Properties

Label 510.2.a.e.1.1
Level $510$
Weight $2$
Character 510.1
Self dual yes
Analytic conductor $4.072$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 510.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} +4.00000 q^{11} -1.00000 q^{12} -2.00000 q^{13} -1.00000 q^{15} +1.00000 q^{16} +1.00000 q^{17} +1.00000 q^{18} +4.00000 q^{19} +1.00000 q^{20} +4.00000 q^{22} -1.00000 q^{24} +1.00000 q^{25} -2.00000 q^{26} -1.00000 q^{27} -2.00000 q^{29} -1.00000 q^{30} +8.00000 q^{31} +1.00000 q^{32} -4.00000 q^{33} +1.00000 q^{34} +1.00000 q^{36} +6.00000 q^{37} +4.00000 q^{38} +2.00000 q^{39} +1.00000 q^{40} -6.00000 q^{41} -4.00000 q^{43} +4.00000 q^{44} +1.00000 q^{45} -1.00000 q^{48} -7.00000 q^{49} +1.00000 q^{50} -1.00000 q^{51} -2.00000 q^{52} -10.0000 q^{53} -1.00000 q^{54} +4.00000 q^{55} -4.00000 q^{57} -2.00000 q^{58} -4.00000 q^{59} -1.00000 q^{60} -2.00000 q^{61} +8.00000 q^{62} +1.00000 q^{64} -2.00000 q^{65} -4.00000 q^{66} +4.00000 q^{67} +1.00000 q^{68} +1.00000 q^{72} -6.00000 q^{73} +6.00000 q^{74} -1.00000 q^{75} +4.00000 q^{76} +2.00000 q^{78} +8.00000 q^{79} +1.00000 q^{80} +1.00000 q^{81} -6.00000 q^{82} -12.0000 q^{83} +1.00000 q^{85} -4.00000 q^{86} +2.00000 q^{87} +4.00000 q^{88} -6.00000 q^{89} +1.00000 q^{90} -8.00000 q^{93} +4.00000 q^{95} -1.00000 q^{96} -14.0000 q^{97} -7.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −1.00000 −0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 1.00000 0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) −1.00000 −0.182574
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.00000 −0.696311
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 4.00000 0.648886
\(39\) 2.00000 0.320256
\(40\) 1.00000 0.158114
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.00000 0.603023
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −0.144338
\(49\) −7.00000 −1.00000
\(50\) 1.00000 0.141421
\(51\) −1.00000 −0.140028
\(52\) −2.00000 −0.277350
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) −1.00000 −0.136083
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) −2.00000 −0.262613
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) −1.00000 −0.129099
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.00000 −0.248069
\(66\) −4.00000 −0.492366
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000 0.117851
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 6.00000 0.697486
\(75\) −1.00000 −0.115470
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) −6.00000 −0.662589
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) −4.00000 −0.431331
\(87\) 2.00000 0.214423
\(88\) 4.00000 0.426401
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) −1.00000 −0.102062
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) −7.00000 −0.707107
\(99\) 4.00000 0.402015
\(100\) 1.00000 0.100000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) −1.00000 −0.0990148
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 4.00000 0.381385
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) −4.00000 −0.374634
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) −2.00000 −0.184900
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) 5.00000 0.454545
\(122\) −2.00000 −0.181071
\(123\) 6.00000 0.541002
\(124\) 8.00000 0.718421
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.00000 0.352180
\(130\) −2.00000 −0.175412
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) −4.00000 −0.348155
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) −1.00000 −0.0860663
\(136\) 1.00000 0.0857493
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 1.00000 0.0833333
\(145\) −2.00000 −0.166091
\(146\) −6.00000 −0.496564
\(147\) 7.00000 0.577350
\(148\) 6.00000 0.493197
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) −1.00000 −0.0816497
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 4.00000 0.324443
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 2.00000 0.160128
