Properties

Label 51.7.b.a.35.17
Level $51$
Weight $7$
Character 51.35
Analytic conductor $11.733$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,7,Mod(35,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.35"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 51.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7327582646\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 35.17
Character \(\chi\) \(=\) 51.35
Dual form 51.7.b.a.35.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.461474i q^{2} +(22.0416 + 15.5939i) q^{3} +63.7870 q^{4} +70.0200i q^{5} +(-7.19617 + 10.1716i) q^{6} +296.369 q^{7} +58.9705i q^{8} +(242.663 + 687.427i) q^{9} -32.3124 q^{10} -1247.91i q^{11} +(1405.97 + 994.687i) q^{12} -2897.94 q^{13} +136.767i q^{14} +(-1091.88 + 1543.35i) q^{15} +4055.16 q^{16} +1191.58i q^{17} +(-317.230 + 111.983i) q^{18} +3451.27 q^{19} +4466.37i q^{20} +(6532.43 + 4621.53i) q^{21} +575.879 q^{22} +20903.9i q^{23} +(-919.577 + 1299.80i) q^{24} +10722.2 q^{25} -1337.32i q^{26} +(-5370.97 + 18936.0i) q^{27} +18904.5 q^{28} -43812.9i q^{29} +(-712.217 - 503.876i) q^{30} -15663.7 q^{31} +5645.46i q^{32} +(19459.8 - 27505.9i) q^{33} -549.883 q^{34} +20751.7i q^{35} +(15478.7 + 43848.9i) q^{36} -52053.1 q^{37} +1592.67i q^{38} +(-63875.1 - 45190.0i) q^{39} -4129.11 q^{40} -13556.7i q^{41} +(-2132.72 + 3014.55i) q^{42} +19115.8 q^{43} -79600.6i q^{44} +(-48133.6 + 16991.2i) q^{45} -9646.59 q^{46} -138157. i q^{47} +(89382.1 + 63235.6i) q^{48} -29814.7 q^{49} +4948.02i q^{50} +(-18581.3 + 26264.3i) q^{51} -184851. q^{52} -259727. i q^{53} +(-8738.49 - 2478.57i) q^{54} +87378.7 q^{55} +17477.0i q^{56} +(76071.4 + 53818.6i) q^{57} +20218.5 q^{58} -26169.3i q^{59} +(-69647.9 + 98445.8i) q^{60} +115739. q^{61} -7228.42i q^{62} +(71917.6 + 203732. i) q^{63} +256925. q^{64} -202913. i q^{65} +(12693.3 + 8980.19i) q^{66} -447018. q^{67} +76007.2i q^{68} +(-325972. + 460754. i) q^{69} -9576.39 q^{70} -84440.1i q^{71} +(-40537.9 + 14309.9i) q^{72} +32980.2 q^{73} -24021.2i q^{74} +(236334. + 167201. i) q^{75} +220146. q^{76} -369842. i q^{77} +(20854.1 - 29476.7i) q^{78} +837140. q^{79} +283942. i q^{80} +(-413671. + 333626. i) q^{81} +6256.07 q^{82} +485801. i q^{83} +(416684. + 294794. i) q^{84} -83434.2 q^{85} +8821.44i q^{86} +(683212. - 965705. i) q^{87} +73589.9 q^{88} -278589. i q^{89} +(-7841.02 - 22212.4i) q^{90} -858857. q^{91} +1.33339e6i q^{92} +(-345254. - 244258. i) q^{93} +63756.0 q^{94} +241658. i q^{95} +(-88034.6 + 124435. i) q^{96} +231790. q^{97} -13758.7i q^{98} +(857848. - 302822. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{3} - 1024 q^{4} + 286 q^{6} + 568 q^{7} - 912 q^{9} - 744 q^{10} + 194 q^{12} - 2312 q^{13} - 6240 q^{15} + 13208 q^{16} + 2936 q^{18} + 7936 q^{19} - 21688 q^{21} + 13176 q^{22} + 18282 q^{24}+ \cdots + 1619864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.461474i 0.0576843i 0.999584 + 0.0288422i \(0.00918202\pi\)
−0.999584 + 0.0288422i \(0.990818\pi\)
\(3\) 22.0416 + 15.5939i 0.816355 + 0.577551i
\(4\) 63.7870 0.996673
\(5\) 70.0200i 0.560160i 0.959977 + 0.280080i \(0.0903609\pi\)
−0.959977 + 0.280080i \(0.909639\pi\)
\(6\) −7.19617 + 10.1716i −0.0333156 + 0.0470909i
\(7\) 296.369 0.864048 0.432024 0.901862i \(-0.357800\pi\)
0.432024 + 0.901862i \(0.357800\pi\)
\(8\) 58.9705i 0.115177i
\(9\) 242.663 + 687.427i 0.332871 + 0.942972i
\(10\) −32.3124 −0.0323124
\(11\) 1247.91i 0.937574i −0.883311 0.468787i \(-0.844691\pi\)
0.883311 0.468787i \(-0.155309\pi\)
\(12\) 1405.97 + 994.687i 0.813639 + 0.575629i
\(13\) −2897.94 −1.31904 −0.659521 0.751686i \(-0.729241\pi\)
−0.659521 + 0.751686i \(0.729241\pi\)
\(14\) 136.767i 0.0498420i
\(15\) −1091.88 + 1543.35i −0.323521 + 0.457289i
\(16\) 4055.16 0.990029
\(17\) 1191.58i 0.242536i
\(18\) −317.230 + 111.983i −0.0543947 + 0.0192014i
\(19\) 3451.27 0.503173 0.251587 0.967835i \(-0.419048\pi\)
0.251587 + 0.967835i \(0.419048\pi\)
\(20\) 4466.37i 0.558296i
\(21\) 6532.43 + 4621.53i 0.705370 + 0.499031i
\(22\) 575.879 0.0540833
\(23\) 20903.9i 1.71808i 0.511910 + 0.859039i \(0.328938\pi\)
−0.511910 + 0.859039i \(0.671062\pi\)
\(24\) −919.577 + 1299.80i −0.0665204 + 0.0940250i
\(25\) 10722.2 0.686221
\(26\) 1337.32i 0.0760881i
\(27\) −5370.97 + 18936.0i −0.272874 + 0.962050i
\(28\) 18904.5 0.861173
\(29\) 43812.9i 1.79642i −0.439567 0.898210i \(-0.644868\pi\)
0.439567 0.898210i \(-0.355132\pi\)
\(30\) −712.217 503.876i −0.0263784 0.0186621i
\(31\) −15663.7 −0.525788 −0.262894 0.964825i \(-0.584677\pi\)
−0.262894 + 0.964825i \(0.584677\pi\)
\(32\) 5645.46i 0.172286i
\(33\) 19459.8 27505.9i 0.541497 0.765393i
\(34\) −549.883 −0.0139905
\(35\) 20751.7i 0.484005i
\(36\) 15478.7 + 43848.9i 0.331763 + 0.939835i
\(37\) −52053.1 −1.02764 −0.513821 0.857898i \(-0.671770\pi\)
−0.513821 + 0.857898i \(0.671770\pi\)
\(38\) 1592.67i 0.0290252i
\(39\) −63875.1 45190.0i −1.07681 0.761814i
\(40\) −4129.11 −0.0645173
\(41\) 13556.7i 0.196699i −0.995152 0.0983495i \(-0.968644\pi\)
0.995152 0.0983495i \(-0.0313563\pi\)
\(42\) −2132.72 + 3014.55i −0.0287863 + 0.0406888i
\(43\) 19115.8 0.240429 0.120214 0.992748i \(-0.461642\pi\)
0.120214 + 0.992748i \(0.461642\pi\)
\(44\) 79600.6i 0.934455i
\(45\) −48133.6 + 16991.2i −0.528215 + 0.186461i
\(46\) −9646.59 −0.0991061
\(47\) 138157.i 1.33070i −0.746532 0.665350i \(-0.768282\pi\)
0.746532 0.665350i \(-0.231718\pi\)
\(48\) 89382.1 + 63235.6i 0.808215 + 0.571792i
\(49\) −29814.7 −0.253421
\(50\) 4948.02i 0.0395842i
\(51\) −18581.3 + 26264.3i −0.140077 + 0.197995i
\(52\) −184851. −1.31465
\(53\) 259727.i 1.74457i −0.488994 0.872287i \(-0.662636\pi\)
0.488994 0.872287i \(-0.337364\pi\)
\(54\) −8738.49 2478.57i −0.0554952 0.0157405i
\(55\) 87378.7 0.525191
\(56\) 17477.0i 0.0995182i
\(57\) 76071.4 + 53818.6i 0.410768 + 0.290608i
\(58\) 20218.5 0.103625
\(59\) 26169.3i 0.127420i −0.997968 0.0637099i \(-0.979707\pi\)
0.997968 0.0637099i \(-0.0202932\pi\)
\(60\) −69647.9 + 98445.8i −0.322444 + 0.455767i
\(61\) 115739. 0.509906 0.254953 0.966954i \(-0.417940\pi\)
0.254953 + 0.966954i \(0.417940\pi\)
\(62\) 7228.42i 0.0303297i
\(63\) 71917.6 + 203732.i 0.287616 + 0.814774i
\(64\) 256925. 0.980090
\(65\) 202913.i 0.738875i
\(66\) 12693.3 + 8980.19i 0.0441512 + 0.0312359i
\(67\) −447018. −1.48628 −0.743140 0.669136i \(-0.766665\pi\)
−0.743140 + 0.669136i \(0.766665\pi\)
\(68\) 76007.2i 0.241729i
\(69\) −325972. + 460754.i −0.992277 + 1.40256i
