0.191853i
\(869\) 0.524906 0.191050i 0.0178062 0.00648093i
\(870\) 0 0
\(871\) 15.3531 5.58807i 0.520219 0.189344i
\(872\) 6.38276 + 17.5365i 0.216148 + 0.593861i
\(873\) 0 0
\(874\) 17.3670 + 41.3985i 0.587449 + 1.40033i
\(875\) −12.2828 + 7.09149i −0.415235 + 0.239736i
\(876\) 0 0
\(877\) −22.9693 + 27.3737i −0.775617 + 0.924344i −0.998727 0.0504489i \(-0.983935\pi\)
0.223110 + 0.974793i \(0.428379\pi\)
\(878\) 27.0815 4.77519i 0.913955 0.161155i
\(879\) 0 0
\(880\) −0.897117 + 0.752771i −0.0302418 + 0.0253759i
\(881\) 12.2972 7.09981i 0.414305 0.239199i −0.278333 0.960485i \(-0.589782\pi\)
0.692638 + 0.721286i \(0.256449\pi\)
\(882\) 0 0
\(883\) 3.10982 + 1.13188i 0.104654 + 0.0380909i 0.393816 0.919189i \(-0.371155\pi\)
−0.289163 + 0.957280i \(0.593377\pi\)
\(884\) −4.34172 24.6231i −0.146028 0.828164i
\(885\) 0 0
\(886\) 27.4014i 0.920567i
\(887\) −38.9812 14.1880i −1.30886 0.476386i −0.408988 0.912540i \(-0.634118\pi\)
−0.899872 + 0.436154i \(0.856340\pi\)
\(888\) 0 0
\(889\) −12.9710 + 35.6375i −0.435033 + 1.19524i
\(890\) 8.50775 + 1.50015i 0.285180 + 0.0502850i
\(891\) 0 0
\(892\) 11.0168i 0.368870i
\(893\) −17.1878 8.84909i −0.575168 0.296123i
\(894\) 0 0
\(895\) 0.218324 + 0.0384964i 0.00729777 + 0.00128679i
\(896\) −25.4007 21.3137i −0.848578 0.712042i
\(897\) 0 0
\(898\) −7.35685 + 41.7228i −0.245501 + 1.39231i
\(899\) 4.49194 0.792050i 0.149815 0.0264163i
\(900\) 0 0
\(901\) −13.6829 7.89984i −0.455844 0.263182i
\(902\) −3.43555 + 0.605780i −0.114391 + 0.0201703i
\(903\) 0 0
\(904\) 20.2036 + 34.9936i 0.671960 + 1.16387i
\(905\) −7.42807 −0.246917
\(906\) 0 0
\(907\) 18.6843 + 3.29455i 0.620403 + 0.109394i 0.475010 0.879980i \(-0.342444\pi\)
0.145393 + 0.989374i \(0.453555\pi\)
\(908\) 5.93161 4.97721i 0.196847 0.165175i
\(909\) 0 0
\(910\) 15.7282 5.72459i 0.521384 0.189768i
\(911\) 8.73004 + 15.1209i 0.289239 + 0.500977i 0.973628 0.228140i \(-0.0732644\pi\)
−0.684389 + 0.729117i \(0.739931\pi\)
\(912\) 0 0
\(913\) −2.66190 + 4.61055i −0.0880961 + 0.152587i
\(914\) 6.30363 35.7497i 0.208506 1.18249i
\(915\) 0 0
\(916\) 1.68444 + 0.613086i 0.0556555 + 0.0202569i
\(917\) 13.6362 16.2510i 0.450309 0.536657i
\(918\) 0 0
\(919\) −20.9664 36.3149i −0.691619 1.19792i −0.971307 0.237828i \(-0.923565\pi\)
0.279689 0.960091i \(-0.409769\pi\)
\(920\) −7.23152 −0.238416
\(921\) 0 0
\(922\) −25.0180 29.8152i −0.823923 0.981913i
\(923\) −39.3670 + 22.7285i −1.29578 + 0.748119i
\(924\) 0 0
\(925\) −21.0004 25.0273i −0.690489 0.822892i
\(926\) −32.0434 26.8876i −1.05301 0.883583i
\(927\) 0 0
\(928\) −1.12762 + 6.39507i −0.0370160 + 0.209928i
\(929\) −9.16238 + 10.9193i −0.300608 + 0.358251i −0.895112 0.445842i \(-0.852904\pi\)
0.594503 + 0.804093i \(0.297349\pi\)
\(930\) 0 0
\(931\) 0.370021 2.91204i 0.0121269 0.0954381i
\(932\) 19.9488 + 11.5175i 0.653446 + 0.377267i
\(933\) 0 0
\(934\) 9.03487 + 24.8231i 0.295630 + 0.812236i
\(935\) 0.698518 + 0.832462i 0.0228440 + 0.0272244i
\(936\) 0 0
\(937\) −5.18260 29.3920i −0.169308 0.960194i −0.944511 0.328481i \(-0.893463\pi\)
0.775203 0.631713i \(-0.217648\pi\)
\(938\) 8.73349 + 5.04228i 0.285159 + 0.164636i
\(939\) 0 0
\(940\) −1.58120 + 1.32678i −0.0515730 + 0.0432749i
\(941\) −34.8696 + 29.2590i −1.13672 + 0.953817i −0.999326 0.0366997i \(-0.988315\pi\)
