Properties

Label 51.7.b.a.35.13
Level $51$
Weight $7$
Character 51.35
Analytic conductor $11.733$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,7,Mod(35,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.35"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 51.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7327582646\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 35.13
Character \(\chi\) \(=\) 51.35
Dual form 51.7.b.a.35.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.81455i q^{2} +(26.1801 + 6.60322i) q^{3} +40.8201 q^{4} -186.576i q^{5} +(31.7916 - 126.045i) q^{6} -455.638 q^{7} -504.662i q^{8} +(641.795 + 345.746i) q^{9} -898.281 q^{10} -546.662i q^{11} +(1068.67 + 269.544i) q^{12} +1273.85 q^{13} +2193.69i q^{14} +(1232.01 - 4884.59i) q^{15} +182.767 q^{16} -1191.58i q^{17} +(1664.61 - 3089.95i) q^{18} -3937.85 q^{19} -7616.07i q^{20} +(-11928.6 - 3008.68i) q^{21} -2631.93 q^{22} +6468.05i q^{23} +(3332.39 - 13212.1i) q^{24} -19185.7 q^{25} -6133.00i q^{26} +(14519.2 + 13289.6i) q^{27} -18599.2 q^{28} -28253.9i q^{29} +(-23517.1 - 5931.55i) q^{30} +45232.4 q^{31} -33178.3i q^{32} +(3609.73 - 14311.7i) q^{33} -5736.91 q^{34} +85011.2i q^{35} +(26198.1 + 14113.4i) q^{36} +86189.5 q^{37} +18959.0i q^{38} +(33349.4 + 8411.49i) q^{39} -94158.0 q^{40} +93994.5i q^{41} +(-14485.4 + 57431.0i) q^{42} -91153.1 q^{43} -22314.8i q^{44} +(64508.1 - 119744. i) q^{45} +31140.8 q^{46} +12654.7i q^{47} +(4784.86 + 1206.85i) q^{48} +89956.7 q^{49} +92370.8i q^{50} +(7868.25 - 31195.6i) q^{51} +51998.5 q^{52} +146501. i q^{53} +(63983.4 - 69903.5i) q^{54} -101994. q^{55} +229943. i q^{56} +(-103093. - 26002.5i) q^{57} -136030. q^{58} +323762. i q^{59} +(50290.6 - 199389. i) q^{60} +132481. q^{61} -217773. i q^{62} +(-292426. - 157535. i) q^{63} -148041. q^{64} -237670. i q^{65} +(-68904.2 - 17379.2i) q^{66} -53858.1 q^{67} -48640.3i q^{68} +(-42710.0 + 169334. i) q^{69} +409291. q^{70} +449162. i q^{71} +(174485. - 323889. i) q^{72} +416903. q^{73} -414964. i q^{74} +(-502285. - 126688. i) q^{75} -160744. q^{76} +249080. i q^{77} +(40497.6 - 160562. i) q^{78} +293630. q^{79} -34100.0i q^{80} +(292360. + 443796. i) q^{81} +452541. q^{82} -952000. i q^{83} +(-486928. - 122815. i) q^{84} -222320. q^{85} +438861. i q^{86} +(186567. - 739689. i) q^{87} -275879. q^{88} -843153. i q^{89} +(-576512. - 310577. i) q^{90} -580412. q^{91} +264027. i q^{92} +(1.18419e6 + 298679. i) q^{93} +60926.8 q^{94} +734710. i q^{95} +(219084. - 868611. i) q^{96} -348695. q^{97} -433101. i q^{98} +(189006. - 350845. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{3} - 1024 q^{4} + 286 q^{6} + 568 q^{7} - 912 q^{9} - 744 q^{10} + 194 q^{12} - 2312 q^{13} - 6240 q^{15} + 13208 q^{16} + 2936 q^{18} + 7936 q^{19} - 21688 q^{21} + 13176 q^{22} + 18282 q^{24}+ \cdots + 1619864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.81455i 0.601819i −0.953653 0.300909i \(-0.902710\pi\)
0.953653 0.300909i \(-0.0972902\pi\)
\(3\) 26.1801 + 6.60322i 0.969633 + 0.244564i
\(4\) 40.8201 0.637814
\(5\) 186.576i 1.49261i −0.665604 0.746306i \(-0.731826\pi\)
0.665604 0.746306i \(-0.268174\pi\)
\(6\) 31.7916 126.045i 0.147183 0.583544i
\(7\) −455.638 −1.32839 −0.664195 0.747560i \(-0.731225\pi\)
−0.664195 + 0.747560i \(0.731225\pi\)
\(8\) 504.662i 0.985667i
\(9\) 641.795 + 345.746i 0.880377 + 0.474274i
\(10\) −898.281 −0.898281
\(11\) 546.662i 0.410715i −0.978687 0.205358i \(-0.934164\pi\)
0.978687 0.205358i \(-0.0658358\pi\)
\(12\) 1068.67 + 269.544i 0.618446 + 0.155986i
\(13\) 1273.85 0.579812 0.289906 0.957055i \(-0.406376\pi\)
0.289906 + 0.957055i \(0.406376\pi\)
\(14\) 2193.69i 0.799450i
\(15\) 1232.01 4884.59i 0.365039 1.44729i
\(16\) 182.767 0.0446209
\(17\) 1191.58i 0.242536i
\(18\) 1664.61 3089.95i 0.285427 0.529827i
\(19\) −3937.85 −0.574115 −0.287057 0.957913i \(-0.592677\pi\)
−0.287057 + 0.957913i \(0.592677\pi\)
\(20\) 7616.07i 0.952008i
\(21\) −11928.6 3008.68i −1.28805 0.324876i
\(22\) −2631.93 −0.247176
\(23\) 6468.05i 0.531606i 0.964027 + 0.265803i \(0.0856371\pi\)
−0.964027 + 0.265803i \(0.914363\pi\)
\(24\) 3332.39 13212.1i 0.241059 0.955736i
\(25\) −19185.7 −1.22789
\(26\) 6133.00i 0.348942i
\(27\) 14519.2 + 13289.6i 0.737652 + 0.675181i
\(28\) −18599.2 −0.847266
\(29\) 28253.9i 1.15847i −0.815161 0.579234i \(-0.803352\pi\)
0.815161 0.579234i \(-0.196648\pi\)
\(30\) −23517.1 5931.55i −0.871004 0.219687i
\(31\) 45232.4 1.51832 0.759161 0.650902i \(-0.225609\pi\)
0.759161 + 0.650902i \(0.225609\pi\)
\(32\) 33178.3i 1.01252i
\(33\) 3609.73 14311.7i 0.100446 0.398243i
\(34\) −5736.91 −0.145963
\(35\) 85011.2i 1.98277i
\(36\) 26198.1 + 14113.4i 0.561517 + 0.302499i
\(37\) 86189.5 1.70157 0.850784 0.525515i \(-0.176127\pi\)
0.850784 + 0.525515i \(0.176127\pi\)
\(38\) 18959.0i 0.345513i
\(39\) 33349.4 + 8411.49i 0.562205 + 0.141801i
\(40\) −94158.0 −1.47122
\(41\) 93994.5i 1.36380i 0.731445 + 0.681900i \(0.238846\pi\)
−0.731445 + 0.681900i \(0.761154\pi\)
\(42\) −14485.4 + 57431.0i −0.195517 + 0.775173i
\(43\) −91153.1 −1.14648 −0.573239 0.819388i \(-0.694314\pi\)
−0.573239 + 0.819388i \(0.694314\pi\)
\(44\) 22314.8i 0.261960i
\(45\) 64508.1 119744.i 0.707907 1.31406i
\(46\) 31140.8 0.319931
\(47\) 12654.7i 0.121888i 0.998141 + 0.0609438i \(0.0194110\pi\)
−0.998141 + 0.0609438i \(0.980589\pi\)
\(48\) 4784.86 + 1206.85i 0.0432659 + 0.0109127i
\(49\) 89956.7 0.764619
\(50\) 92370.8i 0.738966i
\(51\) 7868.25 31195.6i 0.0593154 0.235171i
\(52\) 51998.5 0.369812
\(53\) 146501.i 0.984041i 0.870584 + 0.492021i \(0.163742\pi\)
−0.870584 + 0.492021i \(0.836258\pi\)
\(54\) 63983.4 69903.5i 0.406336 0.443933i
\(55\) −101994. −0.613038
\(56\) 229943.i 1.30935i
\(57\) −103093. 26002.5i −0.556681 0.140408i
\(58\) −136030. −0.697188
\(59\) 323762.i 1.57641i 0.615411 + 0.788206i \(0.288990\pi\)
−0.615411 + 0.788206i \(0.711010\pi\)
\(60\) 50290.6 199389.i 0.232827 0.923099i
\(61\) 132481. 0.583665 0.291833 0.956469i \(-0.405735\pi\)
0.291833 + 0.956469i \(0.405735\pi\)
\(62\) 217773.i 0.913755i
\(63\) −292426. 157535.i −1.16948 0.630021i
\(64\) −148041. −0.564733
\(65\) 237670.i 0.865433i
\(66\) −68904.2 17379.2i −0.239670 0.0604504i
\(67\) −53858.1 −0.179072 −0.0895358 0.995984i \(-0.528538\pi\)
−0.0895358 + 0.995984i \(0.528538\pi\)
\(68\) 48640.3i 0.154693i
\(69\) −42710.0 + 169334.i −0.130012 + 0.515463i
\(70\) 409291. 1.19327
