Properties

Label 51.4.a.d.1.2
Level $51$
Weight $4$
Character 51.1
Self dual yes
Analytic conductor $3.009$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,4,Mod(1,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 51.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.00909741029\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 51.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.24264 q^{2} -3.00000 q^{3} +10.0000 q^{4} +19.9706 q^{5} -12.7279 q^{6} -20.9706 q^{7} +8.48528 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+4.24264 q^{2} -3.00000 q^{3} +10.0000 q^{4} +19.9706 q^{5} -12.7279 q^{6} -20.9706 q^{7} +8.48528 q^{8} +9.00000 q^{9} +84.7279 q^{10} +16.0294 q^{11} -30.0000 q^{12} -34.9411 q^{13} -88.9706 q^{14} -59.9117 q^{15} -44.0000 q^{16} -17.0000 q^{17} +38.1838 q^{18} -80.8823 q^{19} +199.706 q^{20} +62.9117 q^{21} +68.0071 q^{22} -115.971 q^{23} -25.4558 q^{24} +273.823 q^{25} -148.243 q^{26} -27.0000 q^{27} -209.706 q^{28} +154.118 q^{29} -254.184 q^{30} +299.941 q^{31} -254.558 q^{32} -48.0883 q^{33} -72.1249 q^{34} -418.794 q^{35} +90.0000 q^{36} +315.529 q^{37} -343.154 q^{38} +104.823 q^{39} +169.456 q^{40} +132.265 q^{41} +266.912 q^{42} -23.1177 q^{43} +160.294 q^{44} +179.735 q^{45} -492.021 q^{46} +260.912 q^{47} +132.000 q^{48} +96.7645 q^{49} +1161.73 q^{50} +51.0000 q^{51} -349.411 q^{52} -676.087 q^{53} -114.551 q^{54} +320.117 q^{55} -177.941 q^{56} +242.647 q^{57} +653.866 q^{58} +629.294 q^{59} -599.117 q^{60} -461.852 q^{61} +1272.54 q^{62} -188.735 q^{63} -728.000 q^{64} -697.794 q^{65} -204.021 q^{66} -789.470 q^{67} -170.000 q^{68} +347.912 q^{69} -1776.79 q^{70} -686.412 q^{71} +76.3675 q^{72} +484.912 q^{73} +1338.68 q^{74} -821.470 q^{75} -808.823 q^{76} -336.146 q^{77} +444.728 q^{78} +254.000 q^{79} -878.705 q^{80} +81.0000 q^{81} +561.153 q^{82} +548.912 q^{83} +629.117 q^{84} -339.500 q^{85} -98.0803 q^{86} -462.353 q^{87} +136.014 q^{88} +925.145 q^{89} +762.551 q^{90} +732.735 q^{91} -1159.71 q^{92} -899.823 q^{93} +1106.95 q^{94} -1615.26 q^{95} +763.675 q^{96} +732.617 q^{97} +410.537 q^{98} +144.265 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 20 q^{4} + 6 q^{5} - 8 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} + 20 q^{4} + 6 q^{5} - 8 q^{7} + 18 q^{9} + 144 q^{10} + 66 q^{11} - 60 q^{12} - 2 q^{13} - 144 q^{14} - 18 q^{15} - 88 q^{16} - 34 q^{17} - 26 q^{19} + 60 q^{20} + 24 q^{21} - 144 q^{22} - 198 q^{23} + 344 q^{25} - 288 q^{26} - 54 q^{27} - 80 q^{28} + 444 q^{29} - 432 q^{30} + 532 q^{31} - 198 q^{33} - 600 q^{35} + 180 q^{36} + 88 q^{37} - 576 q^{38} + 6 q^{39} + 288 q^{40} + 570 q^{41} + 432 q^{42} - 182 q^{43} + 660 q^{44} + 54 q^{45} - 144 q^{46} + 420 q^{47} + 264 q^{48} - 78 q^{49} + 864 q^{50} + 102 q^{51} - 20 q^{52} - 300 q^{53} - 378 q^{55} - 288 q^{56} + 78 q^{57} - 576 q^{58} + 444 q^{59} - 180 q^{60} + 400 q^{61} + 288 q^{62} - 72 q^{63} - 1456 q^{64} - 1158 q^{65} + 432 q^{66} - 968 q^{67} - 340 q^{68} + 594 q^{69} - 1008 q^{70} - 1848 q^{71} + 868 q^{73} + 2304 q^{74} - 1032 q^{75} - 260 q^{76} + 312 q^{77} + 864 q^{78} + 508 q^{79} - 264 q^{80} + 162 q^{81} - 1296 q^{82} + 996 q^{83} + 240 q^{84} - 102 q^{85} + 576 q^{86} - 1332 q^{87} - 288 q^{88} - 288 q^{89} + 1296 q^{90} + 1160 q^{91} - 1980 q^{92} - 1596 q^{93} + 432 q^{94} - 2382 q^{95} + 1024 q^{97} + 1152 q^{98} + 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.24264 1.50000 0.750000 0.661438i \(-0.230053\pi\)
