Properties

Label 510.2.a.h.1.2
Level $510$
Weight $2$
Character 510.1
Self dual yes
Analytic conductor $4.072$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(1,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 510.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{6} +4.89898 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{6} +4.89898 q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} -1.00000 q^{12} -2.89898 q^{13} -4.89898 q^{14} -1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} +4.00000 q^{19} +1.00000 q^{20} -4.89898 q^{21} -4.00000 q^{23} +1.00000 q^{24} +1.00000 q^{25} +2.89898 q^{26} -1.00000 q^{27} +4.89898 q^{28} +6.00000 q^{29} +1.00000 q^{30} +4.00000 q^{31} -1.00000 q^{32} +1.00000 q^{34} +4.89898 q^{35} +1.00000 q^{36} +6.00000 q^{37} -4.00000 q^{38} +2.89898 q^{39} -1.00000 q^{40} +6.89898 q^{41} +4.89898 q^{42} -0.898979 q^{43} +1.00000 q^{45} +4.00000 q^{46} -9.79796 q^{47} -1.00000 q^{48} +17.0000 q^{49} -1.00000 q^{50} +1.00000 q^{51} -2.89898 q^{52} +11.7980 q^{53} +1.00000 q^{54} -4.89898 q^{56} -4.00000 q^{57} -6.00000 q^{58} -4.89898 q^{59} -1.00000 q^{60} -7.79796 q^{61} -4.00000 q^{62} +4.89898 q^{63} +1.00000 q^{64} -2.89898 q^{65} -8.89898 q^{67} -1.00000 q^{68} +4.00000 q^{69} -4.89898 q^{70} +0.898979 q^{71} -1.00000 q^{72} -1.10102 q^{73} -6.00000 q^{74} -1.00000 q^{75} +4.00000 q^{76} -2.89898 q^{78} +13.7980 q^{79} +1.00000 q^{80} +1.00000 q^{81} -6.89898 q^{82} -5.79796 q^{83} -4.89898 q^{84} -1.00000 q^{85} +0.898979 q^{86} -6.00000 q^{87} +11.7980 q^{89} -1.00000 q^{90} -14.2020 q^{91} -4.00000 q^{92} -4.00000 q^{93} +9.79796 q^{94} +4.00000 q^{95} +1.00000 q^{96} +16.6969 q^{97} -17.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} - 2 q^{8} + 2 q^{9} - 2 q^{10} - 2 q^{12} + 4 q^{13} - 2 q^{15} + 2 q^{16} - 2 q^{17} - 2 q^{18} + 8 q^{19} + 2 q^{20} - 8 q^{23} + 2 q^{24} + 2 q^{25} - 4 q^{26} - 2 q^{27} + 12 q^{29} + 2 q^{30} + 8 q^{31} - 2 q^{32} + 2 q^{34} + 2 q^{36} + 12 q^{37} - 8 q^{38} - 4 q^{39} - 2 q^{40} + 4 q^{41} + 8 q^{43} + 2 q^{45} + 8 q^{46} - 2 q^{48} + 34 q^{49} - 2 q^{50} + 2 q^{51} + 4 q^{52} + 4 q^{53} + 2 q^{54} - 8 q^{57} - 12 q^{58} - 2 q^{60} + 4 q^{61} - 8 q^{62} + 2 q^{64} + 4 q^{65} - 8 q^{67} - 2 q^{68} + 8 q^{69} - 8 q^{71} - 2 q^{72} - 12 q^{73} - 12 q^{74} - 2 q^{75} + 8 q^{76} + 4 q^{78} + 8 q^{79} + 2 q^{80} + 2 q^{81} - 4 q^{82} + 8 q^{83} - 2 q^{85} - 8 q^{86} - 12 q^{87} + 4 q^{89} - 2 q^{90} - 48 q^{91} - 8 q^{92} - 8 q^{93} + 8 q^{95} + 2 q^{96} + 4 q^{97} - 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 1.00000 0.408248
\(7\) 4.89898 1.85164 0.925820 0.377964i \(-0.123376\pi\)
0.925820 + 0.377964i \(0.123376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.89898 −0.804032 −0.402016 0.915633i \(-0.631690\pi\)
−0.402016 + 0.915633i \(0.631690\pi\)
\(14\) −4.89898 −1.30931
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −1.00000 −0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 1.00000 0.223607
\(21\) −4.89898 −1.06904
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) 2.89898 0.568537
\(27\) −1.00000 −0.192450
\(28\) 4.89898 0.925820
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 1.00000 0.182574
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) 4.89898 0.828079
\(36\) 1.00000 0.166667
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −4.00000 −0.648886
\(39\) 2.89898 0.464208
\(40\) −1.00000 −0.158114
\(41\) 6.89898 1.07744 0.538720 0.842485i \(-0.318908\pi\)
0.538720 + 0.842485i \(0.318908\pi\)
\(42\) 4.89898 0.755929
\(43\) −0.898979 −0.137093 −0.0685465 0.997648i \(-0.521836\pi\)
−0.0685465 + 0.997648i \(0.521836\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 4.00000 0.589768
\(47\) −9.79796 −1.42918 −0.714590 0.699544i \(-0.753387\pi\)
−0.714590 + 0.699544i \(0.753387\pi\)
\(48\) −1.00000 −0.144338
\(49\) 17.0000 2.42857
\(50\) −1.00000 −0.141421
\(51\) 1.00000 0.140028
\(52\) −2.89898 −0.402016
\(53\) 11.7980 1.62057 0.810287 0.586033i \(-0.199311\pi\)
0.810287 + 0.586033i \(0.199311\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −4.89898 −0.654654
\(57\) −4.00000 −0.529813
\(58\) −6.00000 −0.787839
\(59\) −4.89898 −0.637793 −0.318896 0.947790i \(-0.603312\pi\)
−0.318896 + 0.947790i \(0.603312\pi\)
\(60\) −1.00000 −0.129099
\(61\) −7.79796 −0.998426 −0.499213 0.866479i \(-0.666378\pi\)
−0.499213 + 0.866479i \(0.666378\pi\)
\(62\) −4.00000 −0.508001
\(63\) 4.89898 0.617213
\(64\) 1.00000 0.125000
\(65\) −2.89898 −0.359574
\(66\) 0 0
\(67\) −8.89898 −1.08718 −0.543592 0.839350i \(-0.682936\pi\)
−0.543592 + 0.839350i \(0.682936\pi\)
\(68\) −1.00000 −0.121268
\(69\) 4.00000 0.481543
\(70\) −4.89898 −0.585540
\(71\) 0.898979 0.106689 0.0533446 0.998576i \(-0.483012\pi\)
0.0533446 + 0.998576i \(0.483012\pi\)
\(72\) −1.00000 −0.117851