\(71\) 449162.i 1.25496i 0.778635 + 0.627478i \(0.215913\pi\)
−0.778635 + 0.627478i \(0.784087\pi\)
\(72\) 174485. 323889.i 0.467477 0.867759i
\(73\) 416903. 1.07168 0.535842 0.844318i \(-0.319994\pi\)
0.535842 + 0.844318i \(0.319994\pi\)
\(74\) 414964.i 1.02404i
\(75\) −502285. 126688.i −1.19060 0.300297i
\(76\) −160744. −0.366179
\(77\) 249080.i 0.545590i
\(78\) 40497.6 160562.i 0.0853385 0.338345i
\(79\) 293630. 0.595550 0.297775 0.954636i \(-0.403755\pi\)
0.297775 + 0.954636i \(0.403755\pi\)
\(80\) 34100.0i 0.0666016i
\(81\) 292360. + 443796.i 0.550127 + 0.835081i
\(82\) 452541. 0.820761
\(83\) 952000.i 1.66496i −0.554058 0.832478i \(-0.686921\pi\)
0.554058 0.832478i \(-0.313079\pi\)
\(84\) −486928. 122815.i −0.821537 0.207211i
\(85\) −222320. −0.362011
\(86\) 438861.i 0.689973i
\(87\) 186567. 739689.i 0.283319 1.12329i
\(88\) −275879. −0.404829
\(89\) 843153.i 1.19601i −0.801491 0.598007i \(-0.795959\pi\)
0.801491 0.598007i \(-0.204041\pi\)
\(90\) −576512. 310577.i −0.790826 0.426032i
\(91\) −580412. −0.770216
\(92\) 264027.i 0.339066i
\(93\) 1.18419e6 + 298679.i 1.47222 + 0.371327i
\(94\) 60926.8 0.0733542
\(95\) 734710.i 0.856930i
\(96\) 219084. 868611.i 0.247626 0.981774i
\(97\) −348695. −0.382059 −0.191030 0.981584i \(-0.561183\pi\)
−0.191030 + 0.981584i \(0.561183\pi\)
\(98\) 433101.i 0.460162i
\(99\) 189006. 350845.i 0.194792 0.361584i
\(100\) −783164. −0.783164
\(101\) 1.35407e6i 1.31425i 0.753783 + 0.657123i \(0.228227\pi\)
−0.753783 + 0.657123i \(0.771773\pi\)
\(102\) −150193. 37882.1i −0.141530 0.0356972i
\(103\) −1.81464e6 −1.66065 −0.830326 0.557278i \(-0.811846\pi\)
−0.830326 + 0.557278i \(0.811846\pi\)
\(104\) 642862.i 0.571502i
\(105\) −561348. + 2.22560e6i −0.484914 + 1.92256i
\(106\) 705337. 0.592214
\(107\) 162152.i 0.132365i 0.997808 + 0.0661823i \(0.0210819\pi\)
−0.997808 + 0.0661823i \(0.978918\pi\)
\(108\) 592676. + 542482.i 0.470485 + 0.430640i
\(109\) −126859. −0.0979582 −0.0489791 0.998800i \(-0.515597\pi\)
−0.0489791 + 0.998800i \(0.515597\pi\)
\(110\) 491056.i 0.368938i
\(111\) 2.25645e6 + 569129.i 1.64990 + 0.416142i
\(112\) −83275.6 −0.0592739
\(113\) 1.64169e6i 1.13777i 0.822417 + 0.568886i \(0.192625\pi\)
−0.822417 + 0.568886i \(0.807375\pi\)
\(114\) −125190. + 496348.i −0.0845000 + 0.335021i
\(115\) 1.20679e6 0.793482
\(116\) 1.15333e6i 0.738887i
\(117\) 817548. + 440427.i 0.510453 + 0.274990i
\(118\) 1.55877e6 0.948715
\(119\) 542928.i 0.322182i
\(120\) −2.46506e6 621746.i −1.42654 0.359807i
\(121\) 1.47272e6 0.831313
\(122\) 637836.i 0.351261i
\(123\) −620667. + 2.46079e6i −0.333536 + 1.32239i
\(124\) 1.84639e6 0.968408
\(125\) 664351.i 0.340148i
\(126\) −758460. + 1.40790e6i −0.379159 + 0.703817i
\(127\) −2.56147e6 −1.25048 −0.625242 0.780431i \(-0.715000\pi\)
−0.625242 + 0.780431i \(0.715000\pi\)
\(128\) 1.41066e6i 0.672654i
\(129\) −2.38640e6 601904.i −1.11166 0.280387i
\(130\) −1.14427e6 −0.520834
\(131\) 1.30524e6i 0.580601i −0.956936 0.290300i \(-0.906245\pi\)
0.956936 0.290300i \(-0.0937553\pi\)
\(132\) 147350. 584204.i 0.0640659 0.254005i
\(133\) 1.79423e6 0.762648
\(134\) 259303.i 0.107769i
\(135\) 2.47952e6 2.70894e6i 1.00778 1.10103i
\(136\) −601344. −0.239059
\(137\) 1.59134e6i 0.618872i −0.950920 0.309436i \(-0.899860\pi\)
0.950920 0.309436i \(-0.100140\pi\)
\(138\) 815269. + 205630.i 0.310215 + 0.0782435i
\(139\) −2.20404e6 −0.820681 −0.410340 0.911932i \(-0.634590\pi\)
−0.410340 + 0.911932i \(0.634590\pi\)
\(140\) 3.47017e6i 1.26464i
\(141\) −83562.0 + 331302.i −0.0298093 + 0.118186i
\(142\) 2.16251e6 0.755256
\(143\) 696364.i 0.238138i
\(144\) 117299. + 63191.0i 0.0392832 + 0.0211625i
\(145\) −5.27151e6 −1.72914
\(146\) 2.00720e6i 0.644960i
\(147\) 2.35507e6 + 594004.i 0.741400 + 0.186998i
\(148\) 3.51827e6 1.08528
\(149\) 5.05689e6i 1.52871i −0.644797 0.764354i \(-0.723058\pi\)
0.644797 0.764354i \(-0.276942\pi\)
\(150\) −609945. + 2.41828e6i −0.180724 + 0.716526i
\(151\) 2.99775e6 0.870692 0.435346 0.900263i \(-0.356626\pi\)
0.435346 + 0.900263i \(0.356626\pi\)
\(152\) 1.98728e6i 0.565886i
\(153\) 411983. 764748.i 0.115028 0.213523i
\(154\) 1.19921e6 0.328346
\(155\) 8.43929e6i 2.26627i
\(156\) 1.36133e6 + 343358.i 0.358582 + 0.0904427i
\(157\) −1.00692e6 −0.260193 −0.130096 0.991501i \(-0.541529\pi\)
−0.130096 + 0.991501i \(0.541529\pi\)
\(158\) 1.41369e6i 0.358413i
\(159\) −967379. + 3.83541e6i −0.240661 + 0.954159i
\(160\) −6.19029e6 −1.51130
\(161\) 2.94709e6i 0.706180i
\(162\) 2.13668e6 1.40758e6i 0.502567 0.331077i
\(163\) 1.78774e6 0.412802 0.206401 0.978467i \(-0.433825\pi\)
0.206401 + 0.978467i \(0.433825\pi\)
\(164\) 3.83687e6i 0.869851i
\(165\) −2.67022e6 673491.i −0.594422 0.149927i
\(166\) −4.58345e6 −1.00200
\(167\) 4.29618e6i 0.922428i 0.887289 + 0.461214i \(0.152586\pi\)
−0.887289 + 0.461214i \(0.847414\pi\)
\(168\) −1.51836e6 + 6.01993e6i −0.320220 + 1.26959i
\(169\) −3.20412e6 −0.663818
\(170\) 1.07037e6i 0.217865i
\(171\) −2.52729e6 1.36150e6i −0.505438 0.272288i
\(172\) −3.72088e6 −0.731240
\(173\) 4.98994e6i 0.963734i −0.876244 0.481867i \(-0.839959\pi\)
0.876244 0.481867i \(-0.160041\pi\)
\(174\) −3.56127e6 898235.i −0.676017 0.170507i
\(175\) 8.74175e6 1.63111
\(176\) 99911.8i 0.0183265i
\(177\) −2.13787e6 + 8.47612e6i −0.385534 + 1.52854i
\(178\) −4.05940e6 −0.719784
\(179\) 6.94812e6i 1.21146i −0.795671 0.605729i \(-0.792882\pi\)
0.795671 0.605729i \(-0.207118\pi\)
\(180\) 2.63323e6 4.88795e6i 0.451513 0.838126i
\(181\) 6.39241e6 1.07802 0.539012 0.842298i \(-0.318798\pi\)
0.539012 + 0.842298i \(0.318798\pi\)
\(182\) 2.79443e6i 0.463530i
\(183\) 3.46836e6 + 874801.i 0.565941 + 0.142743i
\(184\) 3.26418e6 0.523987
\(185\) 1.60809e7i 2.53978i
\(186\) 1.43801e6 5.70133e6i 0.223472 0.886007i
\(187\) −651390. −0.0996131
\(188\) 516567.i 0.0777416i
\(189\) −6.61550e6 6.05523e6i −0.979890 0.896903i
\(190\) 3.53730e6 0.515717
\(191\) 1.06477e7i 1.52811i 0.645149 + 0.764057i \(0.276795\pi\)
−0.645149 + 0.764057i \(0.723205\pi\)
\(192\) −3.87574e6 977551.i −0.547584 0.138113i
\(193\) 4.57188e6 0.635949 0.317975 0.948099i \(-0.396997\pi\)
0.317975 + 0.948099i \(0.396997\pi\)
\(194\) 1.67881e6i 0.229931i
\(195\) 1.56939e6 6.22221e6i 0.211654 0.839153i
\(196\) 3.67204e6 0.487685
\(197\) 2.80943e6i 0.367469i 0.982976 + 0.183734i \(0.0588186\pi\)
−0.982976 + 0.183734i \(0.941181\pi\)
\(198\) −1.68916e6 909980.i −0.217608 0.117229i
\(199\) −1.07107e7 −1.35913 −0.679563 0.733617i \(-0.737831\pi\)