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 8.00000 0.636446
\(159\) 10.0000 0.793052
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) −6.00000 −0.468521
\(165\) −4.00000 −0.311400
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 1.00000 0.0766965
\(171\) 4.00000 0.305888
\(172\) −4.00000 −0.304997
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 2.00000 0.151620
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 4.00000 0.300658
\(178\) −6.00000 −0.449719
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 1.00000 0.0745356
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) −8.00000 −0.586588
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) −14.0000 −1.00514
\(195\) 2.00000 0.143223
\(196\) −7.00000 −0.500000
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 4.00000 0.284268
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 1.00000 0.0707107
\(201\) −4.00000 −0.282138
\(202\) −10.0000 −0.703598
\(203\) 0 0
\(204\) −1.00000 −0.0700140
\(205\) −6.00000 −0.419058
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −10.0000 −0.686803
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) −4.00000 −0.272798
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) 14.0000 0.948200
\(219\) 6.00000 0.405442
\(220\) 4.00000 0.269680
\(221\) −2.00000 −0.134535
\(222\) −6.00000 −0.402694
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) −14.0000 −0.931266
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) −4.00000 −0.264906
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) −1.00000 −0.0645497
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 5.00000 0.321412
\(243\) −1.00000 −0.0641500
\(244\) −2.00000 −0.128037
\(245\) −7.00000 −0.447214
\(246\) 6.00000 0.382546
\(247\) −8.00000 −0.509028
\(248\) 8.00000 0.508001
\(249\) 12.0000 0.760469
\(250\) 1.00000 0.0632456
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1.00000 −0.0626224
\(256\) 1.00000 0.0625000
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 4.00000 0.249029
\(259\) 0 0
\(260\) −2.00000 −0.124035
\(261\) −2.00000 −0.123797
\(262\) −20.0000 −1.23560
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) −4.00000 −0.246183
\(265\) −10.0000 −0.614295
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 4.00000 0.244339
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) −1.00000 −0.0608581
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 20.0000 1.19952
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) −8.00000 −0.473050
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) 1.00000 0.0588235
\(290\) −2.00000 −0.117444
\(291\) 14.0000 0.820695
\(292\) −6.00000 −0.351123
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 7.00000 0.408248
\(295\) −4.00000 −0.232889
\(296\) 6.00000 0.348743
\(297\) −4.00000 −0.232104
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) −1.00000 −0.0577350
\(301\) 0 0
\(302\) 8.00000 0.460348
\(303\) 10.0000 0.574485
\(304\) 4.00000 0.229416
\(305\) −2.00000 −0.114520
\(306\) 1.00000 0.0571662
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 8.00000 0.454369
\(311\) 16.0000 0.907277 0.453638 0.891186i \(-0.350126\pi\)
0.453638 + 0.891186i \(0.350126\pi\)
\(312\) 2.00000 0.113228
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) −18.0000 −1.01580
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 10.0000 0.560772
\(319\) −8.00000 −0.447914
\(320\) 1.00000 0.0559017
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 1.00000 0.0555556
\(325\) −2.00000 −0.110940
\(326\) 12.0000 0.664619
\(327\) −14.0000 −0.774202
\(328\) −6.00000 −0.331295
\(329\) 0 0
\(330\) −4.00000 −0.220193
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −12.0000 −0.658586
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) −9.00000 −0.489535
\(339\) 14.0000 0.760376
\(340\) 1.00000 0.0542326
\(341\) 32.0000 1.73290
\(342\) 4.00000 0.216295
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 2.00000 0.107211