\(73\) −1.10102 −0.128865 −0.0644324 0.997922i \(-0.520524\pi\)
−0.0644324 + 0.997922i \(0.520524\pi\)
\(74\) −6.00000 −0.697486
\(75\) −1.00000 −0.115470
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) −2.89898 −0.328245
\(79\) 13.7980 1.55239 0.776196 0.630492i \(-0.217147\pi\)
0.776196 + 0.630492i \(0.217147\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) −6.89898 −0.761865
\(83\) −5.79796 −0.636409 −0.318204 0.948022i \(-0.603080\pi\)
−0.318204 + 0.948022i \(0.603080\pi\)
\(84\) −4.89898 −0.534522
\(85\) −1.00000 −0.108465
\(86\) 0.898979 0.0969395
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) 11.7980 1.25058 0.625291 0.780392i \(-0.284980\pi\)
0.625291 + 0.780392i \(0.284980\pi\)
\(90\) −1.00000 −0.105409
\(91\) −14.2020 −1.48878
\(92\) −4.00000 −0.417029
\(93\) −4.00000 −0.414781
\(94\) 9.79796 1.01058
\(95\) 4.00000 0.410391
\(96\) 1.00000 0.102062
\(97\) 16.6969 1.69532 0.847659 0.530542i \(-0.178012\pi\)
0.847659 + 0.530542i \(0.178012\pi\)
\(98\) −17.0000 −1.71726
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −9.10102 −0.905585 −0.452793 0.891616i \(-0.649572\pi\)
−0.452793 + 0.891616i \(0.649572\pi\)
\(102\) −1.00000 −0.0990148
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 2.89898 0.284268
\(105\) −4.89898 −0.478091
\(106\) −11.7980 −1.14592
\(107\) −13.7980 −1.33390 −0.666950 0.745103i \(-0.732400\pi\)
−0.666950 + 0.745103i \(0.732400\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −7.79796 −0.746909 −0.373455 0.927648i \(-0.621827\pi\)
−0.373455 + 0.927648i \(0.621827\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 4.89898 0.462910
\(113\) −11.7980 −1.10986 −0.554929 0.831898i \(-0.687255\pi\)
−0.554929 + 0.831898i \(0.687255\pi\)
\(114\) 4.00000 0.374634
\(115\) −4.00000 −0.373002
\(116\) 6.00000 0.557086
\(117\) −2.89898 −0.268011
\(118\) 4.89898 0.450988
\(119\) −4.89898 −0.449089
\(120\) 1.00000 0.0912871
\(121\) −11.0000 −1.00000
\(122\) 7.79796 0.705994
\(123\) −6.89898 −0.622060
\(124\) 4.00000 0.359211
\(125\) 1.00000 0.0894427
\(126\) −4.89898 −0.436436
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0.898979 0.0791507
\(130\) 2.89898 0.254257
\(131\) −9.79796 −0.856052 −0.428026 0.903767i \(-0.640791\pi\)
−0.428026 + 0.903767i \(0.640791\pi\)
\(132\) 0 0
\(133\) 19.5959 1.69918
\(134\) 8.89898 0.768755
\(135\) −1.00000 −0.0860663
\(136\) 1.00000 0.0857493
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) −4.00000 −0.340503
\(139\) −5.79796 −0.491776 −0.245888 0.969298i \(-0.579080\pi\)
−0.245888 + 0.969298i \(0.579080\pi\)
\(140\) 4.89898 0.414039
\(141\) 9.79796 0.825137
\(142\) −0.898979 −0.0754407
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 6.00000 0.498273
\(146\) 1.10102 0.0911211
\(147\) −17.0000 −1.40214
\(148\) 6.00000 0.493197
\(149\) −9.10102 −0.745585 −0.372792 0.927915i \(-0.621600\pi\)
−0.372792 + 0.927915i \(0.621600\pi\)
\(150\) 1.00000 0.0816497
\(151\) 9.79796 0.797347 0.398673 0.917093i \(-0.369471\pi\)
0.398673 + 0.917093i \(0.369471\pi\)
\(152\) −4.00000 −0.324443
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 2.89898 0.232104
\(157\) −10.8990 −0.869833 −0.434917 0.900471i \(-0.643222\pi\)
−0.434917 + 0.900471i \(0.643222\pi\)
\(158\) −13.7980 −1.09771
\(159\) −11.7980 −0.935639
\(160\) −1.00000 −0.0790569
\(161\) −19.5959 −1.54437
\(162\) −1.00000 −0.0785674
\(163\) −21.7980 −1.70735 −0.853674 0.520808i \(-0.825631\pi\)
−0.853674 + 0.520808i \(0.825631\pi\)
\(164\) 6.89898 0.538720
\(165\) 0 0
\(166\) 5.79796 0.450009
\(167\) 21.7980 1.68678 0.843388 0.537304i \(-0.180557\pi\)
0.843388 + 0.537304i \(0.180557\pi\)
\(168\) 4.89898 0.377964
\(169\) −4.59592 −0.353532
\(170\) 1.00000 0.0766965
\(171\) 4.00000 0.305888
\(172\) −0.898979 −0.0685465
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 6.00000 0.454859
\(175\) 4.89898 0.370328
\(176\) 0 0
\(177\) 4.89898 0.368230
\(178\) −11.7980 −0.884294
\(179\) 4.89898 0.366167 0.183083 0.983097i \(-0.441392\pi\)
0.183083 + 0.983097i \(0.441392\pi\)
\(180\) 1.00000 0.0745356
\(181\) −23.7980 −1.76889 −0.884444 0.466646i \(-0.845462\pi\)
−0.884444 + 0.466646i \(0.845462\pi\)
\(182\) 14.2020 1.05273
\(183\) 7.79796 0.576442
\(184\) 4.00000 0.294884
\(185\) 6.00000 0.441129
\(186\) 4.00000 0.293294
\(187\) 0 0
\(188\) −9.79796 −0.714590
\(189\) −4.89898 −0.356348
\(190\) −4.00000 −0.290191
\(191\) 9.79796 0.708955 0.354478 0.935064i \(-0.384659\pi\)
0.354478 + 0.935064i \(0.384659\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −10.8990 −0.784526 −0.392263 0.919853i \(-0.628308\pi\)
−0.392263 + 0.919853i \(0.628308\pi\)
\(194\) −16.6969 −1.19877
\(195\) 2.89898 0.207600
\(196\) 17.0000 1.21429
\(197\) 25.5959 1.82363 0.911817 0.410597i \(-0.134680\pi\)
0.911817 + 0.410597i \(0.134680\pi\)
\(198\) 0 0
\(199\) −23.5959 −1.67267 −0.836335 0.548219i \(-0.815306\pi\)