0.750000 + 0.661438i \(0.230053\pi\)
\(3\) −3.00000 −0.577350
\(4\) 10.0000 1.25000
\(5\) 19.9706 1.78622 0.893111 0.449837i \(-0.148518\pi\)
0.893111 + 0.449837i \(0.148518\pi\)
\(6\) −12.7279 −0.866025
\(7\) −20.9706 −1.13230 −0.566152 0.824301i \(-0.691568\pi\)
−0.566152 + 0.824301i \(0.691568\pi\)
\(8\) 8.48528 0.375000
\(9\) 9.00000 0.333333
\(10\) 84.7279 2.67933
\(11\) 16.0294 0.439369 0.219684 0.975571i \(-0.429497\pi\)
0.219684 + 0.975571i \(0.429497\pi\)
\(12\) −30.0000 −0.721688
\(13\) −34.9411 −0.745456 −0.372728 0.927941i \(-0.621578\pi\)
−0.372728 + 0.927941i \(0.621578\pi\)
\(14\) −88.9706 −1.69846
\(15\) −59.9117 −1.03128
\(16\) −44.0000 −0.687500
\(17\) −17.0000 −0.242536
\(18\) 38.1838 0.500000
\(19\) −80.8823 −0.976614 −0.488307 0.872672i \(-0.662385\pi\)
−0.488307 + 0.872672i \(0.662385\pi\)
\(20\) 199.706 2.23278
\(21\) 62.9117 0.653736
\(22\) 68.0071 0.659053
\(23\) −115.971 −1.05137 −0.525686 0.850679i \(-0.676191\pi\)
−0.525686 + 0.850679i \(0.676191\pi\)
\(24\) −25.4558 −0.216506
\(25\) 273.823 2.19059
\(26\) −148.243 −1.11818
\(27\) −27.0000 −0.192450
\(28\) −209.706 −1.41538
\(29\) 154.118 0.986860 0.493430 0.869785i \(-0.335743\pi\)
0.493430 + 0.869785i \(0.335743\pi\)
\(30\) −254.184 −1.54691
\(31\) 299.941 1.73777 0.868887 0.495010i \(-0.164836\pi\)
0.868887 + 0.495010i \(0.164836\pi\)
\(32\) −254.558 −1.40625
\(33\) −48.0883 −0.253670
\(34\) −72.1249 −0.363803
\(35\) −418.794 −2.02255
\(36\) 90.0000 0.416667
\(37\) 315.529 1.40196 0.700982 0.713179i \(-0.252745\pi\)
0.700982 + 0.713179i \(0.252745\pi\)
\(38\) −343.154 −1.46492
\(39\) 104.823 0.430389
\(40\) 169.456 0.669833
\(41\) 132.265 0.503813 0.251906 0.967752i \(-0.418943\pi\)
0.251906 + 0.967752i \(0.418943\pi\)
\(42\) 266.912 0.980604
\(43\) −23.1177 −0.0819866 −0.0409933 0.999159i \(-0.513052\pi\)
−0.0409933 + 0.999159i \(0.513052\pi\)
\(44\) 160.294 0.549211
\(45\) 179.735 0.595407
\(46\) −492.021 −1.57706
\(47\) 260.912 0.809742 0.404871 0.914374i \(-0.367316\pi\)
0.404871 + 0.914374i \(0.367316\pi\)
\(48\) 132.000 0.396928
\(49\) 96.7645 0.282112
\(50\) 1161.73 3.28588
\(51\) 51.0000 0.140028
\(52\) −349.411 −0.931820
\(53\) −676.087 −1.75222 −0.876111 0.482110i \(-0.839871\pi\)
−0.876111 + 0.482110i \(0.839871\pi\)
\(54\) −114.551 −0.288675
\(55\) 320.117 0.784810
\(56\) −177.941 −0.424614
\(57\) 242.647 0.563848
\(58\) 653.866 1.48029
\(59\) 629.294 1.38859 0.694297 0.719689i \(-0.255715\pi\)
0.694297 + 0.719689i \(0.255715\pi\)
\(60\) −599.117 −1.28909
\(61\) −461.852 −0.969411 −0.484706 0.874677i \(-0.661073\pi\)
−0.484706 + 0.874677i \(0.661073\pi\)
\(62\) 1272.54 2.60666
\(63\) −188.735 −0.377435
\(64\) −728.000 −1.42188
\(65\) −697.794 −1.33155
\(66\) −204.021 −0.380505
\(67\) −789.470 −1.43954 −0.719770 0.694213i \(-0.755753\pi\)
−0.719770 + 0.694213i \(0.755753\pi\)
\(68\) −170.000 −0.303170
\(69\) 347.912 0.607009
\(70\) −1776.79 −3.03382
\(71\) −686.412 −1.14735 −0.573677 0.819082i \(-0.694484\pi\)
−0.573677 + 0.819082i \(0.694484\pi\)
\(72\) 76.3675 0.125000
\(73\) 484.912 0.777461 0.388730 0.921352i \(-0.372914\pi\)
0.388730 + 0.921352i \(0.372914\pi\)
\(74\) 1338.68 2.10295
\(75\) −821.470 −1.26474
\(76\) −808.823 −1.22077
\(77\) −336.146 −0.497499
\(78\) 444.728 0.645584