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 4.00000 0.213201
\(353\) 34.0000 1.80964 0.904819 0.425797i \(-0.140006\pi\)
0.904819 + 0.425797i \(0.140006\pi\)
\(354\) 4.00000 0.212598
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 1.00000 0.0527046
\(361\) −3.00000 −0.157895
\(362\) 22.0000 1.15629
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 2.00000 0.104542
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 6.00000 0.311925
\(371\) 0 0
\(372\) −8.00000 −0.414781
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 4.00000 0.206835
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 4.00000 0.205196
\(381\) 0 0
\(382\) 0 0
\(383\) −32.0000 −1.63512 −0.817562 0.575841i \(-0.804675\pi\)
−0.817562 + 0.575841i \(0.804675\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) −4.00000 −0.203331
\(388\) −14.0000 −0.710742
\(389\) 22.0000 1.11544 0.557722 0.830028i \(-0.311675\pi\)
0.557722 + 0.830028i \(0.311675\pi\)
\(390\) 2.00000 0.101274
\(391\) 0 0
\(392\) −7.00000 −0.353553
\(393\) 20.0000 1.00887
\(394\) 6.00000 0.302276
\(395\) 8.00000 0.402524
\(396\) 4.00000 0.201008
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) −4.00000 −0.199502
\(403\) −16.0000 −0.797017
\(404\) −10.0000 −0.497519
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) −1.00000 −0.0495074
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) −6.00000 −0.296319
\(411\) −10.0000 −0.493264
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) −2.00000 −0.0980581
\(417\) −20.0000 −0.979404
\(418\) 16.0000 0.782586
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 12.0000 0.584151
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) 0 0
\(428\) 4.00000 0.193347
\(429\) 8.00000 0.386244
\(430\) −4.00000 −0.192897
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 0 0
\(435\) 2.00000 0.0958927
\(436\) 14.0000 0.670478
\(437\) 0 0
\(438\) 6.00000 0.286691
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 4.00000 0.190693
\(441\) −7.00000 −0.333333
\(442\) −2.00000 −0.0951303
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) −6.00000 −0.284747
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 1.00000 0.0471405
\(451\) −24.0000 −1.13012
\(452\) −14.0000 −0.658505
\(453\) −8.00000 −0.375873
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 6.00000 0.280362
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −2.00000 −0.0928477
\(465\) −8.00000 −0.370991
\(466\) −22.0000 −1.01913
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 0 0
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) −4.00000 −0.184115
\(473\) −16.0000 −0.735681
\(474\) −8.00000 −0.367452
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) −10.0000 −0.457869
\(478\) 16.0000 0.731823
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) −1.00000 −0.0456435
\(481\) −12.0000 −0.547153
\(482\) 18.0000 0.819878
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −14.0000 −0.635707
\(486\) −1.00000 −0.0453609
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) −2.00000 −0.0905357
\(489\) −12.0000 −0.542659
\(490\) −7.00000 −0.316228
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 6.00000 0.270501
\(493\) −2.00000 −0.0900755
\(494\) −8.00000 −0.359937
\(495\) 4.00000 0.179787
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 12.0000 0.537733
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) −1.00000 −0.0442807
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −4.00000 −0.176604
\(514\) 2.00000 0.0882162
\(515\) −8.00000 −0.352522
\(516\) 4.00000 0.176090
\(517\) 0 0
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) −2.00000 −0.0877058
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) −2.00000 −0.0875376
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 8.00000 0.348485
\(528\) −4.00000 −0.174078
\(529\) −23.0000 −1.00000
\(530\) −10.0000 −0.434372
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 6.00000 0.259645