−0.679563 + 0.733617i \(0.737831\pi\)
\(200\) 9.68231e6i 1.21029i
\(201\) −1.41001e6 355637.i −0.173634 0.0437944i
\(202\) 6.51923e6 0.790938
\(203\) 1.28735e7i 1.53890i
\(204\) 321183. 1.27341e6i 0.0378322 0.149995i
\(205\) 1.75372e7 2.03562
\(206\) 8.73667e6i 0.999412i
\(207\) −2.23630e6 + 4.15116e6i −0.252127 + 0.468014i
\(208\) 232817. 0.0258717
\(209\) 2.15268e6i 0.235798i
\(210\) 1.07153e7 + 2.70264e6i 1.15703 + 0.291830i
\(211\) 38902.1 0.00414119 0.00207060 0.999998i \(-0.499341\pi\)
0.00207060 + 0.999998i \(0.499341\pi\)
\(212\) 5.98019e6i 0.627635i
\(213\) −2.96592e6 + 1.17591e7i −0.306917 + 1.21685i
\(214\) 780691. 0.0796595
\(215\) 1.70070e7i 1.71125i
\(216\) 6.70674e6 7.32729e6i 0.665504 0.727080i
\(217\) −2.06096e7 −2.01692
\(218\) 610768.i 0.0589531i
\(219\) 1.09146e7 + 2.75291e6i 1.03914 + 0.262095i
\(220\) −4.16341e6 −0.391004
\(221\) 1.51789e6i 0.140625i
\(222\) 2.74010e6 1.08638e7i 0.250442 0.992939i
\(223\) −1.51238e7 −1.36378 −0.681891 0.731453i \(-0.738842\pi\)
−0.681891 + 0.731453i \(0.738842\pi\)
\(224\) 1.51173e7i 1.34502i
\(225\) −1.23133e7 6.63340e6i −1.08100 0.582356i
\(226\) 7.90399e6 0.684732
\(227\) 1.78502e7i 1.52604i −0.646375 0.763019i \(-0.723716\pi\)
0.646375 0.763019i \(-0.276284\pi\)
\(228\) −4.20828e6 1.06143e6i −0.355059 0.0895540i
\(229\) 1.82281e7 1.51788 0.758938 0.651163i \(-0.225719\pi\)
0.758938 + 0.651163i \(0.225719\pi\)
\(230\) 5.81013e6i 0.477532i
\(231\) −1.64473e6 + 6.52093e6i −0.133432 + 0.529022i
\(232\) −1.42586e7 −1.14186
\(233\) 1.16678e7i 0.922407i −0.887294 0.461203i \(-0.847418\pi\)
0.887294 0.461203i \(-0.152582\pi\)
\(234\) 2.12046e6 3.93613e6i 0.165494 0.307200i
\(235\) 2.36107e6 0.181931
\(236\) 1.32160e7i 1.00546i
\(237\) 7.68725e6 + 1.93890e6i 0.577465 + 0.145650i
\(238\) 2.61395e6 0.193895
\(239\) 7.69522e6i 0.563673i 0.959462 + 0.281837i \(0.0909436\pi\)
−0.959462 + 0.281837i \(0.909056\pi\)
\(240\) 225170. 892742.i 0.0162883 0.0645791i
\(241\) −1.55728e7 −1.11254 −0.556271 0.831001i \(-0.687768\pi\)
−0.556271 + 0.831001i \(0.687768\pi\)
\(242\) 7.09049e6i 0.500300i
\(243\) 4.72354e6 + 1.35491e7i 0.329191 + 0.944263i
\(244\) 5.40788e6 0.372270
\(245\) 1.67838e7i 1.14128i
\(246\) 1.18476e7 + 2.98823e6i 0.795837 + 0.200728i
\(247\) −5.01622e6 −0.332879
\(248\) 2.28270e7i 1.49656i
\(249\) 6.28627e6 2.49235e7i 0.407188 1.61440i
\(250\) 3.19855e6 0.204707
\(251\) 5.81607e6i 0.367797i 0.982945 + 0.183899i \(0.0588718\pi\)
−0.982945 + 0.183899i \(0.941128\pi\)
\(252\) −1.19369e7 6.43059e6i −0.745913 0.401836i
\(253\) 3.53584e6 0.218339
\(254\) 1.23323e7i 0.752565i
\(255\) −5.82036e6 1.46803e6i −0.351018 0.0885349i
\(256\) −1.62663e7 −0.969549
\(257\) 1.78039e7i 1.04886i 0.851455 + 0.524428i \(0.175721\pi\)
−0.851455 + 0.524428i \(0.824279\pi\)
\(258\) −2.89790e6 + 1.14894e7i −0.168742 + 0.669020i
\(259\) −3.92712e7 −2.26035
\(260\) 9.70170e6i 0.551986i
\(261\) 9.76867e6 1.81332e7i 0.549432 1.01989i
\(262\) −6.28416e6 −0.349417
\(263\) 1.17717e7i 0.647101i 0.946211 + 0.323550i \(0.104877\pi\)
−0.946211 + 0.323550i \(0.895123\pi\)
\(264\) −7.22255e6 1.82169e6i −0.392535 0.0990065i
\(265\) 2.73336e7 1.46879
\(266\) 8.63843e6i 0.458976i
\(267\) 5.56753e6 2.20738e7i 0.292502 1.15969i
\(268\) −2.19849e6 −0.114214
\(269\) 2.64835e7i 1.36056i −0.732952 0.680281i \(-0.761858\pi\)
0.732952 0.680281i \(-0.238142\pi\)
\(270\) −1.30423e7 1.19378e7i −0.662620 0.606502i
\(271\) 2.28992e7 1.15057 0.575285 0.817953i \(-0.304891\pi\)
0.575285 + 0.817953i \(0.304891\pi\)
\(272\) 217781.i 0.0108222i
\(273\) −1.51953e7 3.83259e6i −0.746827 0.188367i
\(274\) −7.66158e6 −0.372449
\(275\) 1.04881e7i 0.504312i
\(276\) −1.74343e6 + 6.91224e6i −0.0829233 + 0.328770i
\(277\) −2.85856e7 −1.34496 −0.672478 0.740118i \(-0.734770\pi\)
−0.672478 + 0.740118i \(0.734770\pi\)
\(278\) 1.06114e7i 0.493901i
\(279\) 2.90299e7 + 1.56389e7i 1.33670 + 0.720102i
\(280\) 4.29019e7 1.95435
\(281\) 1.86108e7i 0.838776i 0.907807 + 0.419388i \(0.137755\pi\)
−0.907807 + 0.419388i \(0.862245\pi\)
\(282\) 1.59507e6 + 402314.i 0.0711267 + 0.0179398i
\(283\) 1.24389e7 0.548812 0.274406 0.961614i \(-0.411519\pi\)
0.274406 + 0.961614i \(0.411519\pi\)
\(284\) 1.83349e7i 0.800428i
\(285\) −4.85146e6 + 1.92348e7i −0.209574 + 0.830908i
\(286\) −3.35268e6 −0.143316
\(287\) 4.28274e7i 1.81166i
\(288\) 1.14713e7 2.12937e7i 0.480213 0.891400i
\(289\) −1.41986e6 −0.0588235
\(290\) 2.53799e7i 1.04063i
\(291\) −9.12888e6 2.30251e6i −0.370458 0.0934379i
\(292\) 1.70180e7 0.683535
\(293\) 3.20615e6i 0.127462i 0.997967 + 0.0637311i \(0.0203000\pi\)
−0.997967 + 0.0637311i \(0.979700\pi\)
\(294\) 2.85986e6 1.13386e7i 0.112539 0.446189i
\(295\) 6.04064e7 2.35297
\(296\) 4.34966e7i 1.67718i
\(297\) 7.26491e6 7.93710e6i 0.277307 0.302965i
\(298\) −2.43466e7 −0.920005
\(299\) 8.23931e6i 0.308232i
\(300\) −2.05033e7 5.17141e6i −0.759382 0.191534i
\(301\) 4.15328e7 1.52297
\(302\) 1.44328e7i 0.523999i
\(303\) −8.94122e6 + 3.54497e7i −0.321417 + 1.27434i
\(304\) −719710. −0.0256175
\(305\) 2.47178e7i 0.871185i
\(306\) −3.68192e6 1.98351e6i −0.128502 0.0692263i
\(307\) −2.14579e7 −0.741605 −0.370803 0.928712i \(-0.620917\pi\)
−0.370803 + 0.928712i \(0.620917\pi\)
\(308\) 1.01675e7i 0.347985i
\(309\) −4.75074e7 1.19825e7i −1.61022 0.406135i
\(310\) −4.06314e7 −1.36388
\(311\) 4.04195e7i 1.34372i 0.740677 + 0.671861i \(0.234505\pi\)
−0.740677 + 0.671861i \(0.765495\pi\)
\(312\) 4.24496e6 1.68302e7i 0.139769 0.554147i
\(313\) −4.26968e7 −1.39239 −0.696197 0.717850i \(-0.745126\pi\)
−0.696197 + 0.717850i \(0.745126\pi\)
\(314\) 4.84785e6i 0.156589i
\(315\) −2.93923e7 + 5.45598e7i −0.940377 + 1.74558i
\(316\) 1.19860e7 0.379850
\(317\) 2.01769e7i 0.633397i −0.948526 0.316698i \(-0.897426\pi\)
0.948526 0.316698i \(-0.102574\pi\)
\(318\) 1.84658e7 + 4.65750e6i 0.574231 + 0.144834i
\(319\) −1.54453e7 −0.475801
\(320\) 2.76210e7i 0.842927i
\(321\) −1.07073e6 + 4.24516e6i −0.0323716 + 0.128345i
\(322\) −1.41889e7 −0.424993
\(323\) 4.69226e6i 0.139243i
\(324\) 1.19342e7 + 1.81158e7i 0.350879 + 0.532626i
\(325\) −2.44397e7 −0.711944
\(326\) 8.60717e6i 0.248432i
\(327\) −3.32117e6 837676.i −0.0949835 0.0239570i
\(328\) 4.74354e7 1.34425
\(329\) 5.76597e6i 0.161914i
\(330\) −3.24256e6 + 1.28559e7i −0.0902289 + 0.357734i
\(331\) −1.73310e6 −0.0477902 −0.0238951 0.999714i \(-0.507607\pi\)
−0.0238951 + 0.999714i \(0.507607\pi\)
\(332\) 3.88607e7i 1.06193i