\(70\) −9576.39 −0.0279195
\(71\) 84440.1i 0.235925i −0.993018 0.117962i \(-0.962364\pi\)
0.993018 0.117962i \(-0.0376362\pi\)
\(72\) −40537.9 + 14309.9i −0.108608 + 0.0383389i
\(73\) 32980.2 0.0847784 0.0423892 0.999101i \(-0.486503\pi\)
0.0423892 + 0.999101i \(0.486503\pi\)
\(74\) 24021.2i 0.0592788i
\(75\) 236334. + 167201.i 0.560200 + 0.396327i
\(76\) 220146. 0.501499
\(77\) 369842.i 0.810109i
\(78\) 20854.1 29476.7i 0.0439447 0.0621149i
\(79\) 837140. 1.69792 0.848960 0.528458i \(-0.177230\pi\)
0.848960 + 0.528458i \(0.177230\pi\)
\(80\) 283942.i 0.554574i
\(81\) −413671. + 333626.i −0.778394 + 0.627776i
\(82\) 6256.07 0.0113464
\(83\) 485801.i 0.849619i 0.905283 + 0.424809i \(0.139659\pi\)
−0.905283 + 0.424809i \(0.860341\pi\)
\(84\) 416684. + 294794.i 0.703023 + 0.497371i
\(85\) −83434.2 −0.135859
\(86\) 8821.44i 0.0138690i
\(87\) 683212. 965705.i 1.03752 1.46652i
\(88\) 73589.9 0.107987
\(89\) 278589.i 0.395178i −0.980285 0.197589i \(-0.936689\pi\)
0.980285 0.197589i \(-0.0633112\pi\)
\(90\) −7841.02 22212.4i −0.0107559 0.0304697i
\(91\) −858857. −1.13972
\(92\) 1.33339e6i 1.71236i
\(93\) −345254. 244258.i −0.429229 0.303669i
\(94\) 63756.0 0.0767605
\(95\) 241658.i 0.281857i
\(96\) −88034.6 + 124435.i −0.0995038 + 0.140646i
\(97\) 231790. 0.253968 0.126984 0.991905i \(-0.459470\pi\)
0.126984 + 0.991905i \(0.459470\pi\)
\(98\) 13758.7i 0.0146184i
\(99\) 857848. 302822.i 0.884107 0.312091i
\(100\) 683938. 0.683938
\(101\) 285545.i 0.277148i −0.990352 0.138574i \(-0.955748\pi\)
0.990352 0.138574i \(-0.0442518\pi\)
\(102\) −12120.3 8574.80i −0.0114212 0.00808022i
\(103\) −518690. −0.474675 −0.237337 0.971427i \(-0.576275\pi\)
−0.237337 + 0.971427i \(0.576275\pi\)
\(104\) 170893.i 0.151923i
\(105\) −323599. + 457401.i −0.279537 + 0.395120i
\(106\) 119857. 0.100635
\(107\) 806170.i 0.658075i −0.944317 0.329037i \(-0.893276\pi\)
0.944317 0.329037i \(-0.106724\pi\)
\(108\) −342598. + 1.20787e6i −0.271966 + 0.958849i
\(109\) −2.09868e6 −1.62056 −0.810282 0.586040i \(-0.800686\pi\)
−0.810282 + 0.586040i \(0.800686\pi\)
\(110\) 40323.0i 0.0302953i
\(111\) −1.14733e6 811709.i −0.838920 0.593515i
\(112\) 1.20182e6 0.855432
\(113\) 1.61609e6i 1.12003i −0.828483 0.560014i \(-0.810796\pi\)
0.828483 0.560014i \(-0.189204\pi\)
\(114\) −24835.9 + 35105.0i −0.0167635 + 0.0236949i
\(115\) −1.46369e6 −0.962398
\(116\) 2.79469e6i 1.79044i
\(117\) −703221. 1.99212e6i −0.439071 1.24382i
\(118\) 12076.5 0.00735012
\(119\) 353146.i 0.209562i
\(120\) −91012.1 64388.8i −0.0526690 0.0372620i
\(121\) 214278. 0.120954
\(122\) 53410.5i 0.0294136i
\(123\) 211401. 298811.i 0.113604 0.160576i
\(124\) −999144. −0.524038
\(125\) 1.84483e6i 0.944553i
\(126\) −94017.0 + 33188.1i −0.0469997 + 0.0165909i
\(127\) −52204.8 −0.0254859 −0.0127429 0.999919i \(-0.504056\pi\)
−0.0127429 + 0.999919i \(0.504056\pi\)
\(128\) 479874.i 0.228822i
\(129\) 421342. + 298089.i 0.196275 + 0.138860i
\(130\) 93639.4 0.0426215
\(131\) 82813.1i 0.0368371i −0.999830 0.0184185i \(-0.994137\pi\)
0.999830 0.0184185i \(-0.00586313\pi\)
\(132\) 1.24128e6 1.75452e6i 0.539695 0.762847i
\(133\) 1.02285e6 0.434766
\(134\) 206288.i 0.0857351i
\(135\) −1.32590e6 376075.i −0.538902 0.152853i
\(136\) −70267.9 −0.0279344
\(137\) 3.84081e6i 1.49369i 0.664996 + 0.746847i \(0.268433\pi\)
−0.664996 + 0.746847i \(0.731567\pi\)
\(138\) −212626. 150428.i −0.0809058 0.0572388i
\(139\) 2.83496e6 1.05561 0.527803 0.849367i \(-0.323016\pi\)
0.527803 + 0.849367i \(0.323016\pi\)
\(140\) 1.32369e6i 0.482394i
\(141\) 2.15441e6 3.04520e6i 0.768546 1.08632i
\(142\) 38967.0 0.0136092
\(143\) 3.61637e6i 1.23670i
\(144\) 984036. + 2.78762e6i 0.329552 + 0.933570i
\(145\) 3.06778e6 1.00628
\(146\) 15219.5i 0.00489038i
\(147\) −657163. 464926.i −0.206881 0.146363i
\(148\) −3.32031e6 −1.02422
\(149\) 83515.1i 0.0252468i −0.999920 0.0126234i \(-0.995982\pi\)
0.999920 0.0126234i \(-0.00401826\pi\)
\(150\) −77158.8 + 109062.i −0.0228619 + 0.0323148i
\(151\) 2.50988e6 0.728991 0.364495 0.931205i \(-0.381242\pi\)
0.364495 + 0.931205i \(0.381242\pi\)
\(152\) 203523.i 0.0579538i
\(153\) −819122. + 289151.i −0.228704 + 0.0807330i
\(154\) 170673. 0.0467306
\(155\) 1.09677e6i 0.294525i
\(156\) −4.07441e6 2.88254e6i −1.07322 0.759279i
\(157\) −5.30217e6 −1.37011 −0.685054 0.728492i \(-0.740221\pi\)
−0.685054 + 0.728492i \(0.740221\pi\)
\(158\) 386319.i 0.0979433i
\(159\) 4.05015e6 5.72479e6i 1.00758 1.42419i
\(160\) −395295. −0.0965076
\(161\) 6.19524e6i 1.48450i
\(162\) −153960. 190898.i −0.0362128 0.0449011i
\(163\) −1.39663e6 −0.322491 −0.161246 0.986914i \(-0.551551\pi\)
−0.161246 + 0.986914i \(0.551551\pi\)
\(164\) 864741.i 0.196044i
\(165\) 1.92597e6 + 1.36257e6i 0.428743 + 0.303325i
\(166\) −224185. −0.0490097
\(167\) 5.53783e6i 1.18902i 0.804087 + 0.594511i \(0.202654\pi\)
−0.804087 + 0.594511i \(0.797346\pi\)
\(168\) −272534. + 385220.i −0.0574768 + 0.0812422i
\(169\) 3.57123e6 0.739874
\(170\) 38502.8i 0.00783691i
\(171\) 837494. + 2.37249e6i 0.167492 + 0.474479i
\(172\) 1.21934e6 0.239629
\(173\) 6.73423e6i 1.30062i 0.759670 + 0.650309i \(0.225361\pi\)
−0.759670 + 0.650309i \(0.774639\pi\)
\(174\) 445648. + 315285.i 0.0845950 + 0.0598488i
\(175\) 3.17772e6 0.592928
\(176\) 5.06048e6i 0.928226i
\(177\) 408081. 576813.i 0.0735913 0.104020i
\(178\) 128562. 0.0227956
\(179\) 805353.i 0.140419i 0.997532 + 0.0702097i \(0.0223669\pi\)
−0.997532 + 0.0702097i \(0.977633\pi\)
\(180\) −3.07030e6 + 1.08382e6i −0.526458 + 0.185840i
\(181\) −2.28618e6 −0.385545 −0.192773 0.981243i \(-0.561748\pi\)
−0.192773 + 0.981243i \(0.561748\pi\)
\(182\) 396341.i 0.0657438i
\(183\) 2.55107e6 + 1.80482e6i 0.416264 + 0.294496i
\(184\) −1.23271e6 −0.197882
\(185\) 3.64476e6i 0.575643i
\(186\) 112719. 159326.i 0.0175169 0.0247598i
\(187\) 1.48698e6 0.227395
\(188\) 8.81264e6i 1.32627i
\(189\) −1.59179e6 + 5.61204e6i −0.235776 + 0.831257i
\(190\) −111519. −0.0162588
\(191\) 1.53400e6i 0.220154i 0.993923 + 0.110077i \(0.0351097\pi\)
−0.993923 + 0.110077i \(0.964890\pi\)
\(192\) 5.66303e6 + 4.00645e6i 0.800102 + 0.566052i
\(193\) 7.83643e6 1.09005 0.545025 0.838420i \(-0.316520\pi\)
0.545025 + 0.838420i \(0.316520\pi\)
\(194\) 106965.i 0.0146500i
\(195\) 3.16420e6 4.47253e6i 0.426737 0.603184i
\(196\) −1.90179e6 −0.252578
\(197\) 2.93457e6i 0.383836i 0.981411 + 0.191918i \(0.0614707\pi\)
−0.981411 + 0.191918i \(0.938529\pi\)
\(198\) 139744. + 395875.i 0.0180028 + 0.0509991i