\(535\) 4.00000 0.172935
\(536\) 4.00000 0.172774
\(537\) 12.0000 0.517838
\(538\) −18.0000 −0.776035
\(539\) −28.0000 −1.20605
\(540\) −1.00000 −0.0430331
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) −16.0000 −0.687259
\(543\) −22.0000 −0.944110
\(544\) 1.00000 0.0428746
\(545\) 14.0000 0.599694
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 10.0000 0.427179
\(549\) −2.00000 −0.0853579
\(550\) 4.00000 0.170561
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) −6.00000 −0.254686
\(556\) 20.0000 0.848189
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 8.00000 0.338667
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) −6.00000 −0.253095
\(563\) −44.0000 −1.85438 −0.927189 0.374593i \(-0.877783\pi\)
−0.927189 + 0.374593i \(0.877783\pi\)
\(564\) 0 0
\(565\) −14.0000 −0.588984
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) −4.00000 −0.167542
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) −8.00000 −0.334497
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 1.00000 0.0415945
\(579\) −18.0000 −0.748054
\(580\) −2.00000 −0.0830455
\(581\) 0 0
\(582\) 14.0000 0.580319
\(583\) −40.0000 −1.65663
\(584\) −6.00000 −0.248282
\(585\) −2.00000 −0.0826898
\(586\) 6.00000 0.247858
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 7.00000 0.288675
\(589\) 32.0000 1.31854
\(590\) −4.00000 −0.164677
\(591\) −6.00000 −0.246807
\(592\) 6.00000 0.246598
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 16.0000 0.654836
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 8.00000 0.325515
\(605\) 5.00000 0.203279
\(606\) 10.0000 0.406222
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) 0 0
\(612\) 1.00000 0.0404226
\(613\) 22.0000 0.888572 0.444286 0.895885i \(-0.353457\pi\)
0.444286 + 0.895885i \(0.353457\pi\)
\(614\) 20.0000 0.807134
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 8.00000 0.321807
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) 16.0000 0.641542
\(623\) 0 0
\(624\) 2.00000 0.0800641
\(625\) 1.00000 0.0400000
\(626\) −22.0000 −0.879297
\(627\) −16.0000 −0.638978
\(628\) −18.0000 −0.718278
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 8.00000 0.318223
\(633\) −12.0000 −0.476957
\(634\) 30.0000 1.19145
\(635\) 0 0
\(636\) 10.0000 0.396526
\(637\) 14.0000 0.554700
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) −4.00000 −0.157867
\(643\) 28.0000 1.10421 0.552106 0.833774i \(-0.313824\pi\)
0.552106 + 0.833774i \(0.313824\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 4.00000 0.157378
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 1.00000 0.0392837
\(649\) −16.0000 −0.628055
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) −14.0000 −0.547443
\(655\) −20.0000 −0.781465
\(656\) −6.00000 −0.234261
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) −4.00000 −0.155700
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) −4.00000 −0.155464
\(663\) 2.00000 0.0776736
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 4.00000 0.154533
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) 50.0000 1.92736 0.963679 0.267063i \(-0.0860531\pi\)
0.963679 + 0.267063i \(0.0860531\pi\)
\(674\) −30.0000 −1.15556
\(675\) −1.00000 −0.0384900
\(676\) −9.00000 −0.346154
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 14.0000 0.537667
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) −12.0000 −0.459841
\(682\) 32.0000 1.22534
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 4.00000 0.152944
\(685\) 10.0000 0.382080
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) −4.00000 −0.152499
\(689\) 20.0000 0.761939
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 20.0000 0.758643
\(696\) 2.00000 0.0758098
\(697\) −6.00000 −0.227266
\(698\) −2.00000 −0.0757011
\(699\) 22.0000 0.832116
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 2.00000 0.0754851
\(703\) 24.0000 0.905177
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 34.0000 1.27961
\(707\) 0 0