\(333\) 5.53160e7 + 2.97997e7i 1.49802 + 0.807010i
\(334\) 2.06842e7 0.555135
\(335\) 1.00486e7i 0.267284i
\(336\) −2.18016e6 549887.i −0.0574739 0.0144963i
\(337\) 1.18743e6 0.0310253 0.0155127 0.999880i \(-0.495062\pi\)
0.0155127 + 0.999880i \(0.495062\pi\)
\(338\) 1.54264e7i 0.399498i
\(339\) −1.08404e7 + 4.29795e7i −0.278258 + 1.10322i
\(340\) −9.07513e6 −0.230896
\(341\) 2.47268e7i 0.623598i
\(342\) −6.55500e6 + 1.21678e7i −0.163868 + 0.304182i
\(343\) 1.26177e7 0.312677
\(344\) 4.60015e7i 1.13005i
\(345\) 3.15938e7 + 7.96868e6i 0.769386 + 0.194057i
\(346\) −2.40243e7 −0.579993
\(347\) 5.18585e7i 1.24117i 0.784139 + 0.620585i \(0.213105\pi\)
−0.784139 + 0.620585i \(0.786895\pi\)
\(348\) 7.61567e6 3.01942e7i 0.180705 0.716450i
\(349\) 3.89353e7 0.915941 0.457970 0.888967i \(-0.348577\pi\)
0.457970 + 0.888967i \(0.348577\pi\)
\(350\) 4.20876e7i 0.981635i
\(351\) 1.84952e7 + 1.69289e7i 0.427700 + 0.391478i
\(352\) −1.81373e7 −0.415858
\(353\) 9.88439e6i 0.224712i 0.993668 + 0.112356i \(0.0358397\pi\)
−0.993668 + 0.112356i \(0.964160\pi\)
\(354\) 4.08087e7 + 1.02929e7i 0.919906 + 0.232021i
\(355\) 8.38031e7 1.87316
\(356\) 3.44176e7i 0.762835i
\(357\) −3.58507e6 + 1.42139e7i −0.0787940 + 0.312398i
\(358\) −3.34521e7 −0.729078
\(359\) 6.05198e7i 1.30802i 0.756486 + 0.654010i \(0.226915\pi\)
−0.756486 + 0.654010i \(0.773085\pi\)
\(360\) −6.04301e7 3.25547e7i −1.29523 0.697761i
\(361\) −3.15392e7 −0.670392
\(362\) 3.07766e7i 0.648776i
\(363\) 3.85560e7 + 9.72471e6i 0.806069 + 0.203309i
\(364\) −2.36925e7 −0.491255
\(365\) 7.77843e7i 1.59961i
\(366\) 4.21177e6 1.66986e7i 0.0859057 0.340594i
\(367\) 6.38169e7 1.29103 0.645517 0.763746i \(-0.276642\pi\)
0.645517 + 0.763746i \(0.276642\pi\)
\(368\) 1.18215e6i 0.0237207i
\(369\) −3.24982e7 + 6.03252e7i −0.646816 + 1.20066i
\(370\) −7.74225e7 −1.52849
\(371\) 6.67514e7i 1.30719i
\(372\) 4.83386e7 + 1.21921e7i 0.939000 + 0.236837i
\(373\) −2.92176e7 −0.563012 −0.281506 0.959560i \(-0.590834\pi\)
−0.281506 + 0.959560i \(0.590834\pi\)
\(374\) 3.13615e6i 0.0599490i
\(375\) −4.38686e6 + 1.73928e7i −0.0831879 + 0.329819i
\(376\) 6.38636e6 0.120141
\(377\) 3.59911e7i 0.671693i
\(378\) −2.91532e7 + 3.18507e7i −0.539773 + 0.589716i
\(379\) −2.53543e7 −0.465731 −0.232865 0.972509i \(-0.574810\pi\)
−0.232865 + 0.972509i \(0.574810\pi\)
\(380\) 2.99910e7i 0.546562i
\(381\) −6.70595e7 1.69140e7i −1.21251 0.305823i
\(382\) 5.12639e7 0.919648
\(383\) 5.56098e7i 0.989818i −0.868945 0.494909i \(-0.835201\pi\)
0.868945 0.494909i \(-0.164799\pi\)
\(384\) 9.31489e6 3.69311e7i 0.164507 0.652228i
\(385\) 4.64724e7 0.814354
\(386\) 2.20115e7i 0.382726i
\(387\) −5.85016e7 3.15158e7i −1.00933 0.543746i
\(388\) −1.42338e7 −0.243683
\(389\) 6.46420e7i 1.09816i 0.835769 + 0.549080i \(0.185022\pi\)
−0.835769 + 0.549080i \(0.814978\pi\)
\(390\) −2.99572e7 7.55589e6i −0.505018 0.127377i
\(391\) 7.70719e6 0.128933
\(392\) 4.53977e7i 0.753660i
\(393\) 8.61882e6 3.41714e7i 0.141994 0.562970i
\(394\) 1.35262e7 0.221150
\(395\) 5.47843e7i 0.888925i
\(396\) 7.71525e6 1.43215e7i 0.124241 0.230624i
\(397\) 1.30380e7 0.208372 0.104186 0.994558i \(-0.466776\pi\)
0.104186 + 0.994558i \(0.466776\pi\)
\(398\) 5.15674e7i 0.817948i
\(399\) 4.69732e7 + 1.18477e7i 0.739489 + 0.186516i
\(400\) −3.50652e6 −0.0547894
\(401\) 5.50337e7i 0.853484i 0.904373 + 0.426742i \(0.140339\pi\)
−0.904373 + 0.426742i \(0.859661\pi\)
\(402\) −1.71223e6 + 6.78857e6i −0.0263563 + 0.104496i
\(403\) 5.76191e7 0.880341
\(404\) 5.52732e7i 0.838245i
\(405\) 8.28019e7 5.45475e7i 1.24645 0.821126i
\(406\) 6.19803e7 0.926137
\(407\) 4.71165e7i 0.698860i
\(408\) −1.57432e7 3.97081e6i −0.231800 0.0584653i
\(409\) −6.18847e7 −0.904509 −0.452255 0.891889i \(-0.649380\pi\)
−0.452255 + 0.891889i \(0.649380\pi\)
\(410\) 8.44335e7i 1.22508i
\(411\) 1.05080e7 4.16614e7i 0.151354 0.600079i
\(412\) −7.40738e7 −1.05919
\(413\) 1.47518e8i 2.09409i
\(414\) 1.99860e7 + 1.07668e7i 0.281660 + 0.151735i
\(415\) −1.77621e8 −2.48513
\(416\) 4.22640e7i 0.587072i
\(417\) −5.77019e7 1.45537e7i −0.795759 0.200709i
\(418\) 1.03642e7 0.141908
\(419\) 3.97307e7i 0.540113i 0.962845 + 0.270056i \(0.0870423\pi\)
−0.962845 + 0.270056i \(0.912958\pi\)
\(420\) −2.29143e7 + 9.08493e7i −0.309285 + 1.22624i
\(421\) −2.64517e7 −0.354492 −0.177246 0.984167i \(-0.556719\pi\)
−0.177246 + 0.984167i \(0.556719\pi\)
\(422\) 187296.i 0.00249225i
\(423\) −4.37532e6 + 8.12174e6i −0.0578081 + 0.107307i
\(424\) 7.39335e7 0.969937
\(425\) 2.28613e7i 0.297807i
\(426\) 5.66148e7 + 1.42796e7i 0.732321 + 0.184708i
\(427\) −6.03633e7 −0.775335
\(428\) 6.61908e6i 0.0844240i
\(429\) 4.59824e6 1.82309e7i 0.0582398 0.230906i
\(430\) 8.18811e7 1.02986
\(431\) 2.17717e7i 0.271932i 0.990714 + 0.135966i \(0.0434137\pi\)
−0.990714 + 0.135966i \(0.956586\pi\)
\(432\) 2.65363e6 + 2.42890e6i 0.0329147 + 0.0301271i
\(433\) −1.24511e8 −1.53371 −0.766855 0.641820i \(-0.778180\pi\)
−0.766855 + 0.641820i \(0.778180\pi\)
\(434\) 9.92258e7i 1.21382i
\(435\) −1.38009e8 3.48089e7i −1.67663 0.422886i
\(436\) −5.17838e6 −0.0624791
\(437\) 2.54703e7i 0.305203i
\(438\) 1.32540e7 5.25488e7i 0.157734 0.625374i
\(439\) 1.16388e8 1.37567 0.687834 0.725868i \(-0.258562\pi\)
0.687834 + 0.725868i \(0.258562\pi\)
\(440\) 5.14726e7i 0.604252i
\(441\) 5.77337e7 + 3.11022e7i 0.673153 + 0.362639i
\(442\) −7.30794e6 −0.0846308
\(443\) 3.48643e7i 0.401024i 0.979691 + 0.200512i \(0.0642605\pi\)
−0.979691 + 0.200512i \(0.935739\pi\)
\(444\) 9.21085e7 + 2.32319e7i 1.05233 + 0.265421i
\(445\) −1.57312e8 −1.78518
\(446\) 7.28141e7i 0.820750i
\(447\) 3.33918e7 1.32390e8i 0.373867 1.48229i
\(448\) 6.74533e7 0.750186
\(449\) 8.56415e7i 0.946118i 0.881031 + 0.473059i \(0.156850\pi\)
−0.881031 + 0.473059i \(0.843150\pi\)
\(450\) −3.19368e7 + 5.92831e7i −0.350473 + 0.650569i
\(451\) 5.13832e7 0.560134
\(452\) 6.70138e7i 0.725687i
\(453\) 7.84814e7 + 1.97948e7i 0.844252 + 0.212940i
\(454\) −8.59407e7 −0.918399
\(455\) 1.08291e8i 1.14963i
\(456\) −1.31225e7 + 5.20273e7i −0.138395 + 0.548702i
\(457\) 2.62710e7 0.275251 0.137625 0.990484i \(-0.456053\pi\)
0.137625 + 0.990484i \(0.456053\pi\)
\(458\) 8.77603e7i 0.913486i
\(459\) 1.58356e7 1.73008e7i 0.163755 0.178907i
\(460\) 4.92611e7 0.506094
\(461\) 1.16159e8i 1.18563i 0.805338 + 0.592816i \(0.201984\pi\)
−0.805338 + 0.592816i \(0.798016\pi\)
\(462\) 3.13954e7 + 7.91863e6i 0.318375 + 0.0803016i