\(199\) 6.55724e6 0.832074 0.416037 0.909348i \(-0.363419\pi\)
0.416037 + 0.909348i \(0.363419\pi\)
\(200\) 632293.i 0.0790367i
\(201\) −9.85299e6 6.97074e6i −1.21333 0.858402i
\(202\) 131772. 0.0159871
\(203\) 1.29848e7i 1.55219i
\(204\) −1.18525e6 + 1.67532e6i −0.139610 + 0.197336i
\(205\) 949239. 0.110183
\(206\) 239362.i 0.0273813i
\(207\) −1.43699e7 + 5.07259e6i −1.62010 + 0.571898i
\(208\) −1.17516e7 −1.30589
\(209\) 4.30687e6i 0.471762i
\(210\) −211079. 149333.i −0.0227922 0.0161249i
\(211\) −1.58477e7 −1.68701 −0.843506 0.537120i \(-0.819512\pi\)
−0.843506 + 0.537120i \(0.819512\pi\)
\(212\) 1.65672e7i 1.73877i
\(213\) 1.31675e6 1.86119e6i 0.136259 0.192598i
\(214\) 372027. 0.0379606
\(215\) 1.33849e6i 0.134679i
\(216\) −1.11667e6 316729.i −0.110806 0.0314287i
\(217\) −4.64224e6 −0.454306
\(218\) 968486.i 0.0934811i
\(219\) 726937. + 514289.i 0.0692093 + 0.0489638i
\(220\) 5.57363e6 0.523444
\(221\) 3.45312e6i 0.319915i
\(222\) 374583. 529465.i 0.0342365 0.0483925i
\(223\) −1.78123e7 −1.60622 −0.803109 0.595833i \(-0.796822\pi\)
−0.803109 + 0.595833i \(0.796822\pi\)
\(224\) 1.67314e6i 0.148863i
\(225\) 2.60188e6 + 7.37073e6i 0.228423 + 0.647088i
\(226\) 745783. 0.0646081
\(227\) 7.29499e6i 0.623659i −0.950138 0.311829i \(-0.899058\pi\)
0.950138 0.311829i \(-0.100942\pi\)
\(228\) 4.85237e6 + 3.43293e6i 0.409401 + 0.289641i
\(229\) 3.49337e6 0.290896 0.145448 0.989366i \(-0.453538\pi\)
0.145448 + 0.989366i \(0.453538\pi\)
\(230\) 675454.i 0.0555153i
\(231\) 5.76726e6 8.15190e6i 0.467879 0.661337i
\(232\) 2.58367e6 0.206906
\(233\) 3.42027e6i 0.270391i −0.990819 0.135195i \(-0.956834\pi\)
0.990819 0.135195i \(-0.0431662\pi\)
\(234\) 919313. 324519.i 0.0717490 0.0253275i
\(235\) 9.67376e6 0.745404
\(236\) 1.66926e6i 0.126996i
\(237\) 1.84519e7 + 1.30543e7i 1.38610 + 0.980634i
\(238\) −162968. −0.0120885
\(239\) 443887.i 0.0325147i 0.999868 + 0.0162573i \(0.00517510\pi\)
−0.999868 + 0.0162573i \(0.994825\pi\)
\(240\) −4.42775e6 + 6.25853e6i −0.320295 + 0.452729i
\(241\) 4.64356e6 0.331742 0.165871 0.986147i \(-0.446957\pi\)
0.165871 + 0.986147i \(0.446957\pi\)
\(242\) 98883.7i 0.00697716i
\(243\) −1.43205e7 + 902917.i −0.998018 + 0.0629259i
\(244\) 7.38264e6 0.508209
\(245\) 2.08762e6i 0.141956i
\(246\) 137894. + 97556.3i 0.00926273 + 0.00655315i
\(247\) −1.00016e7 −0.663707
\(248\) 923698.i 0.0605585i
\(249\) −7.57552e6 + 1.07078e7i −0.490698 + 0.693591i
\(250\) −851342. −0.0544859
\(251\) 2.17244e7i 1.37381i 0.726749 + 0.686903i \(0.241030\pi\)
−0.726749 + 0.686903i \(0.758970\pi\)
\(252\) 4.58741e6 + 1.29954e7i 0.286659 + 0.812062i
\(253\) 2.60862e7 1.61083
\(254\) 24091.2i 0.00147013i
\(255\) −1.83902e6 1.30106e6i −0.110909 0.0784653i
\(256\) 1.62217e7 0.966891
\(257\) 3.17561e7i 1.87080i 0.353586 + 0.935402i \(0.384962\pi\)
−0.353586 + 0.935402i \(0.615038\pi\)
\(258\) −137560. + 194439.i −0.00801003 + 0.0113220i
\(259\) −1.54269e7 −0.887931
\(260\) 1.29432e7i 0.736416i
\(261\) 3.01182e7 1.06318e7i 1.69397 0.597975i
\(262\) 38216.1 0.00212492
\(263\) 2.64452e7i 1.45372i −0.686788 0.726858i \(-0.740980\pi\)
0.686788 0.726858i \(-0.259020\pi\)
\(264\) 1.62204e6 + 1.14755e6i 0.0881555 + 0.0623678i
\(265\) 1.81861e7 0.977240
\(266\) 472018.i 0.0250792i
\(267\) 4.34427e6 6.14053e6i 0.228236 0.322606i
\(268\) −2.85140e7 −1.48134
\(269\) 6.52151e6i 0.335036i 0.985869 + 0.167518i \(0.0535752\pi\)
−0.985869 + 0.167518i \(0.946425\pi\)
\(270\) 173549. 611869.i 0.00881721 0.0310862i
\(271\) −3.29788e7 −1.65702 −0.828508 0.559977i \(-0.810810\pi\)
−0.828508 + 0.559977i \(0.810810\pi\)
\(272\) 4.83203e6i 0.240117i
\(273\) −1.89306e7 1.33929e7i −0.930413 0.658244i
\(274\) −1.77244e6 −0.0861627
\(275\) 1.33804e7i 0.643383i
\(276\) −2.07928e7 + 2.93901e7i −0.988975 + 1.39789i
\(277\) 3.32681e7 1.56527 0.782634 0.622482i \(-0.213876\pi\)
0.782634 + 0.622482i \(0.213876\pi\)
\(278\) 1.30826e6i 0.0608919i
\(279\) −3.80101e6 1.07677e7i −0.175019 0.495803i
\(280\) −1.22374e6 −0.0557461
\(281\) 2.93917e7i 1.32466i 0.749210 + 0.662332i \(0.230433\pi\)
−0.749210 + 0.662332i \(0.769567\pi\)
\(282\) 1.40528e6 + 994203.i 0.0626638 + 0.0443331i
\(283\) 2.02195e7 0.892096 0.446048 0.895009i \(-0.352831\pi\)
0.446048 + 0.895009i \(0.352831\pi\)
\(284\) 5.38618e6i 0.235140i
\(285\) −3.76837e6 + 5.32651e6i −0.162787 + 0.230096i
\(286\) −1.66886e6 −0.0713382
\(287\) 4.01778e6i 0.169957i
\(288\) −3.88084e6 + 1.36994e6i −0.162461 + 0.0573489i
\(289\) −1.41986e6 −0.0588235
\(290\) 1.41570e6i 0.0580467i
\(291\) 5.10901e6 + 3.61450e6i 0.207328 + 0.146679i
\(292\) 2.10371e6 0.0844963
\(293\) 4.57915e7i 1.82046i 0.414101 + 0.910231i \(0.364096\pi\)
−0.414101 + 0.910231i \(0.635904\pi\)
\(294\) 214552. 303264.i 0.00844287 0.0119338i
\(295\) 1.83238e6 0.0713754
\(296\) 3.06960e6i 0.118360i
\(297\) 2.36305e7 + 6.70250e6i 0.901993 + 0.255839i
\(298\) 38540.1 0.00145634
\(299\) 6.05780e7i 2.26622i
\(300\) 1.50751e7 + 1.06652e7i 0.558336 + 0.395009i
\(301\) 5.66531e6 0.207742
\(302\) 1.15825e6i 0.0420513i
\(303\) 4.45276e6 6.29387e6i 0.160067 0.226251i
\(304\) 1.39954e7 0.498156
\(305\) 8.10403e6i 0.285629i
\(306\) −133436. 378004.i −0.00465703 0.0131927i
\(307\) −1.94476e7 −0.672126 −0.336063 0.941840i \(-0.609095\pi\)
−0.336063 + 0.941840i \(0.609095\pi\)
\(308\) 2.35911e7i 0.807414i
\(309\) −1.14327e7 8.08838e6i −0.387503 0.274149i
\(310\) 506133. 0.0169895
\(311\) 2.67104e7i 0.887971i 0.896034 + 0.443986i \(0.146436\pi\)
−0.896034 + 0.443986i \(0.853564\pi\)
\(312\) 2.66488e6 3.76675e6i 0.0877432 0.124023i
\(313\) −3.11441e7 −1.01565 −0.507824 0.861461i \(-0.669550\pi\)
−0.507824 + 0.861461i \(0.669550\pi\)
\(314\) 2.44682e6i 0.0790337i
\(315\) −1.42653e7 + 5.03567e6i −0.456403 + 0.161111i
\(316\) 5.33987e7 1.69227
\(317\) 3.85453e7i 1.21002i −0.796217 0.605012i \(-0.793169\pi\)
0.796217 0.605012i \(-0.206831\pi\)
\(318\) 2.64185e6 + 1.86904e6i 0.0821535 + 0.0581216i
\(319\) −5.46746e7 −1.68428
\(320\) 1.79899e7i 0.549007i
\(321\) 1.25713e7 1.77693e7i 0.380071 0.537223i
\(322\) −2.85895e6 −0.0856325
\(323\) 4.11245e6i 0.122037i
\(324\) −2.63868e7 + 2.12810e7i −0.775804 + 0.625687i
\(325\) −3.10723e7 −0.905155
\(326\) 644508.i 0.0186027i
\(327\) −4.62582e7 3.27265e7i −1.32296 0.935958i
\(328\) 799444. 0.0226551
\(329\) 4.09455e7i 1.14979i
\(330\) −628792. + 888784.i −0.0174971 + 0.0247317i
\(331\) 4.61079e7 1.27143 0.635713 0.771925i \(-0.280706\pi\)
0.635713 + 0.771925i \(0.280706\pi\)
\(332\) 3.09878e7i 0.846792i