\(708\) 4.00000 0.150329
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) −6.00000 −0.224860
\(713\) 0 0
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) −12.0000 −0.448461
\(717\) −16.0000 −0.597531
\(718\) 24.0000 0.895672
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 1.00000 0.0372678
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) −18.0000 −0.669427
\(724\) 22.0000 0.817624
\(725\) −2.00000 −0.0742781
\(726\) −5.00000 −0.185567
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −6.00000 −0.222070
\(731\) −4.00000 −0.147945
\(732\) 2.00000 0.0739221
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 8.00000 0.295285
\(735\) 7.00000 0.258199
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) −6.00000 −0.220863
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 6.00000 0.220564
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) −8.00000 −0.293294
\(745\) 6.00000 0.219823
\(746\) 6.00000 0.219676
\(747\) −12.0000 −0.439057
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) −1.00000 −0.0365148
\(751\) 24.0000 0.875772 0.437886 0.899030i \(-0.355727\pi\)
0.437886 + 0.899030i \(0.355727\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 4.00000 0.145671
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) 4.00000 0.145095
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.00000 0.0361551
\(766\) −32.0000 −1.15621
\(767\) 8.00000 0.288863
\(768\) −1.00000 −0.0360844
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 18.0000 0.647834
\(773\) 38.0000 1.36677 0.683383 0.730061i \(-0.260508\pi\)
0.683383 + 0.730061i \(0.260508\pi\)
\(774\) −4.00000 −0.143777
\(775\) 8.00000 0.287368
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 22.0000 0.788738
\(779\) −24.0000 −0.859889
\(780\) 2.00000 0.0716115
\(781\) 0 0
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) −7.00000 −0.250000
\(785\) −18.0000 −0.642448
\(786\) 20.0000 0.713376
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 6.00000 0.213741
\(789\) 24.0000 0.854423
\(790\) 8.00000 0.284627
\(791\) 0 0
\(792\) 4.00000 0.142134
\(793\) 4.00000 0.142044
\(794\) −18.0000 −0.638796
\(795\) 10.0000 0.354663
\(796\) −16.0000 −0.567105
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) −6.00000 −0.212000
\(802\) −30.0000 −1.05934
\(803\) −24.0000 −0.846942
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) −16.0000 −0.563576
\(807\) 18.0000 0.633630
\(808\) −10.0000 −0.351799
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 1.00000 0.0351364
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 24.0000 0.841200
\(815\) 12.0000 0.420342
\(816\) −1.00000 −0.0350070
\(817\) −16.0000 −0.559769
\(818\) −38.0000 −1.32864
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) −10.0000 −0.348790
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) −8.00000 −0.278693
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 4.00000 0.139094 0.0695468 0.997579i \(-0.477845\pi\)
0.0695468 + 0.997579i \(0.477845\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) −12.0000 −0.416526
\(831\) 10.0000 0.346896
\(832\) −2.00000 −0.0693375
\(833\) −7.00000 −0.242536
\(834\) −20.0000 −0.692543
\(835\) 0 0
\(836\) 16.0000 0.553372
\(837\) −8.00000 −0.276520
\(838\) −36.0000 −1.24360
\(839\) 16.0000 0.552381 0.276191 0.961103i \(-0.410928\pi\)
0.276191 + 0.961103i \(0.410928\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 6.00000 0.206774
\(843\) 6.00000 0.206651
\(844\) 12.0000 0.413057
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) −10.0000 −0.343401
\(849\) −4.00000 −0.137280
\(850\) 1.00000 0.0342997
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 4.00000 0.136717
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 8.00000 0.273115
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 14.0000 0.476014
\(866\) 18.0000 0.611665
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 32.0000 1.08553
\(870\) 2.00000 0.0678064
\(871\) −8.00000 −0.271070
