Defining parameters
| Level: | \( N \) | \(=\) | \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 510.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(216\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(510))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 116 | 9 | 107 |
| Cusp forms | 101 | 9 | 92 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(3\) | \(0\) | \(3\) | \(3\) | \(0\) | \(3\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(10\) | \(1\) | \(9\) | \(9\) | \(1\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(6\) | \(0\) | \(6\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(10\) | \(0\) | \(10\) | \(9\) | \(0\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(6\) | \(0\) | \(6\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(6\) | \(0\) | \(6\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(7\) | \(1\) | \(6\) | \(6\) | \(1\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(8\) | \(1\) | \(7\) | \(7\) | \(1\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(7\) | \(0\) | \(7\) | \(6\) | \(0\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(8\) | \(1\) | \(7\) | \(7\) | \(1\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(10\) | \(0\) | \(10\) | \(9\) | \(0\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(5\) | \(1\) | \(4\) | \(4\) | \(1\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(8\) | \(0\) | \(8\) | \(7\) | \(0\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(54\) | \(1\) | \(53\) | \(47\) | \(1\) | \(46\) | \(7\) | \(0\) | \(7\) | ||||||
| Minus space | \(-\) | \(62\) | \(8\) | \(54\) | \(54\) | \(8\) | \(46\) | \(8\) | \(0\) | \(8\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(510))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(510))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(510)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 2}\)