\(79\) 254.000 0.361737 0.180869 0.983507i \(-0.442109\pi\)
0.180869 + 0.983507i \(0.442109\pi\)
\(80\) −878.705 −1.22803
\(81\) 81.0000 0.111111
\(82\) 561.153 0.755719
\(83\) 548.912 0.725914 0.362957 0.931806i \(-0.381767\pi\)
0.362957 + 0.931806i \(0.381767\pi\)
\(84\) 629.117 0.817170
\(85\) −339.500 −0.433222
\(86\) −98.0803 −0.122980
\(87\) −462.353 −0.569764
\(88\) 136.014 0.164763
\(89\) 925.145 1.10186 0.550928 0.834553i \(-0.314274\pi\)
0.550928 + 0.834553i \(0.314274\pi\)
\(90\) 762.551 0.893111
\(91\) 732.735 0.844082
\(92\) −1159.71 −1.31421
\(93\) −899.823 −1.00330
\(94\) 1106.95 1.21461
\(95\) −1615.26 −1.74445
\(96\) 763.675 0.811899
\(97\) 732.617 0.766866 0.383433 0.923569i \(-0.374742\pi\)
0.383433 + 0.923569i \(0.374742\pi\)
\(98\) 410.537 0.423168
\(99\) 144.265 0.146456
\(100\) 2738.23 2.73823
\(101\) −128.528 −0.126624 −0.0633120 0.997994i \(-0.520166\pi\)
−0.0633120 + 0.997994i \(0.520166\pi\)
\(102\) 216.375 0.210042
\(103\) 5.35325 0.00512108 0.00256054 0.999997i \(-0.499185\pi\)
0.00256054 + 0.999997i \(0.499185\pi\)
\(104\) −296.485 −0.279546
\(105\) 1256.38 1.16772
\(106\) −2868.40 −2.62833
\(107\) 473.382 0.427697 0.213848 0.976867i \(-0.431400\pi\)
0.213848 + 0.976867i \(0.431400\pi\)
\(108\) −270.000 −0.240563
\(109\) −352.353 −0.309627 −0.154813 0.987944i \(-0.549478\pi\)
−0.154813 + 0.987944i \(0.549478\pi\)
\(110\) 1358.14 1.17722
\(111\) −946.587 −0.809424
\(112\) 922.705 0.778459
\(113\) −733.617 −0.610734 −0.305367 0.952235i \(-0.598779\pi\)
−0.305367 + 0.952235i \(0.598779\pi\)
\(114\) 1029.46 0.845772
\(115\) −2316.00 −1.87798
\(116\) 1541.18 1.23358
\(117\) −314.470 −0.248485
\(118\) 2669.87 2.08289
\(119\) 356.500 0.274624
\(120\) −508.368 −0.386728
\(121\) −1074.06 −0.806955
\(122\) −1959.47 −1.45412
\(123\) −396.795 −0.290876
\(124\) 2999.41 2.17222
\(125\) 2972.09 2.12665
\(126\) −800.735 −0.566152
\(127\) 340.410 0.237846 0.118923 0.992903i \(-0.462056\pi\)
0.118923 + 0.992903i \(0.462056\pi\)
\(128\) −1052.17 −0.726562
\(129\) 69.3532 0.0473350
\(130\) −2960.49 −1.99732
\(131\) −2133.85 −1.42317 −0.711586 0.702599i \(-0.752023\pi\)
−0.711586 + 0.702599i \(0.752023\pi\)
\(132\) −480.883 −0.317087
\(133\) 1696.15 1.10582
\(134\) −3349.44 −2.15931
\(135\) −539.205 −0.343758
\(136\) −144.250 −0.0909509
\(137\) 55.1455 0.0343897 0.0171949 0.999852i \(-0.494526\pi\)
0.0171949 + 0.999852i \(0.494526\pi\)
\(138\) 1476.06 0.910514
\(139\) 256.266 0.156375 0.0781877 0.996939i \(-0.475087\pi\)
0.0781877 + 0.996939i \(0.475087\pi\)
\(140\) −4187.94 −2.52818
\(141\) −782.735 −0.467505
\(142\) −2912.20 −1.72103
\(143\) −560.087 −0.327530
\(144\) −396.000 −0.229167
\(145\) 3077.82 1.76275
\(146\) 2057.31 1.16619
\(147\) −290.294 −0.162878
\(148\) 3155.29 1.75245
\(149\) −84.3836 −0.0463958 −0.0231979 0.999731i \(-0.507385\pi\)
−0.0231979 + 0.999731i \(0.507385\pi\)
\(150\) −3485.20 −1.89710
\(151\) 1051.65 0.566767 0.283383 0.959007i \(-0.408543\pi\)
0.283383 + 0.959007i \(0.408543\pi\)
\(152\) −686.309 −0.366230
\(153\) −153.000 −0.0808452
\(154\) −1426.15 −0.746249
\(155\) 5989.99 3.10405
\(156\) 1048.23 0.537986
\(157\) 1587.47 0.806968 0.403484 0.914987i \(-0.367799\pi\)
0.403484 + 0.914987i \(0.367799\pi\)
\(158\) 1077.63 0.542606
\(159\) 2028.26 1.01165
\(160\) −5083.68 −2.51187
\(161\) 2431.97 1.19047
\(162\) 343.654 0.166667
