Newspace parameters
Level: | \( N \) | \(=\) | \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 510.bd (of order \(16\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.07237050309\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | 0.923880 | − | 0.382683i | −0.195090 | − | 0.980785i | 0.707107 | − | 0.707107i | −2.08794 | + | 0.800320i | −0.555570 | − | 0.831470i | 2.90113 | − | 1.93847i | 0.382683 | − | 0.923880i | −0.923880 | + | 0.382683i | −1.62273 | + | 1.53842i |
7.2 | 0.923880 | − | 0.382683i | −0.195090 | − | 0.980785i | 0.707107 | − | 0.707107i | −1.53450 | − | 1.62644i | −0.555570 | − | 0.831470i | −4.11436 | + | 2.74913i | 0.382683 | − | 0.923880i | −0.923880 | + | 0.382683i | −2.04010 | − | 0.915410i |
7.3 | 0.923880 | − | 0.382683i | −0.195090 | − | 0.980785i | 0.707107 | − | 0.707107i | 0.602255 | − | 2.15344i | −0.555570 | − | 0.831470i | 3.47469 | − | 2.32171i | 0.382683 | − | 0.923880i | −0.923880 | + | 0.382683i | −0.267673 | − | 2.21999i |
7.4 | 0.923880 | − | 0.382683i | −0.195090 | − | 0.980785i | 0.707107 | − | 0.707107i | 2.15266 | − | 0.605039i | −0.555570 | − | 0.831470i | −0.954897 | + | 0.638042i | 0.382683 | − | 0.923880i | −0.923880 | + | 0.382683i | 1.75726 | − | 1.38277i |
7.5 | 0.923880 | − | 0.382683i | 0.195090 | + | 0.980785i | 0.707107 | − | 0.707107i | −1.54906 | + | 1.61258i | 0.555570 | + | 0.831470i | −2.38187 | + | 1.59151i | 0.382683 | − | 0.923880i | −0.923880 | + | 0.382683i | −0.814041 | + | 2.08263i |
7.6 | 0.923880 | − | 0.382683i | 0.195090 | + | 0.980785i | 0.707107 | − | 0.707107i | 0.282288 | − | 2.21818i | 0.555570 | + | 0.831470i | −1.13986 | + | 0.761632i | 0.382683 | − | 0.923880i | −0.923880 | + | 0.382683i | −0.588060 | − | 2.15736i |
7.7 | 0.923880 | − | 0.382683i | 0.195090 | + | 0.980785i | 0.707107 | − | 0.707107i | 0.583501 | + | 2.15859i | 0.555570 | + | 0.831470i | 2.99482 | − | 2.00107i | 0.382683 | − | 0.923880i | −0.923880 | + | 0.382683i | 1.36514 | + | 1.77098i |
7.8 | 0.923880 | − | 0.382683i | 0.195090 | + | 0.980785i | 0.707107 | − | 0.707107i | 2.19965 | − | 0.401940i | 0.555570 | + | 0.831470i | 1.83348 | − | 1.22509i | 0.382683 | − | 0.923880i | −0.923880 | + | 0.382683i | 1.87839 | − | 1.21311i |
73.1 | 0.923880 | + | 0.382683i | −0.195090 | + | 0.980785i | 0.707107 | + | 0.707107i | −2.08794 | − | 0.800320i | −0.555570 | + | 0.831470i | 2.90113 | + | 1.93847i | 0.382683 | + | 0.923880i | −0.923880 | − | 0.382683i | −1.62273 | − | 1.53842i |
73.2 | 0.923880 | + | 0.382683i | −0.195090 | + | 0.980785i | 0.707107 | + | 0.707107i | −1.53450 | + | 1.62644i | −0.555570 | + | 0.831470i | −4.11436 | − | 2.74913i | 0.382683 | + | 0.923880i | −0.923880 | − | 0.382683i | −2.04010 | + | 0.915410i |
73.3 | 0.923880 | + | 0.382683i | −0.195090 | + | 0.980785i | 0.707107 | + | 0.707107i | 0.602255 | + | 2.15344i | −0.555570 | + | 0.831470i | 3.47469 | + | 2.32171i | 0.382683 | + | 0.923880i | −0.923880 | − | 0.382683i | −0.267673 | + | 2.21999i |