\(333\) −1.26313e7 3.57827e7i −0.342072 0.969037i
\(334\) −2.55557e6 −0.0685879
\(335\) 3.13002e7i 0.832555i
\(336\) 2.64900e7 + 1.87410e7i 0.698336 + 0.494055i
\(337\) 3.00242e7 0.784478 0.392239 0.919863i \(-0.371701\pi\)
0.392239 + 0.919863i \(0.371701\pi\)
\(338\) 1.64803e6i 0.0426791i
\(339\) 2.52010e7 3.56211e7i 0.646873 0.914341i
\(340\) −5.32202e6 −0.135407
\(341\) 1.95470e7i 0.492965i
\(342\) −1.09485e6 + 386482.i −0.0273700 + 0.00966164i
\(343\) −4.37036e7 −1.08302
\(344\) 1.12727e6i 0.0276918i
\(345\) −3.22620e7 2.28245e7i −0.785658 0.555833i
\(346\) −3.10768e6 −0.0750252
\(347\) 6.67109e7i 1.59664i 0.602231 + 0.798322i \(0.294279\pi\)
−0.602231 + 0.798322i \(0.705721\pi\)
\(348\) 4.35801e7 6.15995e7i 1.03407 1.46164i
\(349\) −6.05549e7 −1.42453 −0.712267 0.701908i \(-0.752332\pi\)
−0.712267 + 0.701908i \(0.752332\pi\)
\(350\) 1.46644e6i 0.0342026i
\(351\) 1.55647e7 5.48754e7i 0.359932 1.26899i
\(352\) 7.04504e6 0.161531
\(353\) 2.65777e7i 0.604217i 0.953274 + 0.302109i \(0.0976905\pi\)
−0.953274 + 0.302109i \(0.902309\pi\)
\(354\) 266185. + 188319.i 0.00600031 + 0.00424506i
\(355\) 5.91249e6 0.132156
\(356\) 1.77703e7i 0.393864i
\(357\) −5.50691e6 + 7.78390e6i −0.121033 + 0.171077i
\(358\) −371650. −0.00810000
\(359\) 3.35235e7i 0.724545i 0.932072 + 0.362273i \(0.117999\pi\)
−0.932072 + 0.362273i \(0.882001\pi\)
\(360\) −1.00198e6 2.83846e6i −0.0214759 0.0608381i
\(361\) −3.51346e7 −0.746817
\(362\) 1.05502e6i 0.0222399i
\(363\) 4.72302e6 + 3.34142e6i 0.0987415 + 0.0698572i
\(364\) −5.47840e7 −1.13592
\(365\) 2.30928e6i 0.0474894i
\(366\) −832877. + 1.17725e6i −0.0169878 + 0.0240119i
\(367\) 5.03687e7 1.01897 0.509486 0.860479i \(-0.329835\pi\)
0.509486 + 0.860479i \(0.329835\pi\)
\(368\) 8.47684e7i 1.70095i
\(369\) 9.31924e6 3.28970e6i 0.185482 0.0654753i
\(370\) 1.68196e6 0.0332056
\(371\) 7.69749e7i 1.50740i
\(372\) −2.20227e7 1.55805e7i −0.427801 0.302659i
\(373\) 3.98528e7 0.767950 0.383975 0.923344i \(-0.374555\pi\)
0.383975 + 0.923344i \(0.374555\pi\)
\(374\) 686205.i 0.0131171i
\(375\) −2.87680e7 + 4.06630e7i −0.545527 + 0.771091i
\(376\) 8.14720e6 0.153266
\(377\) 1.26967e8i 2.36955i
\(378\) −2.58981e6 734569.i −0.0479505 0.0136006i
\(379\) 4.41790e7 0.811518 0.405759 0.913980i \(-0.367007\pi\)
0.405759 + 0.913980i \(0.367007\pi\)
\(380\) 1.54146e7i 0.280920i
\(381\) −1.15068e6 814075.i −0.0208055 0.0147194i
\(382\) −707903. −0.0126994
\(383\) 8.14578e7i 1.44989i −0.688805 0.724947i \(-0.741864\pi\)
0.688805 0.724947i \(-0.258136\pi\)
\(384\) −7.48309e6 + 1.05772e7i −0.132156 + 0.186800i
\(385\) 2.58963e7 0.453791
\(386\) 3.61631e6i 0.0628788i
\(387\) 4.63869e6 + 1.31407e7i 0.0800317 + 0.226718i
\(388\) 1.47852e7 0.253123
\(389\) 4.02407e7i 0.683624i −0.939768 0.341812i \(-0.888959\pi\)
0.939768 0.341812i \(-0.111041\pi\)
\(390\) 2.06396e6 + 1.46020e6i 0.0347943 + 0.0246161i
\(391\) −2.49086e7 −0.416695
\(392\) 1.75819e6i 0.0291882i
\(393\) 1.29138e6 1.82533e6i 0.0212753 0.0300721i
\(394\) −1.35423e6 −0.0221413
\(395\) 5.86165e7i 0.951106i
\(396\) 5.47196e7 1.93161e7i 0.881165 0.311053i
\(397\) 1.08106e8 1.72774 0.863870 0.503716i \(-0.168034\pi\)
0.863870 + 0.503716i \(0.168034\pi\)
\(398\) 3.02600e6i 0.0479976i
\(399\) 2.25452e7 + 1.59501e7i 0.354923 + 0.251099i
\(400\) 4.34802e7 0.679379
\(401\) 8.11812e7i 1.25899i 0.777004 + 0.629495i \(0.216738\pi\)
−0.777004 + 0.629495i \(0.783262\pi\)
\(402\) 3.21682e6 4.54690e6i 0.0495163 0.0699903i
\(403\) 4.53925e7 0.693536
\(404\) 1.82141e7i 0.276225i
\(405\) −2.33605e7 2.89652e7i −0.351655 0.436025i
\(406\) 5.99213e6 0.0895372
\(407\) 6.49577e7i 0.963490i
\(408\) −1.54882e6 1.09575e6i −0.0228044 0.0161336i
\(409\) −3.63151e7 −0.530783 −0.265392 0.964141i \(-0.585501\pi\)
−0.265392 + 0.964141i \(0.585501\pi\)
\(410\) 438050.i 0.00635582i
\(411\) −5.98931e7 + 8.46576e7i −0.862684 + 1.21938i
\(412\) −3.30857e7 −0.473095
\(413\) 7.75577e6i 0.110097i
\(414\) −2.34087e6 6.63133e6i −0.0329895 0.0934544i
\(415\) −3.40158e7 −0.475922
\(416\) 1.63602e7i 0.227252i
\(417\) 6.24869e7 + 4.42079e7i 0.861750 + 0.609666i
\(418\) 1.98751e6 0.0272133
\(419\) 1.31682e8i 1.79013i −0.445933 0.895067i \(-0.647128\pi\)
0.445933 0.895067i \(-0.352872\pi\)
\(420\) −2.06414e7 + 2.91762e7i −0.278607 + 0.393805i
\(421\) −5.43363e7 −0.728189 −0.364094 0.931362i \(-0.618621\pi\)
−0.364094 + 0.931362i \(0.618621\pi\)
\(422\) 7.31330e6i 0.0973141i
\(423\) 9.49730e7 3.35256e7i 1.25481 0.442951i
\(424\) 1.53162e7 0.200934
\(425\) 1.27763e7i 0.166433i
\(426\) 858893. + 607645.i 0.0111099 + 0.00785998i
\(427\) 3.43014e7 0.440583
\(428\) 5.14232e7i 0.655885i
\(429\) −5.63932e7 + 7.97105e7i −0.714257 + 1.00959i
\(430\) −617677. −0.00776884
\(431\) 1.20951e8i 1.51070i −0.655320 0.755351i \(-0.727466\pi\)
0.655320 0.755351i \(-0.272534\pi\)
\(432\) −2.17801e7 + 7.67886e7i −0.270153 + 0.952457i
\(433\) −1.57476e7 −0.193977 −0.0969885 0.995286i \(-0.530921\pi\)
−0.0969885 + 0.995286i \(0.530921\pi\)
\(434\) 2.14228e6i 0.0262063i
\(435\) 6.76186e7 + 4.78385e7i 0.821483 + 0.581179i
\(436\) −1.33868e8 −1.61517
\(437\) 7.21448e7i 0.864491i
\(438\) −237331. + 335463.i −0.00282444 + 0.00399229i
\(439\) −9.19618e6 −0.108696 −0.0543480 0.998522i \(-0.517308\pi\)
−0.0543480 + 0.998522i \(0.517308\pi\)
\(440\) 5.15276e6i 0.0604898i
\(441\) −7.23492e6 2.04954e7i −0.0843564 0.238969i
\(442\) 1.59353e6 0.0184541
\(443\) 1.07781e8i 1.23974i 0.784705 + 0.619870i \(0.212815\pi\)
−0.784705 + 0.619870i \(0.787185\pi\)
\(444\) −7.31850e7 5.17765e7i −0.836128 0.591540i
\(445\) 1.95068e7 0.221363
\(446\) 8.21990e6i 0.0926535i
\(447\) 1.30232e6 1.84081e6i 0.0145813 0.0206103i
\(448\) 7.61444e7 0.846845
\(449\) 3.55140e7i 0.392338i 0.980570 + 0.196169i \(0.0628501\pi\)
−0.980570 + 0.196169i \(0.937150\pi\)
\(450\) −3.40141e6 + 1.20070e6i −0.0373268 + 0.0131764i
\(451\) −1.69176e7 −0.184420
\(452\) 1.03085e8i 1.11630i
\(453\) 5.53217e7 + 3.91387e7i 0.595115 + 0.421029i
\(454\) 3.36645e6 0.0359753
\(455\) 6.01372e7i 0.638423i
\(456\) −3.17371e6 + 4.48596e6i −0.0334713 + 0.0473109i
\(457\) 4.19450e7 0.439472 0.219736 0.975559i \(-0.429480\pi\)
0.219736 + 0.975559i \(0.429480\pi\)
\(458\) 1.61210e6i 0.0167801i
\(459\) −2.25637e7 6.39993e6i −0.233331 0.0661816i
\(460\) −9.33643e7 −0.959195
\(461\) 7.59633e7i 0.775356i −0.921795 0.387678i \(-0.873277\pi\)
0.921795 0.387678i \(-0.126723\pi\)
\(462\) 3.76189e6 + 2.66144e6i 0.0381488 + 0.0269893i