\(163\) 1749.59 0.840727 0.420363 0.907356i \(-0.361903\pi\)
0.420363 + 0.907356i \(0.361903\pi\)
\(164\) 1322.65 0.629766
\(165\) −960.351 −0.453110
\(166\) 2328.84 1.08887
\(167\) −1624.21 −0.752604 −0.376302 0.926497i \(-0.622804\pi\)
−0.376302 + 0.926497i \(0.622804\pi\)
\(168\) 533.823 0.245151
\(169\) −976.118 −0.444296
\(170\) −1440.37 −0.649833
\(171\) −727.940 −0.325538
\(172\) −231.177 −0.102483
\(173\) −3734.50 −1.64120 −0.820602 0.571500i \(-0.806362\pi\)
−0.820602 + 0.571500i \(0.806362\pi\)
\(174\) −1961.60 −0.854646
\(175\) −5742.23 −2.48041
\(176\) −705.295 −0.302066
\(177\) −1887.88 −0.801705
\(178\) 3925.06 1.65278
\(179\) −1434.65 −0.599053 −0.299526 0.954088i \(-0.596829\pi\)
−0.299526 + 0.954088i \(0.596829\pi\)
\(180\) 1797.35 0.744259
\(181\) −219.263 −0.0900426 −0.0450213 0.998986i \(-0.514336\pi\)
−0.0450213 + 0.998986i \(0.514336\pi\)
\(182\) 3108.73 1.26612
\(183\) 1385.56 0.559690
\(184\) −984.043 −0.394264
\(185\) 6301.29 2.50422
\(186\) −3817.63 −1.50496
\(187\) −272.500 −0.106563
\(188\) 2609.12 1.01218
\(189\) 566.205 0.217912
\(190\) −6852.99 −2.61667
\(191\) −3116.44 −1.18062 −0.590308 0.807178i \(-0.700994\pi\)
−0.590308 + 0.807178i \(0.700994\pi\)
\(192\) 2184.00 0.820920
\(193\) −3921.82 −1.46269 −0.731344 0.682009i \(-0.761106\pi\)
−0.731344 + 0.682009i \(0.761106\pi\)
\(194\) 3108.23 1.15030
\(195\) 2093.38 0.768770
\(196\) 967.645 0.352640
\(197\) 3141.68 1.13622 0.568110 0.822953i \(-0.307675\pi\)
0.568110 + 0.822953i \(0.307675\pi\)
\(198\) 612.064 0.219684
\(199\) 1832.79 0.652880 0.326440 0.945218i \(-0.394151\pi\)
0.326440 + 0.945218i \(0.394151\pi\)
\(200\) 2323.47 0.821470
\(201\) 2368.41 0.831118
\(202\) −545.299 −0.189936
\(203\) −3231.94 −1.11743
\(204\) 510.000 0.175035
\(205\) 2641.41 0.899921
\(206\) 22.7119 0.00768162
\(207\) −1043.74 −0.350457
\(208\) 1537.41 0.512501
\(209\) −1296.50 −0.429094
\(210\) 5330.38 1.75158
\(211\) 4928.41 1.60799 0.803994 0.594637i \(-0.202704\pi\)
0.803994 + 0.594637i \(0.202704\pi\)
\(212\) −6760.87 −2.19028
\(213\) 2059.24 0.662425
\(214\) 2008.39 0.641545
\(215\) −461.674 −0.146446
\(216\) −229.103 −0.0721688
\(217\) −6289.93 −1.96769
\(218\) −1494.91 −0.464440
\(219\) −1454.74 −0.448867
\(220\) 3201.17 0.981013
\(221\) 593.999 0.180800
\(222\) −4016.03 −1.21414
\(223\) −75.4727 −0.0226638 −0.0113319 0.999936i \(-0.503607\pi\)
−0.0113319 + 0.999936i \(0.503607\pi\)
\(224\) 5338.23 1.59230
\(225\) 2464.41 0.730196
\(226\) −3112.47 −0.916101
\(227\) −1629.97 −0.476587 −0.238293 0.971193i \(-0.576588\pi\)
−0.238293 + 0.971193i \(0.576588\pi\)
\(228\) 2426.47 0.704810
\(229\) 2000.35 0.577235 0.288617 0.957445i \(-0.406804\pi\)
0.288617 + 0.957445i \(0.406804\pi\)
\(230\) −9825.94 −2.81697
\(231\) 1008.44 0.287231
\(232\) 1307.73 0.370073
\(233\) −4225.26 −1.18801 −0.594004 0.804462i \(-0.702454\pi\)
−0.594004 + 0.804462i \(0.702454\pi\)
\(234\) −1334.18 −0.372728
\(235\) 5210.55 1.44638
\(236\) 6292.94 1.73574
\(237\) −762.000 −0.208849
\(238\) 1512.50 0.411936
\(239\) −1614.97 −0.437086 −0.218543 0.975827i \(-0.570130\pi\)
−0.218543 + 0.975827i \(0.570130\pi\)
\(240\) 2636.11 0.709002
\(241\) −6761.67 −1.80729 −0.903646 0.428280i \(-0.859120\pi\)
−0.903646 + 0.428280i \(0.859120\pi\)
\(242\) −4556.84 −1.21043
\(243\) −243.000 −0.0641500
\(244\) −4618.52 −1.21176
\(245\) 1932.44 0.503915