−0.836335 + 0.548219i \(0.815306\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 8.89898 0.627686
\(202\) 9.10102 0.640346
\(203\) 29.3939 2.06305
\(204\) 1.00000 0.0700140
\(205\) 6.89898 0.481846
\(206\) −4.00000 −0.278693
\(207\) −4.00000 −0.278019
\(208\) −2.89898 −0.201008
\(209\) 0 0
\(210\) 4.89898 0.338062
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 11.7980 0.810287
\(213\) −0.898979 −0.0615971
\(214\) 13.7980 0.943209
\(215\) −0.898979 −0.0613099
\(216\) 1.00000 0.0680414
\(217\) 19.5959 1.33026
\(218\) 7.79796 0.528144
\(219\) 1.10102 0.0744001
\(220\) 0 0
\(221\) 2.89898 0.195006
\(222\) 6.00000 0.402694
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) −4.89898 −0.327327
\(225\) 1.00000 0.0666667
\(226\) 11.7980 0.784789
\(227\) −2.20204 −0.146155 −0.0730773 0.997326i \(-0.523282\pi\)
−0.0730773 + 0.997326i \(0.523282\pi\)
\(228\) −4.00000 −0.264906
\(229\) 25.5959 1.69143 0.845713 0.533638i \(-0.179176\pi\)
0.845713 + 0.533638i \(0.179176\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 2.89898 0.189512
\(235\) −9.79796 −0.639148
\(236\) −4.89898 −0.318896
\(237\) −13.7980 −0.896274
\(238\) 4.89898 0.317554
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) −1.00000 −0.0645497
\(241\) −25.5959 −1.64878 −0.824389 0.566024i \(-0.808481\pi\)
−0.824389 + 0.566024i \(0.808481\pi\)
\(242\) 11.0000 0.707107
\(243\) −1.00000 −0.0641500
\(244\) −7.79796 −0.499213
\(245\) 17.0000 1.08609
\(246\) 6.89898 0.439863
\(247\) −11.5959 −0.737831
\(248\) −4.00000 −0.254000
\(249\) 5.79796 0.367431
\(250\) −1.00000 −0.0632456
\(251\) −4.89898 −0.309221 −0.154610 0.987976i \(-0.549412\pi\)
−0.154610 + 0.987976i \(0.549412\pi\)
\(252\) 4.89898 0.308607
\(253\) 0 0
\(254\) 12.0000 0.752947
\(255\) 1.00000 0.0626224
\(256\) 1.00000 0.0625000
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) −0.898979 −0.0559680
\(259\) 29.3939 1.82645
\(260\) −2.89898 −0.179787
\(261\) 6.00000 0.371391
\(262\) 9.79796 0.605320
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 11.7980 0.724743
\(266\) −19.5959 −1.20150
\(267\) −11.7980 −0.722023
\(268\) −8.89898 −0.543592
\(269\) −29.5959 −1.80449 −0.902247 0.431219i \(-0.858084\pi\)
−0.902247 + 0.431219i \(0.858084\pi\)
\(270\) 1.00000 0.0608581
\(271\) 17.7980 1.08115 0.540575 0.841296i \(-0.318207\pi\)
0.540575 + 0.841296i \(0.318207\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 14.2020 0.859547
\(274\) −14.0000 −0.845771
\(275\) 0 0
\(276\) 4.00000 0.240772
\(277\) −11.7980 −0.708871 −0.354435 0.935081i \(-0.615327\pi\)
−0.354435 + 0.935081i \(0.615327\pi\)
\(278\) 5.79796 0.347738
\(279\) 4.00000 0.239474
\(280\) −4.89898 −0.292770
\(281\) 8.20204 0.489293 0.244646 0.969612i \(-0.421328\pi\)
0.244646 + 0.969612i \(0.421328\pi\)
\(282\) −9.79796 −0.583460
\(283\) −15.5959 −0.927081 −0.463541 0.886076i \(-0.653421\pi\)
−0.463541 + 0.886076i \(0.653421\pi\)
\(284\) 0.898979 0.0533446
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) 33.7980 1.99503
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) −6.00000 −0.352332
\(291\) −16.6969 −0.978792
\(292\) −1.10102 −0.0644324
\(293\) −25.5959 −1.49533 −0.747665 0.664076i \(-0.768825\pi\)
−0.747665 + 0.664076i \(0.768825\pi\)
\(294\) 17.0000 0.991460
\(295\) −4.89898 −0.285230
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) 9.10102 0.527208
\(299\) 11.5959 0.670609
\(300\) −1.00000 −0.0577350
\(301\) −4.40408 −0.253847
\(302\) −9.79796 −0.563809
\(303\) 9.10102 0.522840
\(304\) 4.00000 0.229416
\(305\) −7.79796 −0.446510
\(306\) 1.00000 0.0571662
\(307\) −8.89898 −0.507892 −0.253946 0.967218i \(-0.581728\pi\)
−0.253946 + 0.967218i \(0.581728\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) −4.00000 −0.227185
\(311\) −16.8990 −0.958253 −0.479127 0.877746i \(-0.659047\pi\)
−0.479127 + 0.877746i \(0.659047\pi\)
\(312\) −2.89898 −0.164122
\(313\) −2.89898 −0.163860 −0.0819300 0.996638i \(-0.526108\pi\)
−0.0819300 + 0.996638i \(0.526108\pi\)
\(314\) 10.8990 0.615065
\(315\) 4.89898 0.276026
\(316\) 13.7980 0.776196
\(317\) 14.0000 0.786318 0.393159 0.919470i \(-0.371382\pi\)
0.393159 + 0.919470i \(0.371382\pi\)
\(318\) 11.7980 0.661597
\(319\) 0 0
\(320\) 1.00000 0.0559017
\(321\) 13.7980 0.770127
\(322\) 19.5959 1.09204
\(323\) −4.00000 −0.222566
\(324\) 1.00000 0.0555556
\(325\) −2.89898 −0.160806
\(326\) 21.7980 1.20728
\(327\) 7.79796 0.431228
\(328\) −6.89898 −0.380932
\(329\) −48.0000 −2.64633
\(330\) 0 0
\(331\) 13.7980 0.758404 0.379202 0.925314i \(-0.376198\pi\)
0.379202 + 0.925314i \(0.376198\pi\)
\(332\) −5.79796 −0.318204
\(333\) 6.00000 0.328798
\(334\) −21.7980 −1.19273
\(335\) −8.89898 −0.486203
\(336\) −4.89898 −0.267261
\(337\) 3.30306 0.179929 0.0899646 0.995945i \(-0.471325\pi\)
0.0899646 + 0.995945i \(0.471325\pi\)
\(338\) 4.59592 0.249985
\(339\) 11.7980 0.640777
