Properties

Label 510.2.bi
Level $510$
Weight $2$
Character orbit 510.bi
Rep. character $\chi_{510}(37,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $144$
Newform subspaces $2$
Sturm bound $216$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.bi (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 2 \)
Sturm bound: \(216\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(510, [\chi])\).

Total New Old
Modular forms 928 144 784
Cusp forms 800 144 656
Eisenstein series 128 0 128

Trace form

\( 144 q + 16 q^{10} + 32 q^{25} + 32 q^{28} + 32 q^{31} - 32 q^{33} - 32 q^{34} + 32 q^{37} + 80 q^{41} + 64 q^{50} + 32 q^{52} - 64 q^{53} + 32 q^{55} + 64 q^{57} - 64 q^{59} - 32 q^{67} - 32 q^{70} - 64 q^{71}+ \cdots - 144 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(510, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
510.2.bi.a 510.bi 85.r $64$ $4.072$ None 510.2.bd.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$
510.2.bi.b 510.bi 85.r $80$ $4.072$ None 510.2.bd.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$

Decomposition of \(S_{2}^{\mathrm{old}}(510, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(510, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 2}\)