Properties

Label 510.2.bd.a
Level $510$
Weight $2$
Character orbit 510.bd
Analytic conductor $4.072$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [510,2,Mod(7,510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(510, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 4, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("510.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.bd (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 64 q - 16 q^{15} + 16 q^{20} + 16 q^{25} - 16 q^{28} + 32 q^{29} + 16 q^{31} + 16 q^{33} + 32 q^{35} - 16 q^{37} - 16 q^{40} + 48 q^{41} + 16 q^{44} + 32 q^{47} - 64 q^{49} - 16 q^{50} + 32 q^{51} + 16 q^{52}+ \cdots - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1 0.923880 0.382683i −0.195090 0.980785i 0.707107 0.707107i −2.08794 + 0.800320i −0.555570 0.831470i 2.90113 1.93847i 0.382683 0.923880i −0.923880 + 0.382683i −1.62273 + 1.53842i
7.2 0.923880 0.382683i −0.195090 0.980785i 0.707107 0.707107i −1.53450 1.62644i −0.555570 0.831470i −4.11436 + 2.74913i 0.382683 0.923880i −0.923880 + 0.382683i −2.04010 0.915410i
7.3 0.923880 0.382683i −0.195090 0.980785i 0.707107 0.707107i 0.602255 2.15344i −0.555570 0.831470i 3.47469 2.32171i 0.382683 0.923880i −0.923880 + 0.382683i −0.267673 2.21999i
7.4 0.923880 0.382683i −0.195090 0.980785i 0.707107 0.707107i 2.15266 0.605039i −0.555570 0.831470i −0.954897 + 0.638042i 0.382683 0.923880i −0.923880 + 0.382683i 1.75726 1.38277i
7.5 0.923880 0.382683i 0.195090 + 0.980785i 0.707107 0.707107i −1.54906 + 1.61258i 0.555570 + 0.831470i −2.38187 + 1.59151i 0.382683 0.923880i −0.923880 + 0.382683i −0.814041 + 2.08263i
7.6 0.923880 0.382683i 0.195090 + 0.980785i 0.707107 0.707107i 0.282288 2.21818i 0.555570 + 0.831470i −1.13986 + 0.761632i 0.382683 0.923880i −0.923880 + 0.382683i −0.588060 2.15736i
7.7 0.923880 0.382683i 0.195090 + 0.980785i 0.707107 0.707107i 0.583501 + 2.15859i 0.555570 + 0.831470i 2.99482 2.00107i 0.382683 0.923880i −0.923880 + 0.382683i 1.36514 + 1.77098i
7.8 0.923880 0.382683i 0.195090 + 0.980785i 0.707107 0.707107i 2.19965 0.401940i 0.555570 + 0.831470i 1.83348 1.22509i 0.382683 0.923880i −0.923880 + 0.382683i 1.87839 1.21311i
73.1 0.923880 + 0.382683i −0.195090 + 0.980785i 0.707107 + 0.707107i −2.08794 0.800320i −0.555570 + 0.831470i 2.90113 + 1.93847i 0.382683 + 0.923880i −0.923880 0.382683i −1.62273 1.53842i
73.2 0.923880 + 0.382683i −0.195090 + 0.980785i 0.707107 + 0.707107i −1.53450 + 1.62644i −0.555570 + 0.831470i −4.11436 2.74913i 0.382683 + 0.923880i −0.923880 0.382683i −2.04010 + 0.915410i
73.3 0.923880 + 0.382683i −0.195090 + 0.980785i 0.707107 + 0.707107i 0.602255 + 2.15344i −0.555570 + 0.831470i 3.47469 + 2.32171i 0.382683 + 0.923880i −0.923880 0.382683i −0.267673 + 2.21999i
73.4 0.923880 + 0.382683i −0.195090 + 0.980785i 0.707107 + 0.707107i 2.15266 + 0.605039i −0.555570 + 0.831470i −0.954897 0.638042i 0.382683 + 0.923880i −0.923880 0.382683i 1.75726 + 1.38277i
73.5 0.923880 + 0.382683i 0.195090 0.980785i 0.707107 + 0.707107i −1.54906 1.61258i 0.555570 0.831470i −2.38187 1.59151i 0.382683 + 0.923880i −0.923880 0.382683i −0.814041 2.08263i
73.6 0.923880 + 0.382683i 0.195090 0.980785i 0.707107 + 0.707107i 0.282288 + 2.21818i 0.555570 0.831470i −1.13986 0.761632i 0.382683 + 0.923880i −0.923880 0.382683i −0.588060 + 2.15736i
73.7 0.923880 + 0.382683i 0.195090 0.980785i 0.707107 + 0.707107i 0.583501 2.15859i 0.555570 0.831470i 2.99482 + 2.00107i 0.382683 + 0.923880i −0.923880 0.382683i 1.36514 1.77098i
73.8 0.923880 + 0.382683i 0.195090 0.980785i 0.707107 + 0.707107i 2.19965 + 0.401940i 0.555570 0.831470i 1.83348 + 1.22509i 0.382683 + 0.923880i −0.923880 0.382683i 1.87839 + 1.21311i
133.1 −0.382683 + 0.923880i −0.831470 + 0.555570i −0.707107 0.707107i −2.18876 + 0.457512i −0.195090 0.980785i 2.02243 0.402287i 0.923880 0.382683i 0.382683 0.923880i 0.414918 2.19724i
133.2 −0.382683 + 0.923880i −0.831470 + 0.555570i −0.707107 0.707107i −1.35939 1.77540i −0.195090 0.980785i −0.304082 + 0.0604858i 0.923880 0.382683i 0.382683 0.923880i 2.16047 0.576500i
133.3 −0.382683 + 0.923880i −0.831470 + 0.555570i −0.707107 0.707107i 1.40077 + 1.74294i −0.195090 0.980785i −1.26601 + 0.251826i 0.923880 0.382683i 0.382683 0.923880i −2.14632 + 0.627144i
133.4 −0.382683 + 0.923880i −0.831470 + 0.555570i −0.707107 0.707107i 2.13357 + 0.669244i −0.195090 0.980785i 0.0888617 0.0176757i 0.923880 0.382683i 0.382683 0.923880i −1.43478 + 1.71505i
See all 64 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.o even 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 510.2.bd.a 64
5.c odd 4 1 510.2.bi.a yes 64
17.e odd 16 1 510.2.bi.a yes 64
85.o even 16 1 inner 510.2.bd.a 64
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.bd.a 64 1.a even 1 1 trivial
510.2.bd.a 64 85.o even 16 1 inner
510.2.bi.a yes 64 5.c odd 4 1
510.2.bi.a yes 64 17.e odd 16 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{64} + 32 T_{7}^{62} - 128 T_{7}^{61} + 896 T_{7}^{60} - 3328 T_{7}^{59} + 29296 T_{7}^{58} + \cdots + 4228120576 \) acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\). Copy content Toggle raw display