\(246\) −1683.46 −0.436314
\(247\) 2826.12 0.728022
\(248\) 2545.08 0.651666
\(249\) −1646.74 −0.419107
\(250\) 12609.5 3.18998
\(251\) 2880.29 0.724313 0.362156 0.932117i \(-0.382041\pi\)
0.362156 + 0.932117i \(0.382041\pi\)
\(252\) −1887.35 −0.471793
\(253\) −1858.94 −0.461940
\(254\) 1444.24 0.356769
\(255\) 1018.50 0.250121
\(256\) 1360.00 0.332031
\(257\) −1460.44 −0.354474 −0.177237 0.984168i \(-0.556716\pi\)
−0.177237 + 0.984168i \(0.556716\pi\)
\(258\) 294.241 0.0710025
\(259\) −6616.82 −1.58745
\(260\) −6977.94 −1.66444
\(261\) 1387.06 0.328953
\(262\) −9053.17 −2.13476
\(263\) −7601.29 −1.78219 −0.891094 0.453819i \(-0.850061\pi\)
−0.891094 + 0.453819i \(0.850061\pi\)
\(264\) −408.043 −0.0951261
\(265\) −13501.8 −3.12986
\(266\) 7196.14 1.65874
\(267\) −2775.44 −0.636157
\(268\) −7894.70 −1.79942
\(269\) 6896.26 1.56309 0.781547 0.623846i \(-0.214431\pi\)
0.781547 + 0.623846i \(0.214431\pi\)
\(270\) −2287.65 −0.515638
\(271\) 849.234 0.190359 0.0951795 0.995460i \(-0.469658\pi\)
0.0951795 + 0.995460i \(0.469658\pi\)
\(272\) 748.000 0.166743
\(273\) −2198.21 −0.487331
\(274\) 233.962 0.0515846
\(275\) 4389.23 0.962476
\(276\) 3479.12 0.758762
\(277\) 4080.09 0.885013 0.442507 0.896765i \(-0.354089\pi\)
0.442507 + 0.896765i \(0.354089\pi\)
\(278\) 1087.24 0.234563
\(279\) 2699.47 0.579258
\(280\) −3553.58 −0.758455
\(281\) 4967.90 1.05466 0.527331 0.849660i \(-0.323193\pi\)
0.527331 + 0.849660i \(0.323193\pi\)
\(282\) −3320.86 −0.701257
\(283\) −1475.83 −0.309996 −0.154998 0.987915i \(-0.549537\pi\)
−0.154998 + 0.987915i \(0.549537\pi\)
\(284\) −6864.12 −1.43419
\(285\) 4845.79 1.00716
\(286\) −2376.25 −0.491295
\(287\) −2773.67 −0.570469
\(288\) −2291.03 −0.468750
\(289\) 289.000 0.0588235
\(290\) 13058.1 2.64413
\(291\) −2197.85 −0.442750
\(292\) 4849.12 0.971826
\(293\) 521.056 0.103892 0.0519461 0.998650i \(-0.483458\pi\)
0.0519461 + 0.998650i \(0.483458\pi\)
\(294\) −1231.61 −0.244316
\(295\) 12567.3 2.48034
\(296\) 2677.35 0.525736
\(297\) −432.795 −0.0845566
\(298\) −358.009 −0.0695937
\(299\) 4052.14 0.783751
\(300\) −8214.70 −1.58092
\(301\) 484.792 0.0928337
\(302\) 4461.76 0.850150
\(303\) 385.584 0.0731064
\(304\) 3558.82 0.671422
\(305\) −9223.44 −1.73158
\(306\) −649.124 −0.121268
\(307\) −1718.23 −0.319429 −0.159715 0.987163i \(-0.551057\pi\)
−0.159715 + 0.987163i \(0.551057\pi\)
\(308\) −3361.46 −0.621874
\(309\) −16.0597 −0.00295666
\(310\) 25413.4 4.65608
\(311\) 4916.05 0.896347 0.448173 0.893947i \(-0.352075\pi\)
0.448173 + 0.893947i \(0.352075\pi\)
\(312\) 889.456 0.161396
\(313\) 7375.84 1.33197 0.665986 0.745964i \(-0.268011\pi\)
0.665986 + 0.745964i \(0.268011\pi\)
\(314\) 6735.07 1.21045
\(315\) −3769.15 −0.674182
\(316\) 2540.00 0.452171
\(317\) 522.706 0.0926124 0.0463062 0.998927i \(-0.485255\pi\)
0.0463062 + 0.998927i \(0.485255\pi\)
\(318\) 8605.19 1.51747
\(319\) 2470.42 0.433596
\(320\) −14538.6 −2.53978
\(321\) −1420.15 −0.246931
\(322\) 10318.0 1.78571
\(323\) 1375.00 0.236864
\(324\) 810.000 0.138889
\(325\) −9567.70 −1.63299
\(326\) 7422.88 1.26109
\(327\) 1057.06 0.178763
\(328\) 1122.31 0.188930
\(329\) −5471.46 −0.916874
\(330\) −4074.42 −0.679665
\(331\) 5016.46 0.833020 0.416510 0.909131i \(-0.363253\pi\)
0.416510 + 0.909131i \(0.363253\pi\)
\(332\) 5489.12 0.907393
\(333\) 2839.76 0.467321
\(334\) −6890.92 −1.12891
\(335\) −15766.2 −2.57134