\(463\) −9.48911e7 −0.956054 −0.478027 0.878345i \(-0.658648\pi\)
−0.478027 + 0.878345i \(0.658648\pi\)
\(464\) 1.77668e8i 1.77851i
\(465\) 1.71030e7 2.41746e7i 0.170103 0.240437i
\(466\) 1.57837e6 0.0155973
\(467\) 1.00276e8i 0.984569i 0.870434 + 0.492284i \(0.163838\pi\)
−0.870434 + 0.492284i \(0.836162\pi\)
\(468\) −4.48564e7 1.27071e8i −0.437610 1.23968i
\(469\) −1.32482e8 −1.28422
\(470\) 4.46420e6i 0.0429981i
\(471\) −1.16868e8 8.26813e7i −1.11849 0.791306i
\(472\) 1.54322e6 0.0146758
\(473\) 2.38548e7i 0.225420i
\(474\) −6.02420e6 + 8.51508e6i −0.0565672 + 0.0799565i
\(475\) 3.70052e7 0.345288
\(476\) 2.25261e7i 0.208865i
\(477\) 1.78543e8 6.30261e7i 1.64509 0.580718i
\(478\) −204843. −0.00187559
\(479\) 9.22244e7i 0.839150i −0.907721 0.419575i \(-0.862179\pi\)
0.907721 0.419575i \(-0.137821\pi\)
\(480\) −8.71293e6 6.16418e6i −0.0787844 0.0557380i
\(481\) 1.50847e8 1.35550
\(482\) 2.14288e6i 0.0191363i
\(483\) −9.66078e7 + 1.36553e8i −0.857375 + 1.21188i
\(484\) 1.36681e7 0.120552
\(485\) 1.62299e7i 0.142263i
\(486\) −416673. 6.60853e6i −0.00362983 0.0575700i
\(487\) 8.11697e7 0.702760 0.351380 0.936233i \(-0.385713\pi\)
0.351380 + 0.936233i \(0.385713\pi\)
\(488\) 6.82517e6i 0.0587292i
\(489\) −3.07839e7 2.17788e7i −0.263267 0.186255i
\(490\) 963385. 0.00818864
\(491\) 1.39129e8i 1.17536i −0.809093 0.587681i \(-0.800041\pi\)
0.809093 0.587681i \(-0.199959\pi\)
\(492\) 1.34847e7 1.90603e7i 0.113226 0.160042i
\(493\) 5.22064e7 0.435696
\(494\) 4.61546e6i 0.0382855i
\(495\) 2.12036e7 + 6.00665e7i 0.174821 + 0.495241i
\(496\) −6.35189e7 −0.520545
\(497\) 2.50254e7i 0.203850i
\(498\) −4.94139e6 3.49591e6i −0.0400093 0.0283056i
\(499\) 2.83836e7 0.228437 0.114218 0.993456i \(-0.463564\pi\)
0.114218 + 0.993456i \(0.463564\pi\)
\(500\) 1.17676e8i 0.941410i
\(501\) −8.63561e7 + 1.22062e8i −0.686720 + 0.970664i
\(502\) −1.00252e7 −0.0792471
\(503\) 2.41667e7i 0.189895i 0.995482 + 0.0949475i \(0.0302683\pi\)
−0.995482 + 0.0949475i \(0.969732\pi\)
\(504\) −1.20142e7 + 4.24101e6i −0.0938429 + 0.0331267i
\(505\) 1.99939e7 0.155247
\(506\) 1.20381e7i 0.0929194i
\(507\) 7.87156e7 + 5.56893e7i 0.604000 + 0.427315i
\(508\) −3.32999e6 −0.0254011
\(509\) 2.43493e8i 1.84643i −0.384279 0.923217i \(-0.625550\pi\)
0.384279 0.923217i \(-0.374450\pi\)
\(510\) 600407. 848662.i 0.00452621 0.00639770i
\(511\) 9.77431e6 0.0732526
\(512\) 3.81978e7i 0.284596i
\(513\) −1.85367e7 + 6.53533e7i −0.137303 + 0.484078i
\(514\) −1.46546e7 −0.107916
\(515\) 3.63187e7i 0.265894i
\(516\) 2.68762e7 + 1.90142e7i 0.195622 + 0.138398i
\(517\) −1.72408e8 −1.24763
\(518\) 7.11912e6i 0.0512197i
\(519\) −1.05013e8 + 1.48433e8i −0.751173 + 1.06177i
\(520\) 1.19659e7 0.0851011
\(521\) 6.49017e7i 0.458926i 0.973317 + 0.229463i \(0.0736970\pi\)
−0.973317 + 0.229463i \(0.926303\pi\)
\(522\) 4.90628e6 + 1.38988e7i 0.0344938 + 0.0977157i
\(523\) 8.71718e7 0.609356 0.304678 0.952455i \(-0.401451\pi\)
0.304678 + 0.952455i \(0.401451\pi\)
\(524\) 5.28240e6i 0.0367145i
\(525\) 7.00421e7 + 4.95530e7i 0.484040 + 0.342446i
\(526\) 1.22038e7 0.0838566
\(527\) 1.86646e7i 0.127522i
\(528\) 7.89124e7 1.11541e8i 0.536097 0.757761i
\(529\) −2.88935e8 −1.95179
\(530\) 8.39241e6i 0.0563714i
\(531\) 1.79895e7 6.35032e6i 0.120153 0.0424143i
\(532\) 6.52444e7 0.433319
\(533\) 3.92864e7i 0.259454i
\(534\) 2.83370e6 + 2.00477e6i 0.0186093 + 0.0131656i
\(535\) 5.64480e7 0.368627
\(536\) 2.63609e7i 0.171185i
\(537\) −1.25586e7 + 1.77513e7i −0.0810993 + 0.114632i
\(538\) −3.00951e6 −0.0193263
\(539\) 3.72061e7i 0.237601i
\(540\) −8.45752e7 2.39887e7i −0.537108 0.152344i
\(541\) 3.58122e7 0.226172 0.113086 0.993585i \(-0.463926\pi\)
0.113086 + 0.993585i \(0.463926\pi\)
\(542\) 1.52189e7i 0.0955839i
\(543\) −5.03911e7 3.56504e7i −0.314742 0.222672i
\(544\) −6.72700e6 −0.0417854
\(545\) 1.46949e8i 0.907775i
\(546\) 6.18048e6 8.73598e6i 0.0379703 0.0536702i
\(547\) −7.55148e7 −0.461392 −0.230696 0.973026i \(-0.574100\pi\)
−0.230696 + 0.973026i \(0.574100\pi\)
\(548\) 2.44994e8i 1.48872i
\(549\) 2.80855e7 + 7.95620e7i 0.169733 + 0.480827i
\(550\) 6.17470e6 0.0371131
\(551\) 1.51210e8i 0.903911i
\(552\) −2.71709e7 1.92227e7i −0.161542 0.114287i
\(553\) 2.48102e8 1.46708
\(554\) 1.53524e7i 0.0902914i
\(555\) 5.68358e7 8.03362e7i 0.332463 0.469929i
\(556\) 1.80834e8 1.05209
\(557\) 1.20303e8i 0.696165i 0.937464 + 0.348083i \(0.113167\pi\)
−0.937464 + 0.348083i \(0.886833\pi\)
\(558\) 4.96901e6 1.75407e6i 0.0286001 0.0100959i
\(559\) −5.53963e7 −0.317136
\(560\) 8.41515e7i 0.479179i
\(561\) 3.27755e7 + 2.31878e7i 0.185635 + 0.131332i
\(562\) −1.35635e7 −0.0764124
\(563\) 1.86833e7i 0.104696i 0.998629 + 0.0523478i \(0.0166704\pi\)
−0.998629 + 0.0523478i \(0.983330\pi\)
\(564\) 1.37423e8 1.94245e8i 0.765989 1.08271i
\(565\) 1.13158e8 0.627395
\(566\) 9.33080e6i 0.0514600i
\(567\) −1.22599e8 + 9.88762e7i −0.672570 + 0.542429i
\(568\) 4.97947e6 0.0271730
\(569\) 6.50221e7i 0.352959i −0.984304 0.176480i \(-0.943529\pi\)
0.984304 0.176480i \(-0.0564710\pi\)
\(570\) −2.45805e6 1.73901e6i −0.0132729 0.00939025i
\(571\) 1.51488e7 0.0813708 0.0406854 0.999172i \(-0.487046\pi\)
0.0406854 + 0.999172i \(0.487046\pi\)
\(572\) 2.30678e8i 1.23259i
\(573\) −2.39210e7 + 3.38118e7i −0.127150 + 0.179723i
\(574\) 1.85410e6 0.00980388
\(575\) 2.24135e8i 1.17898i
\(576\) 6.23461e7 + 1.76617e8i 0.326243 + 0.924198i
\(577\) 1.42134e8 0.739898 0.369949 0.929052i \(-0.379375\pi\)
0.369949 + 0.929052i \(0.379375\pi\)
\(578\) 655228.i 0.00339319i
\(579\) 1.72727e8 + 1.22200e8i 0.889868 + 0.629559i
\(580\) 1.95684e8 1.00293
\(581\) 1.43976e8i 0.734112i
\(582\) −1.66800e6 + 2.35768e6i −0.00846109 + 0.0119596i
\(583\) −3.24116e8 −1.63567
\(584\) 1.94486e6i 0.00976450i
\(585\) 1.39488e8 4.92395e7i 0.696738 0.245950i
\(586\) −2.11316e7 −0.105012
\(587\) 7.49243e7i 0.370432i −0.982698 0.185216i \(-0.940702\pi\)
0.982698 0.185216i \(-0.0592985\pi\)
\(588\) −4.19185e7 2.96563e7i −0.206193 0.145876i
\(589\) −5.40597e7 −0.264562
\(590\) 845595.i 0.00411724i
\(591\) −4.57612e7 + 6.46825e7i −0.221684 + 0.313346i
\(592\) −2.11084e8 −1.01739
\(593\) 6.29987e7i 0.302112i −0.988525 0.151056i \(-0.951733\pi\)
0.988525 0.151056i \(-0.0482673\pi\)
\(594\) −3.09303e6 + 1.09049e7i −0.0147579 + 0.0520309i
\(595\) −2.47273e7 −0.117388
\(596\) 5.32718e6i 0.0251628i
\(597\) 1.44532e8 + 1.02253e8i 0.679267 + 0.480565i
\(598\) 2.79552e7 0.130725
\(599\) 1.96156e8i 0.912685i −0.889804 0.456343i \(-0.849159\pi\)