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) −4.00000 −0.216295
\(343\) 48.9898 2.64520
\(344\) 0.898979 0.0484697
\(345\) 4.00000 0.215353
\(346\) −6.00000 −0.322562
\(347\) 2.20204 0.118212 0.0591059 0.998252i \(-0.481175\pi\)
0.0591059 + 0.998252i \(0.481175\pi\)
\(348\) −6.00000 −0.321634
\(349\) 23.7980 1.27388 0.636938 0.770915i \(-0.280201\pi\)
0.636938 + 0.770915i \(0.280201\pi\)
\(350\) −4.89898 −0.261861
\(351\) 2.89898 0.154736
\(352\) 0 0
\(353\) −26.0000 −1.38384 −0.691920 0.721974i \(-0.743235\pi\)
−0.691920 + 0.721974i \(0.743235\pi\)
\(354\) −4.89898 −0.260378
\(355\) 0.898979 0.0477129
\(356\) 11.7980 0.625291
\(357\) 4.89898 0.259281
\(358\) −4.89898 −0.258919
\(359\) −21.3939 −1.12913 −0.564563 0.825390i \(-0.690955\pi\)
−0.564563 + 0.825390i \(0.690955\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −3.00000 −0.157895
\(362\) 23.7980 1.25079
\(363\) 11.0000 0.577350
\(364\) −14.2020 −0.744389
\(365\) −1.10102 −0.0576300
\(366\) −7.79796 −0.407606
\(367\) −36.8990 −1.92611 −0.963056 0.269303i \(-0.913207\pi\)
−0.963056 + 0.269303i \(0.913207\pi\)
\(368\) −4.00000 −0.208514
\(369\) 6.89898 0.359147
\(370\) −6.00000 −0.311925
\(371\) 57.7980 3.00072
\(372\) −4.00000 −0.207390
\(373\) −4.69694 −0.243198 −0.121599 0.992579i \(-0.538802\pi\)
−0.121599 + 0.992579i \(0.538802\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 9.79796 0.505291
\(377\) −17.3939 −0.895830
\(378\) 4.89898 0.251976
\(379\) −10.2020 −0.524044 −0.262022 0.965062i \(-0.584389\pi\)
−0.262022 + 0.965062i \(0.584389\pi\)
\(380\) 4.00000 0.205196
\(381\) 12.0000 0.614779
\(382\) −9.79796 −0.501307
\(383\) 8.00000 0.408781 0.204390 0.978889i \(-0.434479\pi\)
0.204390 + 0.978889i \(0.434479\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 10.8990 0.554743
\(387\) −0.898979 −0.0456977
\(388\) 16.6969 0.847659
\(389\) 10.4949 0.532112 0.266056 0.963958i \(-0.414279\pi\)
0.266056 + 0.963958i \(0.414279\pi\)
\(390\) −2.89898 −0.146796
\(391\) 4.00000 0.202289
\(392\) −17.0000 −0.858630
\(393\) 9.79796 0.494242
\(394\) −25.5959 −1.28950
\(395\) 13.7980 0.694251
\(396\) 0 0
\(397\) −37.5959 −1.88689 −0.943443 0.331536i \(-0.892433\pi\)
−0.943443 + 0.331536i \(0.892433\pi\)
\(398\) 23.5959 1.18276
\(399\) −19.5959 −0.981023
\(400\) 1.00000 0.0500000
\(401\) 13.1010 0.654234 0.327117 0.944984i \(-0.393923\pi\)
0.327117 + 0.944984i \(0.393923\pi\)
\(402\) −8.89898 −0.443841
\(403\) −11.5959 −0.577634
\(404\) −9.10102 −0.452793
\(405\) 1.00000 0.0496904
\(406\) −29.3939 −1.45879
\(407\) 0 0
\(408\) −1.00000 −0.0495074
\(409\) 21.5959 1.06785 0.533925 0.845532i \(-0.320717\pi\)
0.533925 + 0.845532i \(0.320717\pi\)
\(410\) −6.89898 −0.340716
\(411\) −14.0000 −0.690569
\(412\) 4.00000 0.197066
\(413\) −24.0000 −1.18096
\(414\) 4.00000 0.196589
\(415\) −5.79796 −0.284611
\(416\) 2.89898 0.142134
\(417\) 5.79796 0.283927
\(418\) 0 0
\(419\) 1.79796 0.0878360 0.0439180 0.999035i \(-0.486016\pi\)
0.0439180 + 0.999035i \(0.486016\pi\)
\(420\) −4.89898 −0.239046
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) 12.0000 0.584151
\(423\) −9.79796 −0.476393
\(424\) −11.7980 −0.572960
\(425\) −1.00000 −0.0485071
\(426\) 0.898979 0.0435557
\(427\) −38.2020 −1.84873
\(428\) −13.7980 −0.666950
\(429\) 0 0
\(430\) 0.898979 0.0433526
\(431\) −32.8990 −1.58469 −0.792344 0.610075i \(-0.791139\pi\)
−0.792344 + 0.610075i \(0.791139\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 23.3939 1.12424 0.562119 0.827056i \(-0.309986\pi\)
0.562119 + 0.827056i \(0.309986\pi\)
\(434\) −19.5959 −0.940634
\(435\) −6.00000 −0.287678
\(436\) −7.79796 −0.373455
\(437\) −16.0000 −0.765384
\(438\) −1.10102 −0.0526088
\(439\) −13.7980 −0.658541 −0.329270 0.944236i \(-0.606803\pi\)
−0.329270 + 0.944236i \(0.606803\pi\)
\(440\) 0 0
\(441\) 17.0000 0.809524
\(442\) −2.89898 −0.137890
\(443\) 18.2020 0.864805 0.432403 0.901681i \(-0.357666\pi\)
0.432403 + 0.901681i \(0.357666\pi\)
\(444\) −6.00000 −0.284747
\(445\) 11.7980 0.559277
\(446\) 4.00000 0.189405
\(447\) 9.10102 0.430463
\(448\) 4.89898 0.231455
\(449\) −2.89898 −0.136811 −0.0684057 0.997658i \(-0.521791\pi\)
−0.0684057 + 0.997658i \(0.521791\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 0 0
\(452\) −11.7980 −0.554929
\(453\) −9.79796 −0.460348
\(454\) 2.20204 0.103347
\(455\) −14.2020 −0.665802
\(456\) 4.00000 0.187317
\(457\) 35.7980 1.67456 0.837279 0.546776i \(-0.184145\pi\)
0.837279 + 0.546776i \(0.184145\pi\)
\(458\) −25.5959 −1.19602
\(459\) 1.00000 0.0466760
\(460\) −4.00000 −0.186501
\(461\) 0.696938 0.0324597 0.0162298 0.999868i \(-0.494834\pi\)
0.0162298 + 0.999868i \(0.494834\pi\)
\(462\) 0 0
\(463\) −31.5959 −1.46839 −0.734193 0.678940i \(-0.762439\pi\)
−0.734193 + 0.678940i \(0.762439\pi\)
\(464\) 6.00000 0.278543
\(465\) −4.00000 −0.185496
\(466\) −14.0000 −0.648537