\(463\) −8.82682e7 −0.889327 −0.444663 0.895698i \(-0.646677\pi\)
−0.444663 + 0.895698i \(0.646677\pi\)
\(464\) 5.16388e6i 0.0516919i
\(465\) 5.57265e7 2.20941e8i 0.554247 2.19745i
\(466\) −5.61754e7 −0.555122
\(467\) 5.93568e7i 0.582800i −0.956601 0.291400i \(-0.905879\pi\)
0.956601 0.291400i \(-0.0941211\pi\)
\(468\) 3.33724e7 + 1.79783e7i 0.325574 + 0.175392i
\(469\) 2.45398e7 0.237877
\(470\) 1.13675e7i 0.109489i
\(471\) −2.63612e7 6.64890e6i −0.252291 0.0636337i
\(472\) 1.63390e8 1.55382
\(473\) 4.98299e7i 0.470876i
\(474\) 9.33494e6 3.70107e7i 0.0876550 0.347530i
\(475\) 7.55507e7 0.704949
\(476\) 2.21624e7i 0.205492i
\(477\) −5.06522e7 + 9.40236e7i −0.466706 + 0.866327i
\(478\) 3.70490e7 0.339229
\(479\) 1.40261e8i 1.27624i 0.769938 + 0.638119i \(0.220287\pi\)
−0.769938 + 0.638119i \(0.779713\pi\)
\(480\) −1.62062e8 4.08758e7i −1.46541 0.369609i
\(481\) 1.09792e8 0.986589
\(482\) 7.49762e7i 0.669549i
\(483\) 1.94603e7 7.71551e7i 0.172706 0.684736i
\(484\) 6.01166e7 0.530223
\(485\) 6.50583e7i 0.570266i
\(486\) 6.52330e7 2.27417e7i 0.568275 0.198114i
\(487\) −3.05361e7 −0.264379 −0.132189 0.991224i \(-0.542201\pi\)
−0.132189 + 0.991224i \(0.542201\pi\)
\(488\) 6.68580e7i 0.575300i
\(489\) 4.68032e7 + 1.18049e7i 0.400267 + 0.100956i
\(490\) −8.08064e7 −0.686843
\(491\) 1.19081e8i 1.00600i −0.864286 0.503001i \(-0.832229\pi\)
0.864286 0.503001i \(-0.167771\pi\)
\(492\) −2.53357e7 + 1.00450e8i −0.212734 + 0.843437i
\(493\) −3.36667e7 −0.280970
\(494\) 2.41508e7i 0.200333i
\(495\) −6.54594e7 3.52641e7i −0.539705 0.290748i
\(496\) 8.26699e6 0.0677489
\(497\) 2.04655e8i 1.66707i
\(498\) −1.19995e8 3.02656e7i −0.971574 0.245053i
\(499\) 1.70501e8 1.37222 0.686112 0.727496i \(-0.259316\pi\)
0.686112 + 0.727496i \(0.259316\pi\)
\(500\) 2.71189e7i 0.216951i
\(501\) −2.83686e7 + 1.12474e8i −0.225593 + 0.894417i
\(502\) 2.80017e7 0.221347
\(503\) 1.26740e8i 0.995884i 0.867210 + 0.497942i \(0.165911\pi\)
−0.867210 + 0.497942i \(0.834089\pi\)
\(504\) −7.95018e7 + 1.47576e8i −0.620991 + 1.15272i
\(505\) 2.52637e8 1.96166
\(506\) 1.70235e7i 0.131400i
\(507\) −8.38843e7 2.11575e7i −0.643660 0.162346i
\(508\) −1.04559e8 −0.797576
\(509\) 1.05768e8i 0.802051i −0.916067 0.401025i \(-0.868654\pi\)
0.916067 0.401025i \(-0.131346\pi\)
\(510\) −7.06791e6 + 2.80224e7i −0.0532820 + 0.211249i
\(511\) −1.89957e8 −1.42361
\(512\) 1.19670e7i 0.0891609i
\(513\) −5.71745e7 5.23324e7i −0.423497 0.387631i
\(514\) 8.57178e7 0.631222
\(515\) 3.38569e8i 2.47871i
\(516\) −9.74130e7 2.45698e7i −0.709035 0.178835i
\(517\) 6.91786e6 0.0500611
\(518\) 1.89073e8i 1.36032i
\(519\) 3.29497e7 1.30637e8i 0.235695 0.934469i
\(520\) −1.19943e8 −0.853030
\(521\) 2.34980e8i 1.66157i −0.556596 0.830783i \(-0.687893\pi\)
0.556596 0.830783i \(-0.312107\pi\)
\(522\) −8.73032e7 4.70317e7i −0.613788 0.330658i
\(523\) −1.43654e7 −0.100418 −0.0502090 0.998739i \(-0.515989\pi\)
−0.0502090 + 0.998739i \(0.515989\pi\)
\(524\) 5.32802e7i 0.370315i
\(525\) 2.28860e8 + 5.77237e7i 1.58158 + 0.398911i
\(526\) 5.66755e7 0.389438
\(527\) 5.38979e7i 0.368247i
\(528\) 659740. 2.61570e6i 0.00448199 0.0177700i
\(529\) 1.06200e8 0.717395
\(530\) 1.31599e8i 0.883946i
\(531\) −1.11939e8 + 2.07789e8i −0.747652 + 1.38784i
\(532\) 7.32408e7 0.486428
\(533\) 1.19735e8i 0.790748i
\(534\) −1.06276e8 2.68051e7i −0.697926 0.176033i
\(535\) 3.02538e7 0.197569
\(536\) 2.71801e7i 0.176505i
\(537\) 4.58800e7 1.81902e8i 0.296279 1.17467i
\(538\) −1.27506e8 −0.818812
\(539\) 4.91759e7i 0.314041i
\(540\) 1.01214e8 1.10579e8i 0.642778 0.702251i
\(541\) −1.60232e8 −1.01195 −0.505973 0.862550i \(-0.668866\pi\)
−0.505973 + 0.862550i \(0.668866\pi\)
\(542\) 1.10249e8i 0.692434i
\(543\) 1.67354e8 + 4.22105e7i 1.04529 + 0.263646i
\(544\) −3.95345e7 −0.245572
\(545\) 2.36688e7i 0.146213i
\(546\) −1.84522e7 + 7.31583e7i −0.113363 + 0.449455i
\(547\) −1.89807e8 −1.15971 −0.579856 0.814719i \(-0.696891\pi\)
−0.579856 + 0.814719i \(0.696891\pi\)
\(548\) 6.49586e7i 0.394725i
\(549\) 8.50256e7 + 4.58047e7i 0.513845 + 0.276817i
\(550\) 5.04956e7 0.303505
\(551\) 1.11260e8i 0.665094i
\(552\) 8.54565e7 + 2.15541e7i 0.508075 + 0.128148i
\(553\) −1.33789e8 −0.791123
\(554\) 1.37627e8i 0.809419i
\(555\) 1.06186e8 4.21000e8i 0.621138 2.46265i
\(556\) −8.99690e7 −0.523442
\(557\) 1.48324e8i 0.858313i −0.903230 0.429157i \(-0.858811\pi\)
0.903230 0.429157i \(-0.141189\pi\)
\(558\) 7.52943e7 1.39766e8i 0.433371 0.804449i
\(559\) −1.16115e8 −0.664742
\(560\) 1.55373e7i 0.0884729i
\(561\) −1.70535e7 4.30128e6i −0.0965882 0.0243618i
\(562\) 8.96026e7 0.504791
\(563\) 8.63238e7i 0.483733i 0.970310 + 0.241866i \(0.0777596\pi\)
−0.970310 + 0.241866i \(0.922240\pi\)
\(564\) −3.41101e6 + 1.35238e7i −0.0190128 + 0.0753808i
\(565\) 3.06300e8 1.69825
\(566\) 5.98879e7i 0.330286i
\(567\) −1.33210e8 2.02210e8i −0.730784 1.10931i
\(568\) 2.26675e8 1.23697
\(569\) 1.57880e7i 0.0857018i 0.999081 + 0.0428509i \(0.0136440\pi\)
−0.999081 + 0.0428509i \(0.986356\pi\)
\(570\) 9.26069e7 + 2.33576e7i 0.500056 + 0.126126i
\(571\) −7.29151e7 −0.391660 −0.195830 0.980638i \(-0.562740\pi\)
−0.195830 + 0.980638i \(0.562740\pi\)
\(572\) 2.84256e7i 0.151887i
\(573\) −7.03092e7 + 2.78758e8i −0.373721 + 1.48171i
\(574\) −2.06195e8 −1.09029
\(575\) 1.24094e8i 0.652753i
\(576\) −9.50123e7 5.11848e7i −0.497178 0.267839i
\(577\) −2.95505e8 −1.53829 −0.769143 0.639077i \(-0.779317\pi\)
−0.769143 + 0.639077i \(0.779317\pi\)
\(578\) 6.83597e6i 0.0354011i
\(579\) 1.19692e8 + 3.01891e7i 0.616638 + 0.155530i
\(580\) −2.15183e8 −1.10287
\(581\) 4.33767e8i 2.21171i
\(582\) −1.10856e7 + 4.39514e7i −0.0562327 + 0.222948i
\(583\) 8.00866e7 0.404161
\(584\) 2.10395e8i 1.05632i
\(585\) 8.21734e7 1.52535e8i 0.410453 0.761908i
\(586\) 1.54362e7 0.0767091
\(587\) 2.81473e8i 1.39163i −0.718223 0.695813i \(-0.755044\pi\)
0.718223 0.695813i \(-0.244956\pi\)
\(588\) 9.61344e7 + 2.42473e7i 0.472875 + 0.119270i
\(589\) −1.78118e8 −0.871692
\(590\) 2.90830e8i 1.41606i
\(591\) −1.85513e7 + 7.35513e7i −0.0898695 + 0.356310i
\(592\) 1.57526e7 0.0759255
\(593\) 1.54424e8i 0.740542i −0.928924 0.370271i \(-0.879265\pi\)
0.928924 0.370271i \(-0.120735\pi\)
\(594\) −3.82136e7 3.49773e7i −0.182330 0.166889i
\(595\) 1.01297e8 0.480892
\(596\) 2.06423e8i 0.975032i
\(597\) −2.80408e8 7.07254e7i −1.31785 0.332393i
\(598\) 3.96686e7 0.185500
\(599\) 4.40428e7i 0.204925i 0.994737 + 0.102462i \(0.0326722\pi\)