0.889804 0.456343i \(-0.150841\pi\)
\(600\) −9.85990e6 + 1.39367e7i −0.0456477 + 0.0645220i
\(601\) 1.40293e8 0.646270 0.323135 0.946353i \(-0.395263\pi\)
0.323135 + 0.946353i \(0.395263\pi\)
\(602\) 2.61440e6i 0.0119835i
\(603\) −1.08475e8 3.07292e8i −0.494739 1.40152i
\(604\) 1.60098e8 0.726565
\(605\) 1.50037e7i 0.0677537i
\(606\) 2.90446e6 + 2.05483e6i 0.0130511 + 0.00923334i
\(607\) 4.87910e7 0.218159 0.109080 0.994033i \(-0.465210\pi\)
0.109080 + 0.994033i \(0.465210\pi\)
\(608\) 1.94840e7i 0.0866896i
\(609\) 2.02483e8 2.86205e8i 0.896470 1.26714i
\(610\) −3.73980e6 −0.0164763
\(611\) 4.00371e8i 1.75525i
\(612\) −5.22494e7 + 1.84441e7i −0.227943 + 0.0804644i
\(613\) −4.16948e8 −1.81009 −0.905045 0.425316i \(-0.860163\pi\)
−0.905045 + 0.425316i \(0.860163\pi\)
\(614\) 8.97456e6i 0.0387711i
\(615\) 2.09227e7 + 1.48023e7i 0.0899483 + 0.0636362i
\(616\) 2.18097e7 0.0933057
\(617\) 5.95345e7i 0.253462i 0.991937 + 0.126731i \(0.0404485\pi\)
−0.991937 + 0.126731i \(0.959551\pi\)
\(618\) 3.73258e6 5.27592e6i 0.0158141 0.0223529i
\(619\) 3.28361e8 1.38446 0.692229 0.721678i \(-0.256629\pi\)
0.692229 + 0.721678i \(0.256629\pi\)
\(620\) 6.99600e7i 0.293545i
\(621\) −3.95836e8 1.12274e8i −1.65288 0.468818i
\(622\) −1.23262e7 −0.0512220
\(623\) 8.25649e7i 0.341453i
\(624\) −2.59024e8 1.83253e8i −1.06607 0.754218i
\(625\) 3.83595e7 0.157121
\(626\) 1.43722e7i 0.0585870i
\(627\) 6.71608e7 9.49303e7i 0.272467 0.385126i
\(628\) −3.38210e8 −1.36555
\(629\) 6.20253e7i 0.249240i
\(630\) −2.32383e6 6.58307e6i −0.00929358 0.0263273i
\(631\) −5.06091e7 −0.201438 −0.100719 0.994915i \(-0.532114\pi\)
−0.100719 + 0.994915i \(0.532114\pi\)
\(632\) 4.93665e7i 0.195561i
\(633\) −3.49308e8 2.47127e8i −1.37720 0.974335i
\(634\) 1.77877e7 0.0697993
\(635\) 3.65538e6i 0.0142762i
\(636\) 2.58347e8 3.65168e8i 1.00423 1.41945i
\(637\) 8.64011e7 0.334273
\(638\) 2.52309e7i 0.0971564i
\(639\) 5.80464e7 2.04905e7i 0.222471 0.0785325i
\(640\) −3.36007e7 −0.128177
\(641\) 2.04729e8i 0.777329i −0.921379 0.388665i \(-0.872937\pi\)
0.921379 0.388665i \(-0.127063\pi\)
\(642\) 8.20006e6 + 5.80134e6i 0.0309893 + 0.0219242i
\(643\) −4.39417e8 −1.65289 −0.826445 0.563017i \(-0.809640\pi\)
−0.826445 + 0.563017i \(0.809640\pi\)
\(644\) 3.95176e8i 1.47956i
\(645\) −2.08722e7 + 2.95023e7i −0.0777837 + 0.109945i
\(646\) −1.89779e6 −0.00703965
\(647\) 1.68755e8i 0.623081i 0.950233 + 0.311541i \(0.100845\pi\)
−0.950233 + 0.311541i \(0.899155\pi\)
\(648\) −1.96741e7 2.43943e7i −0.0723051 0.0896529i
\(649\) −3.26570e7 −0.119465
\(650\) 1.43391e7i 0.0522132i
\(651\) −1.02322e8 7.23905e7i −0.370875 0.262385i
\(652\) −8.90867e7 −0.321418
\(653\) 3.69047e8i 1.32539i −0.748891 0.662693i \(-0.769413\pi\)
0.748891 0.662693i \(-0.230587\pi\)
\(654\) 1.51024e7 2.13470e7i 0.0539901 0.0763138i
\(655\) 5.79857e6 0.0206346
\(656\) 5.49745e7i 0.194738i
\(657\) 8.00308e6 + 2.26715e7i 0.0282202 + 0.0799437i
\(658\) 1.88953e7 0.0663248
\(659\) 1.87282e8i 0.654393i −0.944956 0.327197i \(-0.893896\pi\)
0.944956 0.327197i \(-0.106104\pi\)
\(660\) 1.22852e8 + 8.69144e7i 0.427316 + 0.302315i
\(661\) −5.53588e8 −1.91683 −0.958413 0.285386i \(-0.907878\pi\)
−0.958413 + 0.285386i \(0.907878\pi\)
\(662\) 2.12776e7i 0.0733413i
\(663\) 5.38474e7 7.61122e7i 0.184767 0.261164i
\(664\) −2.86479e7 −0.0978563
\(665\) 7.16197e7i 0.243538i
\(666\) 1.65128e7 5.82905e6i 0.0558983 0.0197322i
\(667\) 9.15858e8 3.08639
\(668\) 3.53242e8i 1.18507i
\(669\) −3.92610e8 2.77762e8i −1.31124 0.927672i
\(670\) 1.44442e7 0.0480253
\(671\) 1.44432e8i 0.478074i
\(672\) −2.60907e7 + 3.68786e7i −0.0859760 + 0.121525i
\(673\) 2.35122e8 0.771344 0.385672 0.922636i \(-0.373970\pi\)
0.385672 + 0.922636i \(0.373970\pi\)
\(674\) 1.38554e7i 0.0452521i
\(675\) −5.75887e7 + 2.03036e8i −0.187252 + 0.660179i
\(676\) 2.27798e8 0.737412
\(677\) 1.46128e7i 0.0470942i 0.999723 + 0.0235471i \(0.00749598\pi\)
−0.999723 + 0.0235471i \(0.992504\pi\)
\(678\) 1.64382e7 + 1.16296e7i 0.0527431 + 0.0373144i
\(679\) 6.86952e7 0.219440
\(680\) 4.92015e6i 0.0156478i
\(681\) 1.13757e8 1.60793e8i 0.360194 0.509127i
\(682\) −9.02042e6 −0.0284364
\(683\) 4.11294e8i 1.29089i −0.763805 0.645447i \(-0.776671\pi\)
0.763805 0.645447i \(-0.223329\pi\)
\(684\) 5.34212e7 + 1.51334e8i 0.166934 + 0.472900i
\(685\) −2.68934e8 −0.836707
\(686\) 2.01681e7i 0.0624730i
\(687\) 7.69993e7 + 5.44751e7i 0.237474 + 0.168007i
\(688\) 7.75175e7 0.238031
\(689\) 7.52673e8i 2.30117i
\(690\) 1.05329e7 1.48881e7i 0.0320629 0.0453202i
\(691\) −3.11379e8 −0.943745 −0.471873 0.881667i \(-0.656422\pi\)
−0.471873 + 0.881667i \(0.656422\pi\)
\(692\) 4.29557e8i 1.29629i
\(693\) 2.54239e8 8.97468e7i 0.763911 0.269662i
\(694\) −3.07854e7 −0.0921013
\(695\) 1.98504e8i 0.591308i
\(696\) 5.69481e7 + 4.02893e7i 0.168908 + 0.119498i
\(697\) 1.61538e7 0.0477065
\(698\) 2.79445e7i 0.0821733i
\(699\) 5.33352e7 7.53881e7i 0.156164 0.220735i
\(700\) 2.02698e8 0.590955
\(701\) 2.56296e8i 0.744024i −0.928228 0.372012i \(-0.878668\pi\)
0.928228 0.372012i \(-0.121332\pi\)
\(702\) 2.53236e7 + 7.18273e6i 0.0732005 + 0.0207624i
\(703\) −1.79649e8 −0.517082
\(704\) 3.20619e8i 0.918908i
\(705\) 2.13225e8 + 1.50851e8i 0.608514 + 0.430509i
\(706\) −1.22649e7 −0.0348539
\(707\) 8.46267e7i 0.239469i
\(708\) 2.60303e7 3.67932e7i 0.0733464 0.103674i
\(709\) 4.14469e8 1.16293 0.581465 0.813571i \(-0.302480\pi\)
0.581465 + 0.813571i \(0.302480\pi\)
\(710\) 2.72846e6i 0.00762330i
\(711\) 2.03143e8 + 5.75473e8i 0.565187 + 1.60109i
\(712\) 1.64285e7 0.0455153
\(713\) 3.27432e8i 0.903344i
\(714\) −3.59207e6 2.54130e6i −0.00986848 0.00698170i
\(715\) −2.53218e8 −0.692750
\(716\) 5.13711e7i 0.139952i
\(717\) −6.92192e6 + 9.78398e6i −0.0187789 + 0.0265435i
\(718\) −1.54702e7 −0.0417949
\(719\) 5.85161e8i 1.57430i 0.616759 + 0.787152i \(0.288445\pi\)
−0.616759 + 0.787152i \(0.711555\pi\)
\(720\) −1.95189e8 + 6.89021e7i −0.522948 + 0.184601i
\(721\) −1.53723e8 −0.410142
\(722\) 1.62137e7i 0.0430796i
\(723\) 1.02351e8 + 7.24111e7i 0.270819 + 0.191598i
\(724\) −1.45829e8 −0.384262
\(725\) 4.69771e8i 1.23274i
\(726\) −1.54198e6 + 2.17955e6i −0.00402966 + 0.00569584i
\(727\) −2.14459e8 −0.558138 −0.279069 0.960271i \(-0.590026\pi\)
−0.279069 + 0.960271i \(0.590026\pi\)
\(728\) 5.06472e7i 0.131269i
\(729\) −3.29726e8 2.03410e8i −0.851080 0.525036i
\(730\) −1.06567e6 −0.00273940
\(731\) 2.27779e7i 0.0583126i
\(732\) 1.62725e8 + 1.15124e8i 0.414879 + 0.293516i