\(467\) 31.5959 1.46208 0.731042 0.682332i \(-0.239034\pi\)
0.731042 + 0.682332i \(0.239034\pi\)
\(468\) −2.89898 −0.134005
\(469\) −43.5959 −2.01307
\(470\) 9.79796 0.451946
\(471\) 10.8990 0.502198
\(472\) 4.89898 0.225494
\(473\) 0 0
\(474\) 13.7980 0.633761
\(475\) 4.00000 0.183533
\(476\) −4.89898 −0.224544
\(477\) 11.7980 0.540191
\(478\) 0 0
\(479\) −23.1010 −1.05551 −0.527756 0.849396i \(-0.676967\pi\)
−0.527756 + 0.849396i \(0.676967\pi\)
\(480\) 1.00000 0.0456435
\(481\) −17.3939 −0.793093
\(482\) 25.5959 1.16586
\(483\) 19.5959 0.891645
\(484\) −11.0000 −0.500000
\(485\) 16.6969 0.758169
\(486\) 1.00000 0.0453609
\(487\) −11.1010 −0.503035 −0.251518 0.967853i \(-0.580930\pi\)
−0.251518 + 0.967853i \(0.580930\pi\)
\(488\) 7.79796 0.352997
\(489\) 21.7980 0.985738
\(490\) −17.0000 −0.767982
\(491\) −30.6969 −1.38533 −0.692667 0.721258i \(-0.743564\pi\)
−0.692667 + 0.721258i \(0.743564\pi\)
\(492\) −6.89898 −0.311030
\(493\) −6.00000 −0.270226
\(494\) 11.5959 0.521725
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 4.40408 0.197550
\(498\) −5.79796 −0.259813
\(499\) −0.404082 −0.0180892 −0.00904460 0.999959i \(-0.502879\pi\)
−0.00904460 + 0.999959i \(0.502879\pi\)
\(500\) 1.00000 0.0447214
\(501\) −21.7980 −0.973861
\(502\) 4.89898 0.218652
\(503\) 4.00000 0.178351 0.0891756 0.996016i \(-0.471577\pi\)
0.0891756 + 0.996016i \(0.471577\pi\)
\(504\) −4.89898 −0.218218
\(505\) −9.10102 −0.404990
\(506\) 0 0
\(507\) 4.59592 0.204112
\(508\) −12.0000 −0.532414
\(509\) −44.6969 −1.98116 −0.990578 0.136946i \(-0.956271\pi\)
−0.990578 + 0.136946i \(0.956271\pi\)
\(510\) −1.00000 −0.0442807
\(511\) −5.39388 −0.238611
\(512\) −1.00000 −0.0441942
\(513\) −4.00000 −0.176604
\(514\) 2.00000 0.0882162
\(515\) 4.00000 0.176261
\(516\) 0.898979 0.0395754
\(517\) 0 0
\(518\) −29.3939 −1.29149
\(519\) −6.00000 −0.263371
\(520\) 2.89898 0.127129
\(521\) 28.2929 1.23953 0.619766 0.784786i \(-0.287227\pi\)
0.619766 + 0.784786i \(0.287227\pi\)
\(522\) −6.00000 −0.262613
\(523\) −10.6969 −0.467744 −0.233872 0.972267i \(-0.575140\pi\)
−0.233872 + 0.972267i \(0.575140\pi\)
\(524\) −9.79796 −0.428026
\(525\) −4.89898 −0.213809
\(526\) −8.00000 −0.348817
\(527\) −4.00000 −0.174243
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −11.7980 −0.512471
\(531\) −4.89898 −0.212598
\(532\) 19.5959 0.849591
\(533\) −20.0000 −0.866296
\(534\) 11.7980 0.510548
\(535\) −13.7980 −0.596538
\(536\) 8.89898 0.384377
\(537\) −4.89898 −0.211407
\(538\) 29.5959 1.27597
\(539\) 0 0
\(540\) −1.00000 −0.0430331
\(541\) 11.7980 0.507234 0.253617 0.967305i \(-0.418380\pi\)
0.253617 + 0.967305i \(0.418380\pi\)
\(542\) −17.7980 −0.764488
\(543\) 23.7980 1.02127
\(544\) 1.00000 0.0428746
\(545\) −7.79796 −0.334028
\(546\) −14.2020 −0.607791
\(547\) 39.5959 1.69300 0.846500 0.532389i \(-0.178706\pi\)
0.846500 + 0.532389i \(0.178706\pi\)
\(548\) 14.0000 0.598050
\(549\) −7.79796 −0.332809
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) −4.00000 −0.170251
\(553\) 67.5959 2.87447
\(554\) 11.7980 0.501247
\(555\) −6.00000 −0.254686
\(556\) −5.79796 −0.245888
\(557\) 0.202041 0.00856075 0.00428038 0.999991i \(-0.498638\pi\)
0.00428038 + 0.999991i \(0.498638\pi\)
\(558\) −4.00000 −0.169334
\(559\) 2.60612 0.110227
\(560\) 4.89898 0.207020
\(561\) 0 0
\(562\) −8.20204 −0.345982
\(563\) 2.20204 0.0928050 0.0464025 0.998923i \(-0.485224\pi\)
0.0464025 + 0.998923i \(0.485224\pi\)
\(564\) 9.79796 0.412568
\(565\) −11.7980 −0.496344
\(566\) 15.5959 0.655545
\(567\) 4.89898 0.205738
\(568\) −0.898979 −0.0377203
\(569\) 34.0000 1.42535 0.712677 0.701492i \(-0.247483\pi\)
0.712677 + 0.701492i \(0.247483\pi\)
\(570\) 4.00000 0.167542
\(571\) 10.2020 0.426942 0.213471 0.976949i \(-0.431523\pi\)
0.213471 + 0.976949i \(0.431523\pi\)
\(572\) 0 0
\(573\) −9.79796 −0.409316
\(574\) −33.7980 −1.41070
\(575\) −4.00000 −0.166812
\(576\) 1.00000 0.0416667
\(577\) 31.3939 1.30694 0.653472 0.756951i \(-0.273312\pi\)
0.653472 + 0.756951i \(0.273312\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 10.8990 0.452946
\(580\) 6.00000 0.249136
\(581\) −28.4041 −1.17840
\(582\) 16.6969 0.692110
\(583\) 0 0
\(584\) 1.10102 0.0455606
\(585\) −2.89898 −0.119858
\(586\) 25.5959 1.05736
\(587\) 17.3939 0.717922 0.358961 0.933353i \(-0.383131\pi\)
0.358961 + 0.933353i \(0.383131\pi\)
\(588\) −17.0000 −0.701068
\(589\) 16.0000 0.659269
\(590\) 4.89898 0.201688
\(591\) −25.5959 −1.05288
\(592\) 6.00000 0.246598
\(593\) −37.5959 −1.54388 −0.771940 0.635696i \(-0.780713\pi\)
−0.771940 + 0.635696i \(0.780713\pi\)
\(594\) 0 0
\(595\) −4.89898 −0.200839
\(596\) −9.10102 −0.372792
\(597\) 23.5959 0.965717
\(598\) −11.5959 −0.474192
\(599\) −37.3939 −1.52787 −0.763936 0.645292i \(-0.776736\pi\)
−0.763936 + 0.645292i \(0.776736\pi\)
\(600\) 1.00000 0.0408248