\(336\) −2768.11 −0.449443
\(337\) −10810.8 −1.74748 −0.873741 0.486392i \(-0.838313\pi\)
−0.873741 + 0.486392i \(0.838313\pi\)
\(338\) −4141.32 −0.666444
\(339\) 2200.85 0.352607
\(340\) −3395.00 −0.541528
\(341\) 4807.89 0.763524
\(342\) −3088.39 −0.488307
\(343\) 5163.70 0.812867
\(344\) −196.161 −0.0307450
\(345\) 6947.99 1.08425
\(346\) −15844.1 −2.46181
\(347\) −4137.35 −0.640070 −0.320035 0.947406i \(-0.603695\pi\)
−0.320035 + 0.947406i \(0.603695\pi\)
\(348\) −4623.53 −0.712205
\(349\) 7531.11 1.15510 0.577552 0.816354i \(-0.304008\pi\)
0.577552 + 0.816354i \(0.304008\pi\)
\(350\) −24362.2 −3.72062
\(351\) 943.410 0.143463
\(352\) −4080.43 −0.617862
\(353\) −4872.29 −0.734634 −0.367317 0.930096i \(-0.619724\pi\)
−0.367317 + 0.930096i \(0.619724\pi\)
\(354\) −8009.60 −1.20256
\(355\) −13708.0 −2.04943
\(356\) 9251.45 1.37732
\(357\) −1069.50 −0.158554
\(358\) −6086.69 −0.898579
\(359\) −31.9429 −0.00469604 −0.00234802 0.999997i \(-0.500747\pi\)
−0.00234802 + 0.999997i \(0.500747\pi\)
\(360\) 1525.10 0.223278
\(361\) −317.061 −0.0462256
\(362\) −930.255 −0.135064
\(363\) 3222.17 0.465896
\(364\) 7327.35 1.05510
\(365\) 9683.96 1.38872
\(366\) 5878.42 0.839535
\(367\) 2262.42 0.321791 0.160895 0.986971i \(-0.448562\pi\)
0.160895 + 0.986971i \(0.448562\pi\)
\(368\) 5102.70 0.722818
\(369\) 1190.38 0.167938
\(370\) 26734.1 3.75633
\(371\) 14177.9 1.98405
\(372\) −8998.23 −1.25413
\(373\) −5788.70 −0.803559 −0.401780 0.915736i \(-0.631608\pi\)
−0.401780 + 0.915736i \(0.631608\pi\)
\(374\) −1156.12 −0.159844
\(375\) −8916.26 −1.22782
\(376\) 2213.91 0.303653
\(377\) −5385.05 −0.735661
\(378\) 2402.21 0.326868
\(379\) 10940.9 1.48284 0.741420 0.671041i \(-0.234153\pi\)
0.741420 + 0.671041i \(0.234153\pi\)
\(380\) −16152.6 −2.18056
\(381\) −1021.23 −0.137321
\(382\) −13221.9 −1.77092
\(383\) 2414.03 0.322066 0.161033 0.986949i \(-0.448517\pi\)
0.161033 + 0.986949i \(0.448517\pi\)
\(384\) 3156.52 0.419481
\(385\) −6713.03 −0.888644
\(386\) −16638.9 −2.19403
\(387\) −208.060 −0.0273289
\(388\) 7326.17 0.958583
\(389\) −4479.41 −0.583844 −0.291922 0.956442i \(-0.594295\pi\)
−0.291922 + 0.956442i \(0.594295\pi\)
\(390\) 8881.47 1.15316
\(391\) 1971.50 0.254995
\(392\) 821.074 0.105792
\(393\) 6401.56 0.821669
\(394\) 13329.0 1.70433
\(395\) 5072.52 0.646143
\(396\) 1442.65 0.183070
\(397\) −1780.62 −0.225105 −0.112553 0.993646i \(-0.535903\pi\)
−0.112553 + 0.993646i \(0.535903\pi\)
\(398\) 7775.88 0.979321
\(399\) −5088.44 −0.638448
\(400\) −12048.2 −1.50603
\(401\) −4067.97 −0.506595 −0.253297 0.967388i \(-0.581515\pi\)
−0.253297 + 0.967388i \(0.581515\pi\)
\(402\) 10048.3 1.24668
\(403\) −10480.3 −1.29543
\(404\) −1285.28 −0.158280
\(405\) 1617.62 0.198469
\(406\) −13711.9 −1.67614
\(407\) 5057.75 0.615979
\(408\) 432.749 0.0525105
\(409\) −632.302 −0.0764434 −0.0382217 0.999269i \(-0.512169\pi\)
−0.0382217 + 0.999269i \(0.512169\pi\)
\(410\) 11206.5 1.34988
\(411\) −165.436 −0.0198549
\(412\) 53.5325 0.00640135
\(413\) −13196.6 −1.57231
\(414\) −4428.19 −0.525686
\(415\) 10962.1 1.29664
\(416\) 8894.56 1.04830
\(417\) −768.797 −0.0902834
\(418\) −5500.57 −0.643640
\(419\) −1107.06 −0.129077 −0.0645386 0.997915i \(-0.520558\pi\)
−0.0645386 + 0.997915i \(0.520558\pi\)
\(420\) 12563.8 1.45965
\(421\) −15977.3 −1.84961 −0.924804 0.380444i \(-0.875771\pi\)