\(733\) 6.89906e8 1.75177 0.875886 0.482518i \(-0.160278\pi\)
0.875886 + 0.482518i \(0.160278\pi\)
\(734\) 2.32439e7i 0.0587788i
\(735\) 3.25541e7 4.60145e7i 0.0819868 0.115887i
\(736\) −1.18012e8 −0.296000
\(737\) 5.57839e8i 1.39350i
\(738\) 1.51811e6 + 4.30059e6i 0.00377690 + 0.0106994i
\(739\) −1.55438e8 −0.385144 −0.192572 0.981283i \(-0.561683\pi\)
−0.192572 + 0.981283i \(0.561683\pi\)
\(740\) 2.32488e8i 0.573728i
\(741\) −2.20450e8 1.55963e8i −0.541821 0.383324i
\(742\) 3.55220e7 0.0869531
\(743\) 6.83431e8i 1.66621i −0.553119 0.833103i \(-0.686562\pi\)
0.553119 0.833103i \(-0.313438\pi\)
\(744\) 1.44040e7 2.03598e7i 0.0349756 0.0494372i
\(745\) 5.84772e6 0.0141422
\(746\) 1.83911e7i 0.0442986i
\(747\) −3.33953e8 + 1.17886e8i −0.801167 + 0.282813i
\(748\) 9.48503e7 0.226639
\(749\) 2.38923e8i 0.568608i
\(750\) −1.87649e7 1.32757e7i −0.0444798 0.0314684i
\(751\) 2.63962e8 0.623192 0.311596 0.950215i \(-0.399136\pi\)
0.311596 + 0.950215i \(0.399136\pi\)
\(752\) 5.60249e8i 1.31743i
\(753\) −3.38767e8 + 4.78839e8i −0.793443 + 1.12151i
\(754\) −5.85920e7 −0.136686
\(755\) 1.75742e8i 0.408351i
\(756\) −1.01535e8 + 3.57976e8i −0.234991 + 0.828491i
\(757\) 2.95588e7 0.0681396 0.0340698 0.999419i \(-0.489153\pi\)
0.0340698 + 0.999419i \(0.489153\pi\)
\(758\) 2.03875e7i 0.0468119i
\(759\) 5.74980e8 + 4.06784e8i 1.31501 + 0.930333i
\(760\) −1.42507e7 −0.0324634
\(761\) 4.79775e8i 1.08864i 0.838878 + 0.544319i \(0.183212\pi\)
−0.838878 + 0.544319i \(0.816788\pi\)
\(762\) 375675. 531008.i 0.000849077 0.00120015i
\(763\) −6.21982e8 −1.40025
\(764\) 9.78494e7i 0.219421i
\(765\) −2.02464e7 5.73549e7i −0.0452234 0.128111i
\(766\) 3.75907e7 0.0836361
\(767\) 7.58371e7i 0.168072i
\(768\) 3.57553e8 + 2.52960e8i 0.789326 + 0.558428i
\(769\) 4.90886e8 1.07945 0.539724 0.841842i \(-0.318529\pi\)
0.539724 + 0.841842i \(0.318529\pi\)
\(770\) 1.19505e7i 0.0261766i
\(771\) −4.95201e8 + 6.99956e8i −1.08048 + 1.52724i
\(772\) 4.99863e8 1.08642
\(773\) 5.86642e8i 1.27009i 0.772475 + 0.635045i \(0.219019\pi\)
−0.772475 + 0.635045i \(0.780981\pi\)
\(774\) −6.06410e6 + 2.14064e6i −0.0130781 + 0.00461657i
\(775\) −1.67950e8 −0.360807
\(776\) 1.36687e7i 0.0292512i
\(777\) −3.40033e8 2.40565e8i −0.724867 0.512825i
\(778\) 1.85701e7 0.0394344
\(779\) 4.67878e7i 0.0989737i
\(780\) 2.01835e8 2.85290e8i 0.425317 0.601177i
\(781\) −1.05374e8 −0.221197
\(782\) 1.14947e7i 0.0240368i
\(783\) 8.29642e8 + 2.35318e8i 1.72825 + 0.490196i
\(784\) −1.20903e8 −0.250894
\(785\) 3.71258e8i 0.767479i
\(786\) 842344. + 595937.i 0.00173469 + 0.00122725i
\(787\) 8.14246e8 1.67044 0.835221 0.549914i \(-0.185340\pi\)
0.835221 + 0.549914i \(0.185340\pi\)
\(788\) 1.87187e8i 0.382558i
\(789\) 4.12383e8 5.82894e8i 0.839594 1.18675i
\(790\) −2.70500e7 −0.0548639
\(791\) 4.78957e8i 0.967759i
\(792\) 1.78575e7 + 5.05877e7i 0.0359456 + 0.101828i
\(793\) −3.35404e8 −0.672587
\(794\) 4.98881e7i 0.0996634i
\(795\) 4.00850e8 + 2.83591e8i 0.797775 + 0.564406i
\(796\) 4.18267e8 0.829305
\(797\) 6.26765e8i 1.23803i 0.785381 + 0.619013i \(0.212467\pi\)
−0.785381 + 0.619013i \(0.787533\pi\)
\(798\) −7.36058e6 + 1.04040e7i −0.0144845 + 0.0204735i
\(799\) 1.64625e8 0.322742
\(800\) 6.05318e7i 0.118226i
\(801\) 1.91509e8 6.76031e7i 0.372642 0.131543i
\(802\) −3.74631e7 −0.0726240
\(803\) 4.11564e7i 0.0794861i
\(804\) −6.28493e8 4.44643e8i −1.20930 0.855546i
\(805\) −4.33791e8 −0.831558
\(806\) 2.09475e7i 0.0400062i
\(807\) −1.01696e8 + 1.43744e8i −0.193500 + 0.273508i
\(808\) 1.68387e7 0.0319209
\(809\) 4.49278e8i 0.848534i 0.905537 + 0.424267i \(0.139468\pi\)
−0.905537 + 0.424267i \(0.860532\pi\)
\(810\) 1.33667e7 1.07803e7i 0.0251518 0.0202850i
\(811\) 4.58634e8 0.859813 0.429906 0.902874i \(-0.358547\pi\)
0.429906 + 0.902874i \(0.358547\pi\)
\(812\) 8.28259e8i 1.54703i
\(813\) −7.26905e8 5.14267e8i −1.35271 0.957011i
\(814\) −2.99763e7 −0.0555783
\(815\) 9.77918e7i 0.180647i
\(816\) −7.53501e7 + 1.06506e8i −0.138680 + 0.196021i
\(817\) 6.59736e7 0.120977
\(818\) 1.67585e7i 0.0306179i
\(819\) −2.08413e8 5.90402e8i −0.379378 1.07472i
\(820\) 6.05491e7 0.109816
\(821\) 8.33343e8i 1.50589i −0.658082 0.752946i \(-0.728632\pi\)
0.658082 0.752946i \(-0.271368\pi\)
\(822\) −3.90673e7 2.76392e7i −0.0703394 0.0497633i
\(823\) −1.35502e8 −0.243078 −0.121539 0.992587i \(-0.538783\pi\)
−0.121539 + 0.992587i \(0.538783\pi\)
\(824\) 3.05874e7i 0.0546715i
\(825\) 2.08652e8 2.94924e8i 0.371586 0.525229i
\(826\) 3.57909e6 0.00635086
\(827\) 1.91581e8i 0.338717i 0.985555 + 0.169358i \(0.0541695\pi\)
−0.985555 + 0.169358i \(0.945830\pi\)
\(828\) −9.16612e8 + 3.23565e8i −1.61471 + 0.569995i
\(829\) −5.01002e8 −0.879378 −0.439689 0.898150i \(-0.644911\pi\)
−0.439689 + 0.898150i \(0.644911\pi\)
\(830\) 1.56974e7i 0.0274532i
\(831\) 7.33281e8 + 5.18778e8i 1.27781 + 0.904021i
\(832\) −7.44552e8 −1.29278
\(833\) 3.55265e7i 0.0614636i
\(834\) −2.04008e7 + 2.88361e7i −0.0351682 + 0.0497094i
\(835\) −3.87758e8 −0.666042
\(836\) 2.74723e8i 0.470193i
\(837\) 8.41295e7 2.96609e8i 0.143474 0.505834i
\(838\) 6.07680e7 0.103263
\(839\) 3.18478e8i 0.539254i −0.962965 0.269627i \(-0.913100\pi\)
0.962965 0.269627i \(-0.0869003\pi\)
\(840\) −2.69731e7 1.90828e7i −0.0455086 0.0321962i
\(841\) −1.32474e9 −2.22712
\(842\) 2.50748e7i 0.0420051i
\(843\) −4.58330e8 + 6.47840e8i −0.765061 + 1.08140i
\(844\) −1.01088e9 −1.68140
\(845\) 2.50057e8i 0.414448i
\(846\) 1.54712e7 + 4.38276e7i 0.0255513 + 0.0723830i
\(847\) 6.35052e7 0.104510
\(848\) 1.05323e9i 1.72718i
\(849\) 4.45671e8 + 3.15301e8i 0.728267 + 0.515231i
\(850\) −5.89595e6 −0.00960058
\(851\) 1.08811e9i 1.76557i
\(852\) 8.39914e7 1.18720e8i 0.135805 0.191958i
\(853\) 9.97381e8 1.60699 0.803497 0.595309i \(-0.202970\pi\)
0.803497 + 0.595309i \(0.202970\pi\)
\(854\) 1.58292e7i 0.0254147i
\(855\) −1.66122e8 + 5.86413e7i −0.265784 + 0.0938221i
\(856\) 4.75402e7 0.0757949
\(857\) 5.63488e8i 0.895245i 0.894223 + 0.447623i \(0.147729\pi\)
−0.894223 + 0.447623i \(0.852271\pi\)
\(858\) −3.67844e7 2.60240e7i −0.0582373 0.0412014i
\(859\) 7.29664e8 1.15118 0.575591 0.817738i \(-0.304772\pi\)
0.575591 + 0.817738i \(0.304772\pi\)
\(860\) 8.53780e7i 0.134230i
\(861\) 6.26527e7 8.85582e7i 0.0981590 0.138746i
\(862\) 5.58160e7 0.0871438
\(863\) 6.23185e8i 0.969582i −0.874630 0.484791i \(-0.838896\pi\)
0.874630 0.484791i \(-0.161104\pi\)
\(864\) −1.06903e8 3.03216e7i −0.165748 0.0470123i
\(865\) −4.71531e8 −0.728554
\(866\) 7.26711e6i 0.0111894i