\(601\) 35.7980 1.46023 0.730115 0.683325i \(-0.239467\pi\)
0.730115 + 0.683325i \(0.239467\pi\)
\(602\) 4.40408 0.179497
\(603\) −8.89898 −0.362394
\(604\) 9.79796 0.398673
\(605\) −11.0000 −0.447214
\(606\) −9.10102 −0.369704
\(607\) 16.4949 0.669507 0.334754 0.942306i \(-0.391347\pi\)
0.334754 + 0.942306i \(0.391347\pi\)
\(608\) −4.00000 −0.162221
\(609\) −29.3939 −1.19110
\(610\) 7.79796 0.315730
\(611\) 28.4041 1.14911
\(612\) −1.00000 −0.0404226
\(613\) 34.4949 1.39324 0.696618 0.717442i \(-0.254687\pi\)
0.696618 + 0.717442i \(0.254687\pi\)
\(614\) 8.89898 0.359134
\(615\) −6.89898 −0.278194
\(616\) 0 0
\(617\) 1.59592 0.0642492 0.0321246 0.999484i \(-0.489773\pi\)
0.0321246 + 0.999484i \(0.489773\pi\)
\(618\) 4.00000 0.160904
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 4.00000 0.160644
\(621\) 4.00000 0.160514
\(622\) 16.8990 0.677587
\(623\) 57.7980 2.31563
\(624\) 2.89898 0.116052
\(625\) 1.00000 0.0400000
\(626\) 2.89898 0.115867
\(627\) 0 0
\(628\) −10.8990 −0.434917
\(629\) −6.00000 −0.239236
\(630\) −4.89898 −0.195180
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) −13.7980 −0.548853
\(633\) 12.0000 0.476957
\(634\) −14.0000 −0.556011
\(635\) −12.0000 −0.476205
\(636\) −11.7980 −0.467820
\(637\) −49.2827 −1.95265
\(638\) 0 0
\(639\) 0.898979 0.0355631
\(640\) −1.00000 −0.0395285
\(641\) 8.69694 0.343508 0.171754 0.985140i \(-0.445057\pi\)
0.171754 + 0.985140i \(0.445057\pi\)
\(642\) −13.7980 −0.544562
\(643\) 10.2020 0.402329 0.201165 0.979557i \(-0.435527\pi\)
0.201165 + 0.979557i \(0.435527\pi\)
\(644\) −19.5959 −0.772187
\(645\) 0.898979 0.0353973
\(646\) 4.00000 0.157378
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0 0
\(650\) 2.89898 0.113707
\(651\) −19.5959 −0.768025
\(652\) −21.7980 −0.853674
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) −7.79796 −0.304924
\(655\) −9.79796 −0.382838
\(656\) 6.89898 0.269360
\(657\) −1.10102 −0.0429549
\(658\) 48.0000 1.87123
\(659\) 1.30306 0.0507601 0.0253800 0.999678i \(-0.491920\pi\)
0.0253800 + 0.999678i \(0.491920\pi\)
\(660\) 0 0
\(661\) −0.202041 −0.00785849 −0.00392924 0.999992i \(-0.501251\pi\)
−0.00392924 + 0.999992i \(0.501251\pi\)
\(662\) −13.7980 −0.536273
\(663\) −2.89898 −0.112587
\(664\) 5.79796 0.225004
\(665\) 19.5959 0.759897
\(666\) −6.00000 −0.232495
\(667\) −24.0000 −0.929284
\(668\) 21.7980 0.843388
\(669\) 4.00000 0.154649
\(670\) 8.89898 0.343798
\(671\) 0 0
\(672\) 4.89898 0.188982
\(673\) −42.8990 −1.65363 −0.826817 0.562471i \(-0.809851\pi\)
−0.826817 + 0.562471i \(0.809851\pi\)
\(674\) −3.30306 −0.127229
\(675\) −1.00000 −0.0384900
\(676\) −4.59592 −0.176766
\(677\) 25.5959 0.983731 0.491866 0.870671i \(-0.336315\pi\)
0.491866 + 0.870671i \(0.336315\pi\)
\(678\) −11.7980 −0.453098
\(679\) 81.7980 3.13912
\(680\) 1.00000 0.0383482
\(681\) 2.20204 0.0843824
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 4.00000 0.152944
\(685\) 14.0000 0.534913
\(686\) −48.9898 −1.87044
\(687\) −25.5959 −0.976545
\(688\) −0.898979 −0.0342733
\(689\) −34.2020 −1.30299
\(690\) −4.00000 −0.152277
\(691\) 51.1918 1.94743 0.973715 0.227772i \(-0.0731439\pi\)
0.973715 + 0.227772i \(0.0731439\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −2.20204 −0.0835883
\(695\) −5.79796 −0.219929
\(696\) 6.00000 0.227429
\(697\) −6.89898 −0.261317
\(698\) −23.7980 −0.900766
\(699\) −14.0000 −0.529529
\(700\) 4.89898 0.185164
\(701\) 5.10102 0.192663 0.0963314 0.995349i \(-0.469289\pi\)
0.0963314 + 0.995349i \(0.469289\pi\)
\(702\) −2.89898 −0.109415
\(703\) 24.0000 0.905177
\(704\) 0 0
\(705\) 9.79796 0.369012
\(706\) 26.0000 0.978523
\(707\) −44.5857 −1.67682
\(708\) 4.89898 0.184115
\(709\) −12.2020 −0.458257 −0.229129 0.973396i \(-0.573588\pi\)
−0.229129 + 0.973396i \(0.573588\pi\)
\(710\) −0.898979 −0.0337381
\(711\) 13.7980 0.517464
\(712\) −11.7980 −0.442147
\(713\) −16.0000 −0.599205
\(714\) −4.89898 −0.183340
\(715\) 0 0
\(716\) 4.89898 0.183083
\(717\) 0 0
\(718\) 21.3939 0.798412
\(719\) 36.4949 1.36103 0.680515 0.732734i \(-0.261756\pi\)
0.680515 + 0.732734i \(0.261756\pi\)
\(720\) 1.00000 0.0372678
\(721\) 19.5959 0.729790
\(722\) 3.00000 0.111648
\(723\) 25.5959 0.951922
\(724\) −23.7980 −0.884444
\(725\) 6.00000 0.222834
\(726\) −11.0000 −0.408248
\(727\) 39.5959 1.46853 0.734266 0.678862i \(-0.237527\pi\)
0.734266 + 0.678862i \(0.237527\pi\)
\(728\) 14.2020 0.526363
\(729\) 1.00000 0.0370370
\(730\) 1.10102 0.0407506
\(731\) 0.898979 0.0332500
\(732\) 7.79796 0.288221
\(733\) 2.49490 0.0921511 0.0460756 0.998938i \(-0.485328\pi\)
0.0460756 + 0.998938i \(0.485328\pi\)
\(734\) 36.8990 1.36197
\(735\) −17.0000 −0.627054
\(736\) 4.00000 0.147442
\(737\) 0 0
\(738\) −6.89898 −0.253955
\(739\) 49.3939 1.81698 0.908492 0.417903i \(-0.137235\pi\)
0.908492 + 0.417903i \(0.137235\pi\)
\(740\) 6.00000 0.220564
\(741\) 11.5959 0.425987