−0.994737 + 0.102462i \(0.967328\pi\)
\(600\) −6.39345e7 + 2.53484e8i −0.295993 + 1.17354i
\(601\) 6.29814e6 0.0290127 0.0145064 0.999895i \(-0.495382\pi\)
0.0145064 + 0.999895i \(0.495382\pi\)
\(602\) 1.99962e8i 0.916553i
\(603\) −3.45659e7 1.86212e7i −0.157650 0.0849291i
\(604\) 1.22368e8 0.555340
\(605\) 2.74775e8i 1.24083i
\(606\) 1.70674e8 + 4.30480e7i 0.766920 + 0.193435i
\(607\) 1.85596e8 0.829857 0.414929 0.909854i \(-0.363807\pi\)
0.414929 + 0.909854i \(0.363807\pi\)
\(608\) 1.30651e8i 0.581303i
\(609\) −8.50068e7 + 3.37030e8i −0.376359 + 1.49217i
\(610\) −1.19005e8 −0.524296
\(611\) 1.61202e7i 0.0706718i
\(612\) 1.68172e7 3.12171e7i 0.0733668 0.136188i
\(613\) 1.98985e8 0.863849 0.431925 0.901910i \(-0.357835\pi\)
0.431925 + 0.901910i \(0.357835\pi\)
\(614\) 1.03310e8i 0.446312i
\(615\) 4.59124e8 + 1.15802e8i 1.97381 + 0.497840i
\(616\) 1.25701e8 0.537770
\(617\) 2.78856e7i 0.118720i 0.998237 + 0.0593602i \(0.0189060\pi\)
−0.998237 + 0.0593602i \(0.981094\pi\)
\(618\) −5.76902e7 + 2.28727e8i −0.244420 + 0.969063i
\(619\) −5.67493e7 −0.239270 −0.119635 0.992818i \(-0.538172\pi\)
−0.119635 + 0.992818i \(0.538172\pi\)
\(620\) 3.44493e8i 1.44546i
\(621\) −8.59577e7 + 9.39111e7i −0.358930 + 0.392141i
\(622\) 1.94602e8 0.808677
\(623\) 3.84172e8i 1.58877i
\(624\) 6.09518e6 + 1.53734e6i 0.0250861 + 0.00632728i
\(625\) −1.75825e8 −0.720179
\(626\) 2.05566e8i 0.837970i
\(627\) −1.42146e7 + 5.63572e7i −0.0576676 + 0.228637i
\(628\) −4.11025e7 −0.165954
\(629\) 1.02702e8i 0.412691i
\(630\) 2.62681e8 + 1.41511e8i 1.05053 + 0.565936i
\(631\) 2.56661e8 1.02158 0.510789 0.859706i \(-0.329353\pi\)
0.510789 + 0.859706i \(0.329353\pi\)
\(632\) 1.48184e8i 0.587015i
\(633\) 1.01846e6 + 256879.i 0.00401544 + 0.00101279i
\(634\) −9.71425e7 −0.381190
\(635\) 4.77910e8i 1.86649i
\(636\) −3.94885e7 + 1.56562e8i −0.153497 + 0.608576i
\(637\) 1.14591e8 0.443335
\(638\) 7.43623e7i 0.286346i
\(639\) −1.55296e8 + 2.88270e8i −0.595193 + 1.10483i
\(640\) −2.63195e8 −1.00401
\(641\) 2.88737e8i 1.09630i 0.836382 + 0.548148i \(0.184667\pi\)
−0.836382 + 0.548148i \(0.815333\pi\)
\(642\) 2.04386e7 + 5.15508e6i 0.0772405 + 0.0194818i
\(643\) 2.59604e8 0.976515 0.488257 0.872700i \(-0.337633\pi\)
0.488257 + 0.872700i \(0.337633\pi\)
\(644\) 1.20300e8i 0.450412i
\(645\) −1.12301e8 + 4.45245e8i −0.418509 + 1.65928i
\(646\) 2.25911e7 0.0837992
\(647\) 7.59613e7i 0.280465i −0.990119 0.140233i \(-0.955215\pi\)
0.990119 0.140233i \(-0.0447851\pi\)
\(648\) 2.23967e8 1.47543e8i 0.823112 0.542243i
\(649\) 1.76988e8 0.647457
\(650\) 1.17666e8i 0.428461i
\(651\) −5.39560e8 1.36090e8i −1.95568 0.493267i
\(652\) 7.29758e7 0.263291
\(653\) 2.19060e8i 0.786726i −0.919383 0.393363i \(-0.871312\pi\)
0.919383 0.393363i \(-0.128688\pi\)
\(654\) −4.03303e6 + 1.59900e7i −0.0144178 + 0.0571629i
\(655\) −2.43528e8 −0.866611
\(656\) 1.71791e7i 0.0608540i
\(657\) 2.67566e8 + 1.44143e8i 0.943486 + 0.508272i
\(658\) −2.77606e7 −0.0974430
\(659\) 2.11942e8i 0.740562i 0.928920 + 0.370281i \(0.120739\pi\)
−0.928920 + 0.370281i \(0.879261\pi\)
\(660\) −1.08999e8 2.74920e7i −0.379131 0.0956255i
\(661\) −2.69285e8 −0.932412 −0.466206 0.884676i \(-0.654379\pi\)
−0.466206 + 0.884676i \(0.654379\pi\)
\(662\) 8.34408e6i 0.0287610i
\(663\) 1.00229e7 3.97384e7i 0.0343918 0.136355i
\(664\) −4.80438e8 −1.64109
\(665\) 3.34762e8i 1.13834i
\(666\) 1.43472e8 2.66322e8i 0.485674 0.901538i
\(667\) 1.82748e8 0.615849
\(668\) 1.75370e8i 0.588338i
\(669\) −3.95941e8 9.98656e7i −1.32237 0.333532i
\(670\) 4.83797e7 0.160857
\(671\) 7.24223e7i 0.239720i
\(672\) −9.98228e7 + 3.95772e8i −0.328944 + 1.30418i
\(673\) 5.63865e7 0.184982 0.0924912 0.995714i \(-0.470517\pi\)
0.0924912 + 0.995714i \(0.470517\pi\)
\(674\) 5.71692e6i 0.0186716i
\(675\) −2.78562e8 2.54971e8i −0.905754 0.829046i
\(676\) −1.30793e8 −0.423393
\(677\) 3.19306e8i 1.02906i −0.857472 0.514530i \(-0.827966\pi\)
0.857472 0.514530i \(-0.172034\pi\)
\(678\) 2.06927e8 + 5.21918e7i 0.663939 + 0.167461i
\(679\) 1.58879e8 0.507524
\(680\) 1.12197e8i 0.356823i
\(681\) 1.17869e8 4.67320e8i 0.373214 1.47970i
\(682\) −1.19048e8 −0.375293
\(683\) 2.74590e7i 0.0861833i −0.999071 0.0430916i \(-0.986279\pi\)
0.999071 0.0430916i \(-0.0137207\pi\)
\(684\) −1.03164e8 5.55765e7i −0.322375 0.173669i
\(685\) −2.96906e8 −0.923735
\(686\) 6.07484e7i 0.188175i
\(687\) 4.77215e8 + 1.20365e8i 1.47178 + 0.371217i
\(688\) −1.66598e7 −0.0511569
\(689\) 1.86620e8i 0.570559i
\(690\) 3.83656e7 1.52110e8i 0.116787 0.463031i
\(691\) 2.47550e8 0.750289 0.375145 0.926966i \(-0.377593\pi\)
0.375145 + 0.926966i \(0.377593\pi\)
\(692\) 2.03690e8i 0.614683i
\(693\) −8.61184e7 + 1.59858e8i −0.258759 + 0.480325i
\(694\) 2.49675e8 0.746959
\(695\) 4.11221e8i 1.22496i
\(696\) −3.73293e8 9.41531e7i −1.10719 0.279259i
\(697\) 1.12002e8 0.330770
\(698\) 1.87456e8i 0.551230i
\(699\) 7.70453e7 3.05465e8i 0.225587 0.894396i
\(700\) 3.56839e8 1.04035
\(701\) 3.39193e8i 0.984674i 0.870405 + 0.492337i \(0.163857\pi\)
−0.870405 + 0.492337i \(0.836143\pi\)
\(702\) 8.15050e7 8.90463e7i 0.235599 0.257398i
\(703\) −3.39402e8 −0.976896
\(704\) 8.09287e7i 0.231945i
\(705\) 6.18131e7 + 1.55907e7i 0.176406 + 0.0444937i
\(706\) 4.75889e7 0.135236
\(707\) 6.16965e8i 1.74583i
\(708\) −8.72682e7 + 3.45996e8i −0.245899 + 0.974926i
\(709\) 2.51182e8 0.704774 0.352387 0.935854i \(-0.385370\pi\)
0.352387 + 0.935854i \(0.385370\pi\)
\(710\) 4.03474e8i 1.12730i
\(711\) 1.88450e8 + 1.01521e8i 0.524309 + 0.282454i
\(712\) −4.25507e8 −1.17887
\(713\) 2.92565e8i 0.807150i
\(714\) 6.84335e7 + 1.72605e7i 0.188007 + 0.0474197i
\(715\) −1.29925e8 −0.355447
\(716\) 2.83623e8i 0.772685i
\(717\) −5.08133e7 + 2.01462e8i −0.137854 + 0.546556i
\(718\) 2.91376e8 0.787191
\(719\) 2.17110e8i 0.584108i −0.956402 0.292054i \(-0.905661\pi\)
0.956402 0.292054i \(-0.0943388\pi\)
\(720\) 1.17899e7 2.18852e7i 0.0315874 0.0586345i
\(721\) 8.26818e8 2.20599
\(722\) 1.51847e8i 0.403455i
\(723\) −4.07698e8 1.02831e8i −1.07876 0.272088i
\(724\) 2.60939e8 0.687579
\(725\) 5.42072e8i 1.42247i
\(726\) 4.68201e7 1.85630e8i 0.122355 0.485107i
\(727\) 2.39617e8 0.623611 0.311805 0.950146i \(-0.399066\pi\)
0.311805 + 0.950146i \(0.399066\pi\)
\(728\) 2.92912e8i 0.759177i
\(729\) 3.41946e7 + 3.85908e8i 0.0882622 + 0.996097i
\(730\) −3.74497e8 −0.962674
\(731\) 1.08616e8i 0.278062i
\(732\) 1.41579e8 + 3.57095e7i 0.360965 + 0.0910437i