−0.137389 + 0.990517i \(0.543871\pi\)
\(942\) 0 0
\(943\) −27.4971 15.8754i −0.895427 0.516975i
\(944\) −6.52555 37.0083i −0.212389 1.20452i
\(945\) 0 0
\(946\) 0.264415 + 0.315118i 0.00859688 + 0.0102454i
\(947\) 19.6062 + 53.8677i 0.637118 + 1.75047i 0.660596 + 0.750742i \(0.270304\pi\)
−0.0234784 + 0.999724i \(0.507474\pi\)
\(948\) 0 0
\(949\) 79.7629 + 46.0511i 2.58921 + 1.49488i
\(950\) 27.0407 + 20.5559i 0.877315 + 0.666921i
\(951\) 0 0
\(952\) −14.9656 + 17.8353i −0.485038 + 0.578046i
\(953\) 3.12608 17.7289i 0.101264 0.574294i −0.891384 0.453250i \(-0.850265\pi\)
0.992647 0.121044i \(-0.0386243\pi\)
\(954\) 0 0
\(955\) −8.76689 7.35629i −0.283690 0.238044i
\(956\) 5.17857 + 6.17158i 0.167487 + 0.199603i
\(957\) 0 0
\(958\) 37.2168 21.4871i 1.20242 0.694218i
\(959\) −25.2035 30.0363i −0.813862 0.969923i
\(960\) 0 0
\(961\) 22.0022 0.709748
\(962\) 39.9654 + 69.2221i 1.28854 + 2.23181i
\(963\) 0 0
\(964\) 3.41168 4.06588i 0.109883 0.130953i
\(965\) 0.0478645 + 0.0174212i 0.00154081 + 0.000560809i
\(966\) 0 0
\(967\) −1.26590 + 7.17925i −0.0407085 + 0.230869i −0.998373 0.0570165i \(-0.981841\pi\)
0.957665 + 0.287886i \(0.0929523\pi\)
\(968\) −10.8992 + 18.8780i −0.350315 + 0.606763i
\(969\) 0 0
\(970\) 1.78923 + 3.09904i 0.0574488 + 0.0995042i
\(971\) −5.85755 + 2.13197i −0.187978 + 0.0684183i −0.434294 0.900771i \(-0.643002\pi\)
0.246316 + 0.969190i \(0.420780\pi\)
\(972\) 0 0
\(973\) −10.8393 + 9.09524i −0.347491 + 0.291580i
\(974\) 32.8630 + 5.79463i 1.05300 + 0.185672i
\(975\) 0 0
\(976\) −56.7568 −1.81674
\(977\) −7.86310 13.6193i −0.251563 0.435719i 0.712394 0.701780i \(-0.247611\pi\)
−0.963956 + 0.266061i \(0.914278\pi\)
\(978\) 0 0
\(979\) −3.52514 + 0.621577i −0.112664 + 0.0198657i
\(980\) −0.271432 0.156711i −0.00867057 0.00500596i
\(981\) 0 0
\(982\) −69.2627 + 12.2129i −2.21026 + 0.389729i
\(983\) −1.40366 + 7.96055i −0.0447698 + 0.253902i −0.998976 0.0452483i \(-0.985592\pi\)
0.954206 + 0.299150i \(0.0967032\pi\)
\(984\) 0 0
\(985\) −6.52466 5.47484i −0.207893 0.174443i
\(986\) 11.5247 + 2.03212i 0.367022 + 0.0647158i
\(987\) 0 0
\(988\) −16.0798 17.3899i −0.511566 0.553245i
\(989\) 3.74395i 0.119051i
\(990\) 0 0
\(991\) −46.4300 8.18687i −1.47490 0.260064i −0.622361 0.782730i \(-0.713827\pi\)
−0.852538 + 0.522666i \(0.824938\pi\)
\(992\) 4.38126 12.0374i 0.139105 0.382188i
\(993\) 0 0
\(994\) −26.3654 9.59623i −0.836260 0.304374i
\(995\) 5.38251i 0.170637i
\(996\) 0 0
\(997\) −0.765922 4.34376i −0.0242570 0.137568i 0.970274 0.242008i \(-0.0778061\pi\)
−0.994531 + 0.104440i \(0.966695\pi\)
\(998\) 8.89254 + 3.23662i 0.281488 + 0.102453i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.bo.a.71.5 108
3.2 odd 2 171.2.x.a.14.14 108
9.2 odd 6 513.2.cd.a.413.14 108
9.7 even 3 171.2.bd.a.128.5 yes 108
19.15 odd 18 513.2.cd.a.395.14 108
57.53 even 18 171.2.bd.a.167.5 yes 108
171.34 odd 18 171.2.x.a.110.14 yes 108
171.110 even 18 inner 513.2.bo.a.224.5 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.x.a.14.14 108 3.2 odd 2
171.2.x.a.110.14 yes 108 171.34 odd 18
171.2.bd.a.128.5 yes 108 9.7 even 3
171.2.bd.a.167.5 yes 108 57.53 even 18
513.2.bo.a.71.5 108 1.1 even 1 trivial
513.2.bo.a.224.5 108 171.110 even 18 inner
513.2.cd.a.395.14 108 19.15 odd 18
513.2.cd.a.413.14 108 9.2 odd 6