−0.924804 + 0.380444i \(0.875771\pi\)
\(422\) 20909.5 2.41198
\(423\) 2348.21 0.269914
\(424\) −5736.79 −0.657083
\(425\) −4655.00 −0.531295
\(426\) 8736.60 0.993638
\(427\) 9685.30 1.09767
\(428\) 4733.82 0.534621
\(429\) 1680.26 0.189100
\(430\) −1958.72 −0.219669
\(431\) 10283.0 1.14922 0.574610 0.818427i \(-0.305154\pi\)
0.574610 + 0.818427i \(0.305154\pi\)
\(432\) 1188.00 0.132309
\(433\) −7084.29 −0.786257 −0.393128 0.919484i \(-0.628607\pi\)
−0.393128 + 0.919484i \(0.628607\pi\)
\(434\) −26685.9 −2.95153
\(435\) −9233.45 −1.01772
\(436\) −3523.53 −0.387033
\(437\) 9379.96 1.02678
\(438\) −6171.92 −0.673301
\(439\) −5308.51 −0.577133 −0.288567 0.957460i \(-0.593179\pi\)
−0.288567 + 0.957460i \(0.593179\pi\)
\(440\) 2716.28 0.294304
\(441\) 870.881 0.0940374
\(442\) 2520.12 0.271199
\(443\) 3533.26 0.378939 0.189470 0.981887i \(-0.439323\pi\)
0.189470 + 0.981887i \(0.439323\pi\)
\(444\) −9465.87 −1.01178
\(445\) 18475.7 1.96816
\(446\) −320.204 −0.0339957
\(447\) 253.151 0.0267866
\(448\) 15266.6 1.60999
\(449\) 4787.18 0.503165 0.251582 0.967836i \(-0.419049\pi\)
0.251582 + 0.967836i \(0.419049\pi\)
\(450\) 10455.6 1.09529
\(451\) 2120.13 0.221360
\(452\) −7336.17 −0.763417
\(453\) −3154.94 −0.327223
\(454\) −6915.39 −0.714880
\(455\) 14633.1 1.50772
\(456\) 2058.93 0.211443
\(457\) 13168.8 1.34795 0.673973 0.738756i \(-0.264586\pi\)
0.673973 + 0.738756i \(0.264586\pi\)
\(458\) 8486.76 0.865852
\(459\) 459.000 0.0466760
\(460\) −23160.0 −2.34748
\(461\) −7145.81 −0.721938 −0.360969 0.932578i \(-0.617554\pi\)
−0.360969 + 0.932578i \(0.617554\pi\)
\(462\) 4278.44 0.430847
\(463\) 9462.71 0.949826 0.474913 0.880033i \(-0.342480\pi\)
0.474913 + 0.880033i \(0.342480\pi\)
\(464\) −6781.18 −0.678466
\(465\) −17970.0 −1.79212
\(466\) −17926.3 −1.78201
\(467\) −5306.09 −0.525774 −0.262887 0.964827i \(-0.584675\pi\)
−0.262887 + 0.964827i \(0.584675\pi\)
\(468\) −3144.70 −0.310607
\(469\) 16555.6 1.63000
\(470\) 22106.5 2.16957
\(471\) −4762.41 −0.465903
\(472\) 5339.73 0.520723
\(473\) −370.565 −0.0360224
\(474\) −3232.89 −0.313274
\(475\) −22147.5 −2.13936
\(476\) 3565.00 0.343280
\(477\) −6084.79 −0.584074
\(478\) −6851.73 −0.655630
\(479\) 11731.4 1.11904 0.559522 0.828815i \(-0.310985\pi\)
0.559522 + 0.828815i \(0.310985\pi\)
\(480\) 15251.0 1.45023
\(481\) −11024.9 −1.04510
\(482\) −28687.3 −2.71094
\(483\) −7295.90 −0.687319
\(484\) −10740.6 −1.00869
\(485\) 14630.8 1.36979
\(486\) −1030.96 −0.0962250
\(487\) 11075.5 1.03055 0.515274 0.857026i \(-0.327690\pi\)
0.515274 + 0.857026i \(0.327690\pi\)
\(488\) −3918.94 −0.363529
\(489\) −5248.77 −0.485394
\(490\) 8198.66 0.755872
\(491\) 2009.14 0.184666 0.0923331 0.995728i \(-0.470568\pi\)
0.0923331 + 0.995728i \(0.470568\pi\)
\(492\) −3967.95 −0.363595
\(493\) −2620.00 −0.239349
\(494\) 11990.2 1.09203
\(495\) 2881.05 0.261603
\(496\) −13197.4 −1.19472
\(497\) 14394.4 1.29915
\(498\) −6986.51 −0.628660
\(499\) 9956.24 0.893192 0.446596 0.894736i \(-0.352636\pi\)
0.446596 + 0.894736i \(0.352636\pi\)
\(500\) 29720.9 2.65832
\(501\) 4872.62 0.434516
\(502\) 12220.0 1.08647
\(503\) 11760.9 1.04253 0.521266 0.853394i \(-0.325460\pi\)
0.521266 + 0.853394i \(0.325460\pi\)
\(504\) −1601.47 −0.141538
\(505\) −2566.78 −0.226179
\(506\) −7886.83 −0.692910
\(507\) 2928.35 0.256514
\(508\) 3404.10 0.297308
\(509\) −948.293 −0.0825783 −0.0412891 0.999147i \(-0.513146\pi\)