\(733\) −3.31931e8 −0.842821 −0.421410 0.906870i \(-0.638465\pi\)
−0.421410 + 0.906870i \(0.638465\pi\)
\(734\) 3.07250e8i 0.776968i
\(735\) 1.10827e8 4.39401e8i 0.279116 1.10662i
\(736\) 2.14599e8 0.538263
\(737\) 2.94422e7i 0.0735474i
\(738\) 2.90439e8 + 1.56464e8i 0.722579 + 0.389266i
\(739\) −4.51759e8 −1.11937 −0.559685 0.828705i \(-0.689078\pi\)
−0.559685 + 0.828705i \(0.689078\pi\)
\(740\) 6.56425e8i 1.61991i
\(741\) −1.31325e8 3.31232e7i −0.322770 0.0814101i
\(742\) −3.21378e8 −0.786692
\(743\) 6.09560e7i 0.148611i −0.997236 0.0743053i \(-0.976326\pi\)
0.997236 0.0743053i \(-0.0236739\pi\)
\(744\) 1.50732e8 5.97614e8i 0.366005 1.45112i
\(745\) −9.43496e8 −2.28177
\(746\) 1.40669e8i 0.338831i
\(747\) 3.29150e8 6.10989e8i 0.789646 1.46579i
\(748\) −2.65898e7 −0.0635346
\(749\) 7.38827e7i 0.175832i
\(750\) 8.37385e7 + 2.11208e7i 0.198491 + 0.0500640i
\(751\) 2.99949e8 0.708155 0.354077 0.935216i \(-0.384795\pi\)
0.354077 + 0.935216i \(0.384795\pi\)
\(752\) 2.31287e6i 0.00543873i
\(753\) −3.84048e7 + 1.52265e8i −0.0899499 + 0.356628i
\(754\) −1.73281e8 −0.404238
\(755\) 5.59309e8i 1.29960i
\(756\) −2.70045e8 2.47175e8i −0.624988 0.572057i
\(757\) 5.14554e8 1.18616 0.593080 0.805143i \(-0.297912\pi\)
0.593080 + 0.805143i \(0.297912\pi\)
\(758\) 1.22070e8i 0.280285i
\(759\) 9.25686e7 + 2.33479e7i 0.211709 + 0.0533978i
\(760\) 3.70780e8 0.844648
\(761\) 1.01850e8i 0.231105i 0.993301 + 0.115552i \(0.0368638\pi\)
−0.993301 + 0.115552i \(0.963136\pi\)
\(762\) −8.14331e7 + 3.22862e8i −0.184050 + 0.729712i
\(763\) 5.78016e7 0.130127
\(764\) 4.34640e8i 0.974653i
\(765\) −1.42684e8 7.68663e7i −0.318706 0.171693i
\(766\) −2.67736e8 −0.595691
\(767\) 4.12423e8i 0.914023i
\(768\) −4.25854e8 1.07410e8i −0.940107 0.237117i
\(769\) 8.67940e8 1.90858 0.954290 0.298881i \(-0.0966135\pi\)
0.954290 + 0.298881i \(0.0966135\pi\)
\(770\) 2.23744e8i 0.490093i
\(771\) −1.17563e8 + 4.66108e8i −0.256512 + 1.01701i
\(772\) 1.86624e8 0.405617
\(773\) 3.29837e8i 0.714104i 0.934085 + 0.357052i \(0.116218\pi\)
−0.934085 + 0.357052i \(0.883782\pi\)
\(774\) −1.51735e8 + 2.81659e8i −0.327236 + 0.607436i
\(775\) −8.67817e8 −1.86433
\(776\) 1.75973e8i 0.376584i
\(777\) −1.02812e9 2.59317e8i −2.19171 0.552799i
\(778\) 3.11222e8 0.660894
\(779\) 3.70137e8i 0.782978i
\(780\) 6.40625e7 2.53991e8i 0.134996 0.535224i
\(781\) 2.45540e8 0.515429
\(782\) 3.71067e7i 0.0775946i
\(783\) 3.75482e8 4.10224e8i 0.782175 0.854547i
\(784\) 1.64411e7 0.0341180
\(785\) 1.87867e8i 0.388366i
\(786\) −1.64520e8 4.14957e7i −0.338806 0.0854547i
\(787\) −9.09009e8 −1.86485 −0.932425 0.361363i \(-0.882312\pi\)
−0.932425 + 0.361363i \(0.882312\pi\)
\(788\) 1.14681e8i 0.234377i
\(789\) −7.77312e7 + 3.08184e8i −0.158257 + 0.627451i
\(790\) −2.63762e8 −0.534972
\(791\) 7.48014e8i 1.51140i
\(792\) −1.77058e8 9.53842e7i −0.356402 0.192000i
\(793\) 1.68760e8 0.338416
\(794\) 6.27721e7i 0.125402i
\(795\) 7.15597e8 + 1.80490e8i 1.42419 + 0.359213i
\(796\) −4.37213e8 −0.866870
\(797\) 1.96968e8i 0.389064i 0.980896 + 0.194532i \(0.0623189\pi\)
−0.980896 + 0.194532i \(0.937681\pi\)
\(798\) 5.70415e7 2.26155e8i 0.112249 0.445038i
\(799\) 1.50791e7 0.0295621
\(800\) 6.36550e8i 1.24326i
\(801\) 2.91517e8 5.41131e8i 0.567239 1.05294i
\(802\) 2.64963e8 0.513643
\(803\) 2.27905e8i 0.440157i
\(804\) −5.75568e7 1.45171e7i −0.110746 0.0279327i
\(805\) −5.49857e8 −1.05405
\(806\) 2.77410e8i 0.529806i
\(807\) 1.74876e8 6.93340e8i 0.332744 1.31925i
\(808\) 6.83347e8 1.29541
\(809\) 5.75611e7i 0.108714i −0.998522 0.0543568i \(-0.982689\pi\)
0.998522 0.0543568i \(-0.0173108\pi\)
\(810\) −2.62622e8 3.98654e8i −0.494169 0.750138i
\(811\) 4.98931e8 0.935358 0.467679 0.883898i \(-0.345090\pi\)
0.467679 + 0.883898i \(0.345090\pi\)
\(812\) 5.25499e8i 0.981530i
\(813\) 5.99504e8 + 1.51209e8i 1.11563 + 0.281388i
\(814\) −2.26845e8 −0.420587
\(815\) 3.33550e8i 0.616153i
\(816\) 1.43806e6 5.70153e6i 0.00264671 0.0104935i
\(817\) 3.58948e8 0.658211
\(818\) 2.97947e8i 0.544351i
\(819\) −3.72506e8 2.00675e8i −0.678080 0.365294i
\(820\) 7.15868e8 1.29835
\(821\) 1.87818e8i 0.339397i 0.985496 + 0.169698i \(0.0542793\pi\)
−0.985496 + 0.169698i \(0.945721\pi\)
\(822\) −2.00581e8 5.05911e7i −0.361139 0.0910875i
\(823\) −8.77742e8 −1.57459 −0.787294 0.616577i \(-0.788519\pi\)
−0.787294 + 0.616577i \(0.788519\pi\)
\(824\) 9.15779e8i 1.63685i
\(825\) −6.92554e7 + 2.74580e8i −0.123337 + 0.488998i
\(826\) −7.10234e8 −1.26026
\(827\) 3.45001e8i 0.609964i 0.952358 + 0.304982i \(0.0986505\pi\)
−0.952358 + 0.304982i \(0.901349\pi\)
\(828\) −9.12862e7 + 1.69451e8i −0.160810 + 0.298506i
\(829\) 7.34590e8 1.28938 0.644691 0.764443i \(-0.276986\pi\)
0.644691 + 0.764443i \(0.276986\pi\)
\(830\) 8.55164e8i 1.49560i
\(831\) −7.48373e8 1.88757e8i −1.30411 0.328927i
\(832\) −1.88582e8 −0.327439
\(833\) 1.07190e8i 0.185447i
\(834\) −7.00697e7 + 2.77809e8i −0.120790 + 0.478903i
\(835\) 8.01565e8 1.37683
\(836\) 8.78724e7i 0.150395i
\(837\) 6.56738e8 + 6.01119e8i 1.11999 + 1.02514i
\(838\) 1.91286e8 0.325050
\(839\) 3.10505e8i 0.525754i −0.964829 0.262877i \(-0.915329\pi\)
0.964829 0.262877i \(-0.0846713\pi\)
\(840\) 1.12318e9 + 2.83291e8i 1.89500 + 0.477964i
\(841\) −2.03458e8 −0.342048
\(842\) 1.27353e8i 0.213340i
\(843\) −1.22891e8 + 4.87233e8i −0.205134 + 0.813305i
\(844\) 1.58799e6 0.00264131
\(845\) 5.97814e8i 0.990823i
\(846\) 3.91025e7 + 2.10652e7i 0.0645794 + 0.0347900i
\(847\) −6.71027e8 −1.10431
\(848\) 2.67756e7i 0.0439088i
\(849\) 3.25653e8 + 8.21371e7i 0.532147 + 0.134220i
\(850\) 1.10067e8 0.179226
\(851\) 5.57479e8i 0.904565i
\(852\) −1.21069e8 + 4.80008e8i −0.195756 + 0.776122i
\(853\) −2.94179e8 −0.473984 −0.236992 0.971512i \(-0.576162\pi\)
−0.236992 + 0.971512i \(0.576162\pi\)
\(854\) 2.90622e8i 0.466611i
\(855\) −2.54023e8 + 4.71533e8i −0.406420 + 0.754422i
\(856\) 8.18321e7 0.130467
\(857\) 3.63429e8i 0.577401i 0.957420 + 0.288700i \(0.0932231\pi\)
−0.957420 + 0.288700i \(0.906777\pi\)
\(858\) −8.77734e7 2.21385e7i −0.138964 0.0350498i
\(859\) 2.86351e8 0.451772 0.225886 0.974154i \(-0.427472\pi\)
0.225886 + 0.974154i \(0.427472\pi\)
\(860\) 6.94228e8i 1.09146i
\(861\) 2.82799e8 1.12123e9i 0.443066 1.75664i
\(862\) 1.04821e8 0.163654
\(863\) 9.98994e8i 1.55428i −0.629325 0.777142i \(-0.716669\pi\)
0.629325 0.777142i \(-0.283331\pi\)
\(864\) 4.40926e8 4.81723e8i 0.683635 0.746889i
\(865\) −9.31005e8 −1.43848
\(866\) 5.99464e8i 0.923016i