\(867\) −3.12959e7 2.21411e7i −0.0480209 0.0339736i
\(868\) −2.96115e8 −0.452794
\(869\) 1.04468e9i 1.59193i
\(870\) −2.20762e7 + 3.12043e7i −0.0335249 + 0.0473867i
\(871\) 1.29543e9 1.96047
\(872\) 1.23760e8i 0.186651i
\(873\) 5.62467e7 + 1.59338e8i 0.0845385 + 0.239485i
\(874\) −3.32930e7 −0.0498676
\(875\) 5.46750e8i 0.816139i
\(876\) 4.63691e7 + 3.28050e7i 0.0689790 + 0.0488009i
\(877\) −9.29480e8 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(878\) 4.24380e6i 0.00627006i
\(879\) −7.14066e8 + 1.00932e9i −1.05141 + 1.48614i
\(880\) 3.54334e8 0.519955
\(881\) 1.16497e8i 0.170367i −0.996365 0.0851836i \(-0.972852\pi\)
0.996365 0.0851836i \(-0.0271477\pi\)
\(882\) 9.45812e6 3.33873e6i 0.0137848 0.00486604i
\(883\) 4.44164e8 0.645151 0.322575 0.946544i \(-0.395451\pi\)
0.322575 + 0.946544i \(0.395451\pi\)
\(884\) 2.20264e8i 0.318850i
\(885\) 4.03885e7 + 2.85738e7i 0.0582676 + 0.0412229i
\(886\) −4.97381e7 −0.0715135
\(887\) 9.93887e8i 1.42418i 0.702086 + 0.712092i \(0.252252\pi\)
−0.702086 + 0.712092i \(0.747748\pi\)
\(888\) 4.78669e7 6.76588e7i 0.0683591 0.0966240i
\(889\) −1.54719e7 −0.0220210
\(890\) 9.00187e6i 0.0127692i
\(891\) 4.16335e8 + 5.16224e8i 0.588587 + 0.729803i
\(892\) −1.13619e9 −1.60087
\(893\) 4.76817e8i 0.669573i
\(894\) 849485. + 600989.i 0.00118889 + 0.000841112i
\(895\) −5.63908e7 −0.0786573
\(896\) 1.42219e8i 0.197713i
\(897\) 9.44646e8 1.33524e9i 1.30886 1.85004i
\(898\) −1.63888e7 −0.0226317
\(899\) 6.86274e8i 0.944535i
\(900\) 1.65966e8 + 4.70157e8i 0.227663 + 0.644934i
\(901\) 3.09485e8 0.423121
\(902\) 7.80702e6i 0.0106381i
\(903\) 1.24872e8 + 8.83441e7i 0.169591 + 0.119982i
\(904\) 9.53013e7 0.129001
\(905\) 1.60078e8i 0.215967i
\(906\) −1.80615e7 + 2.55296e7i −0.0242868 + 0.0343288i
\(907\) 1.58430e8 0.212333 0.106166 0.994348i \(-0.466142\pi\)
0.106166 + 0.994348i \(0.466142\pi\)
\(908\) 4.65326e8i 0.621583i
\(909\) 1.96292e8 6.92912e7i 0.261342 0.0922543i
\(910\) 2.77518e7 0.0368270
\(911\) 9.78306e8i 1.29396i 0.762509 + 0.646978i \(0.223967\pi\)
−0.762509 + 0.646978i \(0.776033\pi\)
\(912\) 3.08481e8 + 2.18243e8i 0.406672 + 0.287710i
\(913\) 6.06237e8 0.796581
\(914\) 1.93565e7i 0.0253507i
\(915\) −1.26373e8 + 1.78626e8i −0.164965 + 0.233174i
\(916\) 2.22832e8 0.289928
\(917\) 2.45432e7i 0.0318290i
\(918\) 2.95340e6 1.04126e7i 0.00381764 0.0134596i
\(919\) 5.13655e8 0.661797 0.330899 0.943666i \(-0.392648\pi\)
0.330899 + 0.943666i \(0.392648\pi\)
\(920\) 8.63143e7i 0.110846i
\(921\) −4.28655e8 3.03263e8i −0.548693 0.388187i
\(922\) 3.50551e7 0.0447259
\(923\) 2.44702e8i 0.311195i
\(924\) 3.67877e8 5.19985e8i 0.466322 0.659136i
\(925\) −5.58124e8 −0.705189
\(926\) 4.37898e7i 0.0551493i
\(927\) −1.25867e8 3.56561e8i −0.158005 0.447605i
\(928\) 2.47344e8 0.309498
\(929\) 8.32885e8i 1.03881i 0.854527 + 0.519407i \(0.173847\pi\)
−0.854527 + 0.519407i \(0.826153\pi\)
\(930\) 1.11560e7 + 7.89258e6i 0.0138694 + 0.00981228i
\(931\) −1.02898e8 −0.127515
\(932\) 2.18169e8i 0.269491i
\(933\) −4.16518e8 + 5.88739e8i −0.512848 + 0.724900i
\(934\) −4.62748e7 −0.0567942
\(935\) 1.04119e8i 0.127378i
\(936\) 1.17476e8 4.14693e7i 0.143259 0.0505707i
\(937\) 7.27480e8 0.884305 0.442152 0.896940i \(-0.354215\pi\)
0.442152 + 0.896940i \(0.354215\pi\)
\(938\) 6.11371e7i 0.0740792i
\(939\) −6.86466e8 4.85658e8i −0.829129 0.586588i
\(940\) 6.17061e8 0.742924
\(941\) 1.36069e9i 1.63302i 0.577335 + 0.816508i \(0.304093\pi\)
−0.577335 + 0.816508i \(0.695907\pi\)
\(942\) 3.81553e7 5.39317e7i 0.0456460 0.0645196i
\(943\) 2.83387e8 0.337944
\(944\) 1.06121e8i 0.126149i
\(945\) −3.92955e8 1.11457e8i −0.465637 0.132072i
\(946\) 1.10084e7 0.0130032
\(947\) 7.33753e8i 0.863973i 0.901880 + 0.431986i \(0.142187\pi\)
−0.901880 + 0.431986i \(0.857813\pi\)
\(948\) 1.17699e9 + 8.32692e8i 1.38149 + 0.977371i
\(949\) −9.55747e7 −0.111826
\(950\) 1.70769e7i 0.0199177i
\(951\) 6.01070e8 8.49599e8i 0.698849 0.987808i
\(952\) −2.08252e7 −0.0241367
\(953\) 9.00794e8i 1.04075i 0.853938 + 0.520375i \(0.174208\pi\)
−0.853938 + 0.520375i \(0.825792\pi\)
\(954\) 2.90849e7 + 8.23932e7i 0.0334983 + 0.0948956i
\(955\) −1.07411e8 −0.123321
\(956\) 2.83143e7i 0.0324065i
\(957\) −1.20511e9 8.52588e8i −1.37497 0.972755i
\(958\) 4.25592e7 0.0484058
\(959\) 1.13830e9i 1.29062i
\(960\) −2.80532e8 + 3.96525e8i −0.317079 + 0.448185i
\(961\) −6.42151e8 −0.723547
\(962\) 6.96119e7i 0.0781912i
\(963\) 5.54183e8 1.95627e8i 0.620546 0.219054i
\(964\) 2.96199e8 0.330638
\(965\) 5.48707e8i 0.610602i
\(966\) −6.30157e7 4.45820e7i −0.0699065 0.0494571i
\(967\) −7.73547e8 −0.855475 −0.427738 0.903903i \(-0.640689\pi\)
−0.427738 + 0.903903i \(0.640689\pi\)
\(968\) 1.26361e7i 0.0139311i
\(969\) −6.41290e7 + 9.06449e7i −0.0704828 + 0.0996259i
\(970\) −7.48969e6 −0.00820632
\(971\) 1.22350e9i 1.33643i −0.743967 0.668216i \(-0.767058\pi\)
0.743967 0.668216i \(-0.232942\pi\)
\(972\) −9.13460e8 + 5.75944e7i −0.994697 + 0.0627165i
\(973\) 8.40192e8 0.912095
\(974\) 3.74578e7i 0.0405382i
\(975\) −6.84882e8 4.84537e8i −0.738928 0.522773i
\(976\) 4.69339e8 0.504821
\(977\) 6.11546e8i 0.655761i −0.944719 0.327880i \(-0.893666\pi\)
0.944719 0.327880i \(-0.106334\pi\)
\(978\) 1.00504e7 1.42060e7i 0.0107440 0.0151864i
\(979\) −3.47654e8 −0.370509
\(980\) 1.33163e8i 0.141484i
\(981\) −5.09271e8 1.44269e9i −0.539438 1.52815i
\(982\) 6.42043e7 0.0678000
\(983\) 1.16297e9i 1.22435i 0.790722 + 0.612176i \(0.209705\pi\)
−0.790722 + 0.612176i \(0.790295\pi\)
\(984\) 1.76210e7 + 1.24664e7i 0.0184946 + 0.0130845i
\(985\) −2.05478e8 −0.215009
\(986\) 2.40919e7i 0.0251328i
\(987\) 6.38498e8 9.02503e8i 0.664061 0.938636i
\(988\) −6.37969e8 −0.661499
\(989\) 3.99593e8i 0.413075i
\(990\) −2.77192e7 + 9.78490e6i −0.0285676 + 0.0100844i
\(991\) 6.40493e8 0.658102 0.329051 0.944312i \(-0.393271\pi\)
0.329051 + 0.944312i \(0.393271\pi\)
\(992\) 8.84290e7i 0.0905857i
\(993\) 1.01629e9 + 7.19000e8i 1.03793 + 0.734313i
\(994\) 1.15486e7 0.0117590
\(995\) 4.59138e8i 0.466094i
\(996\) −4.83220e8 + 6.83020e8i −0.489065 + 0.691283i
\(997\) 1.15040e8 0.116082 0.0580409 0.998314i \(-0.481515\pi\)
0.0580409 + 0.998314i \(0.481515\pi\)
\(998\) 1.30983e7i 0.0131772i
\(999\) 2.79576e8 9.85679e8i 0.280416 0.988642i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.7.b.a.35.17 yes 32
3.2 odd 2 inner 51.7.b.a.35.16 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.7.b.a.35.16 32 3.2 odd 2 inner
51.7.b.a.35.17 yes 32 1.1 even 1 trivial