Properties

Label 510.2.p.b
Level $510$
Weight $2$
Character orbit 510.p
Analytic conductor $4.072$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [510,2,Mod(361,510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("510.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(510, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8}^{2} q^{2} + \zeta_{8} q^{3} - q^{4} - \zeta_{8} q^{5} + \zeta_{8}^{3} q^{6} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}^{2} + 2) q^{7} - \zeta_{8}^{2} q^{8} + \zeta_{8}^{2} q^{9} - \zeta_{8}^{3} q^{10} + \cdots - 2 \zeta_{8} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 8 q^{7} + 8 q^{13} + 8 q^{14} + 4 q^{16} + 16 q^{17} - 4 q^{18} + 8 q^{21} + 12 q^{23} - 8 q^{28} + 8 q^{29} + 4 q^{30} + 12 q^{31} - 8 q^{33} - 4 q^{34} - 8 q^{35} + 4 q^{39} - 8 q^{41}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(\zeta_{8}^{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
1.00000i −0.707107 + 0.707107i −1.00000 0.707107 0.707107i 0.707107 + 0.707107i 0.585786 + 0.585786i 1.00000i 1.00000i −0.707107 0.707107i
361.2 1.00000i 0.707107 0.707107i −1.00000 −0.707107 + 0.707107i −0.707107 0.707107i 3.41421 + 3.41421i 1.00000i 1.00000i 0.707107 + 0.707107i
421.1 1.00000i −0.707107 0.707107i −1.00000 0.707107 + 0.707107i 0.707107 0.707107i 0.585786 0.585786i 1.00000i 1.00000i −0.707107 + 0.707107i
421.2 1.00000i 0.707107 + 0.707107i −1.00000 −0.707107 0.707107i −0.707107 + 0.707107i 3.41421 3.41421i 1.00000i 1.00000i 0.707107 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 510.2.p.b 4
3.b odd 2 1 1530.2.q.e 4
17.c even 4 1 inner 510.2.p.b 4
17.d even 8 1 8670.2.a.bc 2
17.d even 8 1 8670.2.a.bg 2
51.f odd 4 1 1530.2.q.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.p.b 4 1.a even 1 1 trivial
510.2.p.b 4 17.c even 4 1 inner
1530.2.q.e 4 3.b odd 2 1
1530.2.q.e 4 51.f odd 4 1
8670.2.a.bc 2 17.d even 8 1
8670.2.a.bg 2 17.d even 8 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 8T_{7}^{3} + 32T_{7}^{2} - 32T_{7} + 16 \) acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} - 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{4} + 16 \) Copy content Toggle raw display
$13$ \( (T^{2} - 4 T + 2)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 8 T + 17)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$29$ \( T^{4} - 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$37$ \( T^{4} + 16 \) Copy content Toggle raw display
$41$ \( T^{4} + 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$43$ \( T^{4} + 68T^{2} + 4 \) Copy content Toggle raw display
$47$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 72T^{2} + 784 \) Copy content Toggle raw display
$59$ \( T^{4} + 164T^{2} + 2116 \) Copy content Toggle raw display
$61$ \( T^{4} + 1296 \) Copy content Toggle raw display
$67$ \( (T^{2} + 16 T + 14)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 10000 \) Copy content Toggle raw display
$73$ \( T^{4} + 32 T^{3} + \cdots + 12544 \) Copy content Toggle raw display
$79$ \( T^{4} - 12 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$83$ \( T^{4} + 192T^{2} + 1024 \) Copy content Toggle raw display
$89$ \( (T^{2} - 4 T - 68)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 16 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
show more
show less