\(742\) −57.7980 −2.12183
\(743\) 49.3939 1.81209 0.906043 0.423186i \(-0.139088\pi\)
0.906043 + 0.423186i \(0.139088\pi\)
\(744\) 4.00000 0.146647
\(745\) −9.10102 −0.333436
\(746\) 4.69694 0.171967
\(747\) −5.79796 −0.212136
\(748\) 0 0
\(749\) −67.5959 −2.46990
\(750\) 1.00000 0.0365148
\(751\) 2.20204 0.0803536 0.0401768 0.999193i \(-0.487208\pi\)
0.0401768 + 0.999193i \(0.487208\pi\)
\(752\) −9.79796 −0.357295
\(753\) 4.89898 0.178529
\(754\) 17.3939 0.633448
\(755\) 9.79796 0.356584
\(756\) −4.89898 −0.178174
\(757\) 24.6969 0.897625 0.448813 0.893626i \(-0.351847\pi\)
0.448813 + 0.893626i \(0.351847\pi\)
\(758\) 10.2020 0.370555
\(759\) 0 0
\(760\) −4.00000 −0.145095
\(761\) 37.5959 1.36285 0.681425 0.731888i \(-0.261360\pi\)
0.681425 + 0.731888i \(0.261360\pi\)
\(762\) −12.0000 −0.434714
\(763\) −38.2020 −1.38301
\(764\) 9.79796 0.354478
\(765\) −1.00000 −0.0361551
\(766\) −8.00000 −0.289052
\(767\) 14.2020 0.512806
\(768\) −1.00000 −0.0360844
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) 2.00000 0.0720282
\(772\) −10.8990 −0.392263
\(773\) 23.3939 0.841419 0.420710 0.907195i \(-0.361781\pi\)
0.420710 + 0.907195i \(0.361781\pi\)
\(774\) 0.898979 0.0323132
\(775\) 4.00000 0.143684
\(776\) −16.6969 −0.599385
\(777\) −29.3939 −1.05450
\(778\) −10.4949 −0.376260
\(779\) 27.5959 0.988726
\(780\) 2.89898 0.103800
\(781\) 0 0
\(782\) −4.00000 −0.143040
\(783\) −6.00000 −0.214423
\(784\) 17.0000 0.607143
\(785\) −10.8990 −0.389001
\(786\) −9.79796 −0.349482
\(787\) −26.2020 −0.934002 −0.467001 0.884257i \(-0.654666\pi\)
−0.467001 + 0.884257i \(0.654666\pi\)
\(788\) 25.5959 0.911817
\(789\) −8.00000 −0.284808
\(790\) −13.7980 −0.490909
\(791\) −57.7980 −2.05506
\(792\) 0 0
\(793\) 22.6061 0.802767
\(794\) 37.5959 1.33423
\(795\) −11.7980 −0.418430
\(796\) −23.5959 −0.836335
\(797\) 26.0000 0.920967 0.460484 0.887668i \(-0.347676\pi\)
0.460484 + 0.887668i \(0.347676\pi\)
\(798\) 19.5959 0.693688
\(799\) 9.79796 0.346627
\(800\) −1.00000 −0.0353553
\(801\) 11.7980 0.416860
\(802\) −13.1010 −0.462613
\(803\) 0 0
\(804\) 8.89898 0.313843
\(805\) −19.5959 −0.690665
\(806\) 11.5959 0.408449
\(807\) 29.5959 1.04183
\(808\) 9.10102 0.320173
\(809\) 3.30306 0.116129 0.0580647 0.998313i \(-0.481507\pi\)
0.0580647 + 0.998313i \(0.481507\pi\)
\(810\) −1.00000 −0.0351364
\(811\) −33.3939 −1.17262 −0.586309 0.810088i \(-0.699419\pi\)
−0.586309 + 0.810088i \(0.699419\pi\)
\(812\) 29.3939 1.03152
\(813\) −17.7980 −0.624202
\(814\) 0 0
\(815\) −21.7980 −0.763549
\(816\) 1.00000 0.0350070
\(817\) −3.59592 −0.125805
\(818\) −21.5959 −0.755084
\(819\) −14.2020 −0.496259
\(820\) 6.89898 0.240923
\(821\) −3.79796 −0.132550 −0.0662748 0.997801i \(-0.521111\pi\)
−0.0662748 + 0.997801i \(0.521111\pi\)
\(822\) 14.0000 0.488306
\(823\) 11.1010 0.386957 0.193479 0.981104i \(-0.438023\pi\)
0.193479 + 0.981104i \(0.438023\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 24.0000 0.835067
\(827\) −4.00000 −0.139094 −0.0695468 0.997579i \(-0.522155\pi\)
−0.0695468 + 0.997579i \(0.522155\pi\)
\(828\) −4.00000 −0.139010
\(829\) −55.3939 −1.92391 −0.961954 0.273210i \(-0.911915\pi\)
−0.961954 + 0.273210i \(0.911915\pi\)
\(830\) 5.79796 0.201250
\(831\) 11.7980 0.409267
\(832\) −2.89898 −0.100504
\(833\) −17.0000 −0.589015
\(834\) −5.79796 −0.200767
\(835\) 21.7980 0.754349
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) −1.79796 −0.0621095
\(839\) −16.8990 −0.583418 −0.291709 0.956507i \(-0.594224\pi\)
−0.291709 + 0.956507i \(0.594224\pi\)
\(840\) 4.89898 0.169031
\(841\) 7.00000 0.241379
\(842\) −14.0000 −0.482472
\(843\) −8.20204 −0.282493
\(844\) −12.0000 −0.413057
\(845\) −4.59592 −0.158104
\(846\) 9.79796 0.336861
\(847\) −53.8888 −1.85164
\(848\) 11.7980 0.405144
\(849\) 15.5959 0.535251
\(850\) 1.00000 0.0342997
\(851\) −24.0000 −0.822709
\(852\) −0.898979 −0.0307985
\(853\) −47.3939 −1.62274 −0.811368 0.584536i \(-0.801277\pi\)
−0.811368 + 0.584536i \(0.801277\pi\)
\(854\) 38.2020 1.30725
\(855\) 4.00000 0.136797
\(856\) 13.7980 0.471605
\(857\) −10.0000 −0.341593 −0.170797 0.985306i \(-0.554634\pi\)
−0.170797 + 0.985306i \(0.554634\pi\)
\(858\) 0 0
\(859\) −13.7980 −0.470780 −0.235390 0.971901i \(-0.575637\pi\)
−0.235390 + 0.971901i \(0.575637\pi\)
\(860\) −0.898979 −0.0306549
\(861\) −33.7980 −1.15183
\(862\) 32.8990 1.12054
\(863\) 13.3939 0.455933 0.227966 0.973669i \(-0.426792\pi\)
0.227966 + 0.973669i \(0.426792\pi\)
\(864\) 1.00000 0.0340207
\(865\) 6.00000 0.204006
\(866\) −23.3939 −0.794956
\(867\) −1.00000 −0.0339618
\(868\) 19.5959 0.665129
\(869\) 0 0
\(870\) 6.00000 0.203419
\(871\) 25.7980 0.874130
\(872\) 7.79796 0.264072
\(873\) 16.6969 0.565106
\(874\) 16.0000 0.541208
\(875\) 4.89898 0.165616
\(876\) 1.10102 0.0372000
\(877\) 27.3939 0.925025 0.462513 0.886613i \(-0.346948\pi\)
0.462513 + 0.886613i \(0.346948\pi\)