73.4 | 0.923880 | + | 0.382683i | −0.195090 | + | 0.980785i | 0.707107 | + | 0.707107i | 2.15266 | + | 0.605039i | −0.555570 | + | 0.831470i | −0.954897 | − | 0.638042i | 0.382683 | + | 0.923880i | −0.923880 | − | 0.382683i | 1.75726 | + | 1.38277i |
73.5 | 0.923880 | + | 0.382683i | 0.195090 | − | 0.980785i | 0.707107 | + | 0.707107i | −1.54906 | − | 1.61258i | 0.555570 | − | 0.831470i | −2.38187 | − | 1.59151i | 0.382683 | + | 0.923880i | −0.923880 | − | 0.382683i | −0.814041 | − | 2.08263i |
73.6 | 0.923880 | + | 0.382683i | 0.195090 | − | 0.980785i | 0.707107 | + | 0.707107i | 0.282288 | + | 2.21818i | 0.555570 | − | 0.831470i | −1.13986 | − | 0.761632i | 0.382683 | + | 0.923880i | −0.923880 | − | 0.382683i | −0.588060 | + | 2.15736i |
73.7 | 0.923880 | + | 0.382683i | 0.195090 | − | 0.980785i | 0.707107 | + | 0.707107i | 0.583501 | − | 2.15859i | 0.555570 | − | 0.831470i | 2.99482 | + | 2.00107i | 0.382683 | + | 0.923880i | −0.923880 | − | 0.382683i | 1.36514 | − | 1.77098i |
73.8 | 0.923880 | + | 0.382683i | 0.195090 | − | 0.980785i | 0.707107 | + | 0.707107i | 2.19965 | + | 0.401940i | 0.555570 | − | 0.831470i | 1.83348 | + | 1.22509i | 0.382683 | + | 0.923880i | −0.923880 | − | 0.382683i | 1.87839 | + | 1.21311i |
133.1 | −0.382683 | + | 0.923880i | −0.831470 | + | 0.555570i | −0.707107 | − | 0.707107i | −2.18876 | + | 0.457512i | −0.195090 | − | 0.980785i | 2.02243 | − | 0.402287i | 0.923880 | − | 0.382683i | 0.382683 | − | 0.923880i | 0.414918 | − | 2.19724i |
133.2 | −0.382683 | + | 0.923880i | −0.831470 | + | 0.555570i | −0.707107 | − | 0.707107i | −1.35939 | − | 1.77540i | −0.195090 | − | 0.980785i | −0.304082 | + | 0.0604858i | 0.923880 | − | 0.382683i | 0.382683 | − | 0.923880i | 2.16047 | − | 0.576500i |
133.3 | −0.382683 | + | 0.923880i | −0.831470 | + | 0.555570i | −0.707107 | − | 0.707107i | 1.40077 | + | 1.74294i | −0.195090 | − | 0.980785i | −1.26601 | + | 0.251826i | 0.923880 | − | 0.382683i | 0.382683 | − | 0.923880i | −2.14632 | + | 0.627144i |
133.4 | −0.382683 | + | 0.923880i | −0.831470 | + | 0.555570i | −0.707107 | − | 0.707107i | 2.13357 | + | 0.669244i | −0.195090 | − | 0.980785i | 0.0888617 | − | 0.0176757i | 0.923880 | − | 0.382683i | 0.382683 | − | 0.923880i | −1.43478 | + | 1.71505i |
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
85.o | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 510.2.bd.a | ✓ | 64 |
5.c | odd | 4 | 1 | 510.2.bi.a | yes | 64 | |
17.e | odd | 16 | 1 | 510.2.bi.a | yes | 64 | |
85.o | even | 16 | 1 | inner | 510.2.bd.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
510.2.bd.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
510.2.bd.a | ✓ | 64 | 85.o | even | 16 | 1 | inner |
510.2.bi.a | yes | 64 | 5.c | odd | 4 | 1 | |
510.2.bi.a | yes | 64 | 17.e | odd | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{64} + 32 T_{7}^{62} - 128 T_{7}^{61} + 896 T_{7}^{60} - 3328 T_{7}^{59} + 29296 T_{7}^{58} + \cdots + 4228120576 \)
acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\).