\(867\) −3.71720e7 9.37563e6i −0.0570372 0.0143861i
\(868\) −8.41284e8 −1.28642
\(869\) 1.60516e8i 0.244602i
\(870\) −1.67589e8 + 6.64449e8i −0.254501 + 1.00903i
\(871\) −6.86070e7 −0.103828
\(872\) 6.40207e7i 0.0965542i
\(873\) −2.23791e8 1.20560e8i −0.336356 0.181201i
\(874\) −1.22628e8 −0.183677
\(875\) 3.02704e8i 0.451849i
\(876\) 4.45534e8 + 1.12374e8i 0.662779 + 0.167168i
\(877\) 1.12433e9 1.66684 0.833421 0.552638i \(-0.186379\pi\)
0.833421 + 0.552638i \(0.186379\pi\)
\(878\) 5.60354e8i 0.827902i
\(879\) −2.11709e7 + 8.39374e7i −0.0311726 + 0.123592i
\(880\) −1.86412e7 −0.0273543
\(881\) 4.77630e8i 0.698495i −0.937030 0.349248i \(-0.886437\pi\)
0.937030 0.349248i \(-0.113563\pi\)
\(882\) 1.49743e8 2.77962e8i 0.218243 0.405116i
\(883\) −1.71911e8 −0.249702 −0.124851 0.992175i \(-0.539845\pi\)
−0.124851 + 0.992175i \(0.539845\pi\)
\(884\) 6.19603e7i 0.0896926i
\(885\) 1.58144e9 + 3.98877e8i 2.28152 + 0.575452i
\(886\) 1.67856e8 0.241344
\(887\) 4.28226e8i 0.613624i −0.951770 0.306812i \(-0.900738\pi\)
0.951770 0.306812i \(-0.0992623\pi\)
\(888\) 2.87218e8 1.13874e9i 0.410178 1.62625i
\(889\) 1.16710e9 1.66113
\(890\) 7.57389e8i 1.07436i
\(891\) 2.42606e8 1.59822e8i 0.342980 0.225946i
\(892\) −6.17353e8 −0.869840
\(893\) 4.98325e7i 0.0699774i
\(894\) −6.37398e8 1.60766e8i −0.892068 0.225000i
\(895\) −1.29636e9 −1.80824
\(896\) 6.42749e8i 0.893546i
\(897\) −5.44060e7 + 2.15706e8i −0.0753823 + 0.298872i
\(898\) 4.12325e8 0.569391
\(899\) 1.27799e9i 1.75893i
\(900\) −5.02631e8 2.70776e8i −0.689480 0.371435i
\(901\) 1.74567e8 0.238665
\(902\) 2.47387e8i 0.337099i
\(903\) 1.08733e9 + 2.74250e8i 1.47672 + 0.372464i
\(904\) 8.28497e8 1.12146
\(905\) 1.19267e9i 1.60907i
\(906\) 9.53031e7 3.77853e8i 0.128151 0.508087i
\(907\) −2.22702e8 −0.298471 −0.149236 0.988802i \(-0.547681\pi\)
−0.149236 + 0.988802i \(0.547681\pi\)
\(908\) 7.28647e8i 0.973329i
\(909\) −4.68164e8 + 8.69035e8i −0.623313 + 1.15703i
\(910\) 5.21374e8 0.691871
\(911\) 1.16229e9i 1.53731i 0.639664 + 0.768655i \(0.279073\pi\)
−0.639664 + 0.768655i \(0.720927\pi\)
\(912\) −1.88421e7 4.75241e6i −0.0248396 0.00626512i
\(913\) −5.20422e8 −0.683823
\(914\) 1.26483e8i 0.165651i
\(915\) 1.63217e8 6.47115e8i 0.213060 0.844730i
\(916\) 7.44075e8 0.968122
\(917\) 5.94718e8i 0.771264i
\(918\) −8.32954e7 7.62411e7i −0.107670 0.0985511i
\(919\) −4.30449e8 −0.554594 −0.277297 0.960784i \(-0.589439\pi\)
−0.277297 + 0.960784i \(0.589439\pi\)
\(920\) 6.09019e8i 0.782109i
\(921\) −5.61771e8 1.41692e8i −0.719085 0.181370i
\(922\) 5.59253e8 0.713535
\(923\) 5.72164e8i 0.727638i
\(924\) −6.71380e7 + 2.66185e8i −0.0851045 + 0.337418i
\(925\) −1.65361e9 −2.08934
\(926\) 4.24972e8i 0.535214i
\(927\) −1.16463e9 6.27404e8i −1.46200 0.787605i
\(928\) −9.37415e8 −1.17297
\(929\) 8.38176e8i 1.04541i −0.852513 0.522707i \(-0.824922\pi\)
0.852513 0.522707i \(-0.175078\pi\)
\(930\) −1.06373e9 2.68298e8i −1.32246 0.333556i
\(931\) −3.54236e8 −0.438979
\(932\) 4.76282e8i 0.588324i
\(933\) −2.66899e8 + 1.05819e9i −0.328626 + 1.30292i
\(934\) −2.85776e8 −0.350740
\(935\) 1.21534e8i 0.148684i
\(936\) 2.22267e8 4.12585e8i 0.271049 0.503137i
\(937\) −1.21450e8 −0.147631 −0.0738156 0.997272i \(-0.523518\pi\)
−0.0738156 + 0.997272i \(0.523518\pi\)
\(938\) 1.18148e8i 0.143159i
\(939\) −1.11781e9 2.81937e8i −1.35011 0.340529i
\(940\) 9.63793e7 0.116038
\(941\) 1.37005e9i 1.64425i −0.569305 0.822127i \(-0.692788\pi\)
0.569305 0.822127i \(-0.307212\pi\)
\(942\) −3.20115e7 + 1.26917e8i −0.0382959 + 0.151834i
\(943\) −6.07962e8 −0.725005
\(944\) 5.91731e7i 0.0703409i
\(945\) −1.12976e9 + 1.23430e9i −1.33873 + 1.46259i
\(946\) 2.39909e8 0.283382
\(947\) 7.43740e8i 0.875732i 0.899040 + 0.437866i \(0.144266\pi\)
−0.899040 + 0.437866i \(0.855734\pi\)
\(948\) 3.13794e8 + 7.91462e7i 0.368316 + 0.0928977i
\(949\) 5.31071e8 0.621375
\(950\) 3.63743e8i 0.424251i
\(951\) 1.33232e8 5.28232e8i 0.154906 0.614163i
\(952\) 2.73995e8 0.317564
\(953\) 2.38153e8i 0.275155i −0.990491 0.137578i \(-0.956068\pi\)
0.990491 0.137578i \(-0.0439316\pi\)
\(954\) 4.52682e8 + 2.43867e8i 0.521372 + 0.280872i
\(955\) 1.98661e9 2.28088
\(956\) 3.14120e8i 0.359519i
\(957\) −4.04360e8 1.01989e8i −0.461352 0.116364i
\(958\) 6.75296e8 0.768064
\(959\) 7.25073e8i 0.822103i
\(960\) −1.82388e8 + 7.23122e8i −0.206150 + 0.817330i
\(961\) 1.15846e9 1.30530
\(962\) 5.28600e8i 0.593748i
\(963\) −5.60635e7 + 1.04069e8i −0.0627772 + 0.116531i
\(964\) −6.35685e8 −0.709595
\(965\) 8.53004e8i 0.949225i
\(966\) −3.71467e8 9.36926e7i −0.412087 0.103938i
\(967\) −2.62642e8 −0.290459 −0.145230 0.989398i \(-0.546392\pi\)
−0.145230 + 0.989398i \(0.546392\pi\)
\(968\) 7.43226e8i 0.819398i
\(969\) −3.09840e7 + 1.22844e8i −0.0340539 + 0.135015i
\(970\) 3.13227e8 0.343197
\(971\) 9.76282e8i 1.06639i 0.845991 + 0.533197i \(0.179010\pi\)
−0.845991 + 0.533197i \(0.820990\pi\)
\(972\) 1.92815e8 + 5.53077e8i 0.209963 + 0.602264i
\(973\) 1.00424e9 1.09018
\(974\) 1.47018e8i 0.159108i
\(975\) −6.39834e8 1.61381e8i −0.690324 0.174116i
\(976\) 2.42131e7 0.0260436
\(977\) 5.35664e8i 0.574392i −0.957872 0.287196i \(-0.907277\pi\)
0.957872 0.287196i \(-0.0927231\pi\)
\(978\) 5.68351e7 2.25337e8i 0.0607575 0.240888i
\(979\) −4.60920e8 −0.491221
\(980\) 6.85116e8i 0.727924i
\(981\) −8.14172e7 4.38609e7i −0.0862401 0.0464591i
\(982\) −5.73323e8 −0.605431
\(983\) 1.45757e9i 1.53451i −0.641343 0.767254i \(-0.721622\pi\)
0.641343 0.767254i \(-0.278378\pi\)
\(984\) 1.24186e9 + 3.13227e8i 1.30343 + 0.328756i
\(985\) 5.24174e8 0.548488
\(986\) 1.62090e8i 0.169093i
\(987\) 3.80740e7 1.50954e8i 0.0395983 0.156997i
\(988\) −2.04763e8 −0.212315
\(989\) 5.89583e8i 0.609476i
\(990\) −1.69781e8 + 3.15157e8i −0.174978 + 0.324804i
\(991\) 7.72082e8 0.793309 0.396655 0.917968i \(-0.370171\pi\)
0.396655 + 0.917968i \(0.370171\pi\)
\(992\) 1.50073e9i 1.53733i
\(993\) −4.53726e7 1.14440e7i −0.0463390 0.0116878i
\(994\) −9.85323e8 −1.00327
\(995\) 1.99837e9i 2.02865i
\(996\) 2.56606e8 1.01738e9i 0.259710 1.02968i
\(997\) −4.09058e8 −0.412762 −0.206381 0.978472i \(-0.566169\pi\)
−0.206381 + 0.978472i \(0.566169\pi\)
\(998\) 8.20886e8i 0.825831i
\(999\) 1.25140e9 + 1.14542e9i 1.25517 + 1.14887i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.7.b.a.35.13 32
3.2 odd 2 inner 51.7.b.a.35.20 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.7.b.a.35.13 32 1.1 even 1 trivial
51.7.b.a.35.20 yes 32 3.2 odd 2 inner