\(872\) 14.0000 0.474100
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 6.00000 0.202721
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) −32.0000 −1.07995
\(879\) −6.00000 −0.202375
\(880\) 4.00000 0.134840
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) −7.00000 −0.235702
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 4.00000 0.134459
\(886\) 12.0000 0.403148
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) −6.00000 −0.201347
\(889\) 0 0
\(890\) −6.00000 −0.201120
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 0 0
\(894\) −6.00000 −0.200670
\(895\) −12.0000 −0.401116
\(896\) 0 0
\(897\) 0 0
\(898\) 18.0000 0.600668
\(899\) −16.0000 −0.533630
\(900\) 1.00000 0.0333333
\(901\) −10.0000 −0.333148
\(902\) −24.0000 −0.799113
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) 22.0000 0.731305
\(906\) −8.00000 −0.265782
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 12.0000 0.398234
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) −40.0000 −1.32526 −0.662630 0.748947i \(-0.730560\pi\)
−0.662630 + 0.748947i \(0.730560\pi\)
\(912\) −4.00000 −0.132453
\(913\) −48.0000 −1.58857
\(914\) −22.0000 −0.727695
\(915\) 2.00000 0.0661180
\(916\) 6.00000 0.198246
\(917\) 0 0
\(918\) −1.00000 −0.0330049
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 30.0000 0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) −2.00000 −0.0656532
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) −8.00000 −0.262330
\(931\) −28.0000 −0.917663
\(932\) −22.0000 −0.720634
\(933\) −16.0000 −0.523816
\(934\) −12.0000 −0.392652
\(935\) 4.00000 0.130814
\(936\) −2.00000 −0.0653720
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 0 0
\(939\) 22.0000 0.717943
\(940\) 0 0
\(941\) 46.0000 1.49956 0.749779 0.661689i \(-0.230160\pi\)
0.749779 + 0.661689i \(0.230160\pi\)
\(942\) 18.0000 0.586472
\(943\) 0 0
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) −8.00000 −0.259828
\(949\) 12.0000 0.389536
\(950\) 4.00000 0.129777
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) 58.0000 1.87880 0.939402 0.342817i \(-0.111381\pi\)
0.939402 + 0.342817i \(0.111381\pi\)
\(954\) −10.0000 −0.323762
\(955\) 0 0
\(956\) 16.0000 0.517477
\(957\) 8.00000 0.258603
\(958\) −40.0000 −1.29234
\(959\) 0 0
\(960\) −1.00000 −0.0322749
\(961\) 33.0000 1.06452
\(962\) −12.0000 −0.386896
\(963\) 4.00000 0.128898
\(964\) 18.0000 0.579741
\(965\) 18.0000 0.579441
\(966\) 0 0
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) 5.00000 0.160706
\(969\) −4.00000 −0.128499
\(970\) −14.0000 −0.449513
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 32.0000 1.02535
\(975\) 2.00000 0.0640513
\(976\) −2.00000 −0.0640184
\(977\) −46.0000 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(978\) −12.0000 −0.383718
\(979\) −24.0000 −0.767043
\(980\) −7.00000 −0.223607
\(981\) 14.0000 0.446986
\(982\) −20.0000 −0.638226
\(983\) 48.0000 1.53096 0.765481 0.643458i \(-0.222501\pi\)
0.765481 + 0.643458i \(0.222501\pi\)
\(984\) 6.00000 0.191273
\(985\) 6.00000 0.191176
\(986\) −2.00000 −0.0636930
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 0 0
\(990\) 4.00000 0.127128
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) 8.00000 0.254000
\(993\) 4.00000 0.126936
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 12.0000 0.380235
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) −20.0000 −0.633089
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 510.2.a.e.1.1 1
3.2 odd 2 1530.2.a.b.1.1 1
4.3 odd 2 4080.2.a.ba.1.1 1
5.2 odd 4 2550.2.d.k.2449.2 2
5.3 odd 4 2550.2.d.k.2449.1 2
5.4 even 2 2550.2.a.l.1.1 1
15.14 odd 2 7650.2.a.bx.1.1 1
17.16 even 2 8670.2.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.e.1.1 1 1.1 even 1 trivial
1530.2.a.b.1.1 1 3.2 odd 2
2550.2.a.l.1.1 1 5.4 even 2
2550.2.d.k.2449.1 2 5.3 odd 4
2550.2.d.k.2449.2 2 5.2 odd 4
4080.2.a.ba.1.1 1 4.3 odd 2
7650.2.a.bx.1.1 1 15.14 odd 2
8670.2.a.v.1.1 1 17.16 even 2