\(878\) 13.7980 0.465659
\(879\) 25.5959 0.863329
\(880\) 0 0
\(881\) −14.4949 −0.488346 −0.244173 0.969732i \(-0.578516\pi\)
−0.244173 + 0.969732i \(0.578516\pi\)
\(882\) −17.0000 −0.572420
\(883\) −2.69694 −0.0907592 −0.0453796 0.998970i \(-0.514450\pi\)
−0.0453796 + 0.998970i \(0.514450\pi\)
\(884\) 2.89898 0.0975032
\(885\) 4.89898 0.164677
\(886\) −18.2020 −0.611510
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 6.00000 0.201347
\(889\) −58.7878 −1.97168
\(890\) −11.7980 −0.395468
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) −39.1918 −1.31150
\(894\) −9.10102 −0.304384
\(895\) 4.89898 0.163755
\(896\) −4.89898 −0.163663
\(897\) −11.5959 −0.387176
\(898\) 2.89898 0.0967402
\(899\) 24.0000 0.800445
\(900\) 1.00000 0.0333333
\(901\) −11.7980 −0.393047
\(902\) 0 0
\(903\) 4.40408 0.146559
\(904\) 11.7980 0.392394
\(905\) −23.7980 −0.791071
\(906\) 9.79796 0.325515
\(907\) 25.3939 0.843190 0.421595 0.906784i \(-0.361470\pi\)
0.421595 + 0.906784i \(0.361470\pi\)
\(908\) −2.20204 −0.0730773
\(909\) −9.10102 −0.301862
\(910\) 14.2020 0.470793
\(911\) 32.8990 1.08999 0.544996 0.838439i \(-0.316531\pi\)
0.544996 + 0.838439i \(0.316531\pi\)
\(912\) −4.00000 −0.132453
\(913\) 0 0
\(914\) −35.7980 −1.18409
\(915\) 7.79796 0.257793
\(916\) 25.5959 0.845713
\(917\) −48.0000 −1.58510
\(918\) −1.00000 −0.0330049
\(919\) −17.7980 −0.587100 −0.293550 0.955944i \(-0.594837\pi\)
−0.293550 + 0.955944i \(0.594837\pi\)
\(920\) 4.00000 0.131876
\(921\) 8.89898 0.293231
\(922\) −0.696938 −0.0229524
\(923\) −2.60612 −0.0857816
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 31.5959 1.03831
\(927\) 4.00000 0.131377
\(928\) −6.00000 −0.196960
\(929\) −32.2929 −1.05949 −0.529747 0.848156i \(-0.677713\pi\)
−0.529747 + 0.848156i \(0.677713\pi\)
\(930\) 4.00000 0.131165
\(931\) 68.0000 2.22861
\(932\) 14.0000 0.458585
\(933\) 16.8990 0.553248
\(934\) −31.5959 −1.03385
\(935\) 0 0
\(936\) 2.89898 0.0947561
\(937\) −19.3939 −0.633570 −0.316785 0.948497i \(-0.602603\pi\)
−0.316785 + 0.948497i \(0.602603\pi\)
\(938\) 43.5959 1.42346
\(939\) 2.89898 0.0946046
\(940\) −9.79796 −0.319574
\(941\) −35.7980 −1.16698 −0.583490 0.812120i \(-0.698313\pi\)
−0.583490 + 0.812120i \(0.698313\pi\)
\(942\) −10.8990 −0.355108
\(943\) −27.5959 −0.898647
\(944\) −4.89898 −0.159448
\(945\) −4.89898 −0.159364
\(946\) 0 0
\(947\) 2.20204 0.0715567 0.0357784 0.999360i \(-0.488609\pi\)
0.0357784 + 0.999360i \(0.488609\pi\)
\(948\) −13.7980 −0.448137
\(949\) 3.19184 0.103611
\(950\) −4.00000 −0.129777
\(951\) −14.0000 −0.453981
\(952\) 4.89898 0.158777
\(953\) 37.1918 1.20476 0.602381 0.798209i \(-0.294219\pi\)
0.602381 + 0.798209i \(0.294219\pi\)
\(954\) −11.7980 −0.381973
\(955\) 9.79796 0.317055
\(956\) 0 0
\(957\) 0 0
\(958\) 23.1010 0.746360
\(959\) 68.5857 2.21475
\(960\) −1.00000 −0.0322749
\(961\) −15.0000 −0.483871
\(962\) 17.3939 0.560801
\(963\) −13.7980 −0.444633
\(964\) −25.5959 −0.824389
\(965\) −10.8990 −0.350851
\(966\) −19.5959 −0.630488
\(967\) 17.3939 0.559349 0.279675 0.960095i \(-0.409773\pi\)
0.279675 + 0.960095i \(0.409773\pi\)
\(968\) 11.0000 0.353553
\(969\) 4.00000 0.128499
\(970\) −16.6969 −0.536106
\(971\) 9.30306 0.298549 0.149275 0.988796i \(-0.452306\pi\)
0.149275 + 0.988796i \(0.452306\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −28.4041 −0.910593
\(974\) 11.1010 0.355700
\(975\) 2.89898 0.0928416
\(976\) −7.79796 −0.249607
\(977\) 9.59592 0.307001 0.153500 0.988149i \(-0.450945\pi\)
0.153500 + 0.988149i \(0.450945\pi\)
\(978\) −21.7980 −0.697022
\(979\) 0 0
\(980\) 17.0000 0.543045
\(981\) −7.79796 −0.248970
\(982\) 30.6969 0.979579
\(983\) −49.3939 −1.57542 −0.787710 0.616046i \(-0.788733\pi\)
−0.787710 + 0.616046i \(0.788733\pi\)
\(984\) 6.89898 0.219931
\(985\) 25.5959 0.815554
\(986\) 6.00000 0.191079
\(987\) 48.0000 1.52786
\(988\) −11.5959 −0.368915
\(989\) 3.59592 0.114344
\(990\) 0 0
\(991\) 23.5959 0.749549 0.374775 0.927116i \(-0.377720\pi\)
0.374775 + 0.927116i \(0.377720\pi\)
\(992\) −4.00000 −0.127000
\(993\) −13.7980 −0.437865
\(994\) −4.40408 −0.139689
\(995\) −23.5959 −0.748041
\(996\) 5.79796 0.183715
\(997\) 17.5959 0.557268 0.278634 0.960397i \(-0.410118\pi\)
0.278634 + 0.960397i \(0.410118\pi\)
\(998\) 0.404082 0.0127910
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 510.2.a.h.1.2 2
3.2 odd 2 1530.2.a.s.1.2 2
4.3 odd 2 4080.2.a.bq.1.1 2
5.2 odd 4 2550.2.d.u.2449.2 4
5.3 odd 4 2550.2.d.u.2449.3 4
5.4 even 2 2550.2.a.bl.1.1 2
15.14 odd 2 7650.2.a.cu.1.1 2
17.16 even 2 8670.2.a.be.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.h.1.2 2 1.1 even 1 trivial
1530.2.a.s.1.2 2 3.2 odd 2
2550.2.a.bl.1.1 2 5.4 even 2
2550.2.d.u.2449.2 4 5.2 odd 4
2550.2.d.u.2449.3 4 5.3 odd 4
4080.2.a.bq.1.1 2 4.3 odd 2
7650.2.a.cu.1.1 2 15.14 odd 2
8670.2.a.be.1.1 2 17.16 even 2