−0.0412891 + 0.999147i \(0.513146\pi\)
\(510\) 4321.12 0.375182
\(511\) −10168.9 −0.880322
\(512\) 14187.4 1.22461
\(513\) 2183.82 0.187949
\(514\) −6196.13 −0.531711
\(515\) 106.907 0.00914738
\(516\) 693.532 0.0591687
\(517\) 4182.27 0.355775
\(518\) −28072.8 −2.38117
\(519\) 11203.5 0.947550
\(520\) −5920.98 −0.499331
\(521\) −9796.08 −0.823751 −0.411875 0.911240i \(-0.635126\pi\)
−0.411875 + 0.911240i \(0.635126\pi\)
\(522\) 5884.80 0.493430
\(523\) −4501.89 −0.376394 −0.188197 0.982131i \(-0.560264\pi\)
−0.188197 + 0.982131i \(0.560264\pi\)
\(524\) −21338.5 −1.77897
\(525\) 17226.7 1.43207
\(526\) −32249.5 −2.67328
\(527\) −5099.00 −0.421472
\(528\) 2115.89 0.174398
\(529\) 1282.17 0.105381
\(530\) −57283.5 −4.69478
\(531\) 5663.64 0.462865
\(532\) 16961.5 1.38228
\(533\) −4621.49 −0.375570
\(534\) −11775.2 −0.954236
\(535\) 9453.70 0.763961
\(536\) −6698.88 −0.539827
\(537\) 4303.94 0.345863
\(538\) 29258.3 2.34464
\(539\) 1551.08 0.123951
\(540\) −5392.05 −0.429698
\(541\) −8419.68 −0.669114 −0.334557 0.942376i \(-0.608587\pi\)
−0.334557 + 0.942376i \(0.608587\pi\)
\(542\) 3602.99 0.285538
\(543\) 657.790 0.0519861
\(544\) 4327.49 0.341066
\(545\) −7036.69 −0.553062
\(546\) −9326.19 −0.730997
\(547\) 4655.26 0.363884 0.181942 0.983309i \(-0.441762\pi\)
0.181942 + 0.983309i \(0.441762\pi\)
\(548\) 551.455 0.0429872
\(549\) −4156.67 −0.323137
\(550\) 18621.9 1.44371
\(551\) −12465.4 −0.963781
\(552\) 2952.13 0.227629
\(553\) −5326.52 −0.409596
\(554\) 17310.3 1.32752
\(555\) −18903.9 −1.44581
\(556\) 2562.66 0.195469
\(557\) 17855.9 1.35831 0.679157 0.733993i \(-0.262346\pi\)
0.679157 + 0.733993i \(0.262346\pi\)
\(558\) 11452.9 0.868887
\(559\) 807.760 0.0611174
\(560\) 18426.9 1.39050
\(561\) 817.501 0.0615239
\(562\) 21077.0 1.58199
\(563\) −21434.5 −1.60454 −0.802269 0.596962i \(-0.796374\pi\)
−0.802269 + 0.596962i \(0.796374\pi\)
\(564\) −7827.35 −0.584381
\(565\) −14650.8 −1.09091
\(566\) −6261.40 −0.464994
\(567\) −1698.62 −0.125812
\(568\) −5824.40 −0.430258
\(569\) −14412.8 −1.06189 −0.530945 0.847406i \(-0.678163\pi\)
−0.530945 + 0.847406i \(0.678163\pi\)
\(570\) 20559.0 1.51074
\(571\) 4492.48 0.329255 0.164627 0.986356i \(-0.447358\pi\)
0.164627 + 0.986356i \(0.447358\pi\)
\(572\) −5600.87 −0.409413
\(573\) 9349.31 0.681628
\(574\) −11767.7 −0.855703
\(575\) −31755.5 −2.30312
\(576\) −6552.00 −0.473958
\(577\) 9544.29 0.688621 0.344310 0.938856i \(-0.388113\pi\)
0.344310 + 0.938856i \(0.388113\pi\)
\(578\) 1226.12 0.0882353
\(579\) 11765.5 0.844483
\(580\) 30778.2 2.20344
\(581\) −11511.0 −0.821956
\(582\) −9324.70 −0.664126
\(583\) −10837.3 −0.769872
\(584\) 4114.61 0.291548
\(585\) −6280.15 −0.443850
\(586\) 2210.65 0.155838
\(587\) −15671.9 −1.10195 −0.550977 0.834520i \(-0.685745\pi\)
−0.550977 + 0.834520i \(0.685745\pi\)
\(588\) −2902.94 −0.203597
\(589\) −24259.9 −1.69713
\(590\) 53318.7 3.72050
\(591\) −9425.03 −0.655996
\(592\) −13883.3 −0.963850
\(593\) 6737.03 0.466537 0.233269 0.972412i \(-0.425058\pi\)
0.233269 + 0.972412i \(0.425058\pi\)
\(594\) −1836.19 −0.126835
\(595\) 7119.50 0.490539
\(596\) −843.836 −0.0579947
\(597\) −5498.38 −0.376941
\(598\) 17191.8 1.17563
\(599\) −25077.1 −1.71056 −0.855278 0.518169i \(-0.826614\pi\)
−0.855278 + 0.518169i \(0.826614\pi\)
\(600\) −6970.41 −0.474276
\(601\) 18123.5 1.23007 0.615037 0.788499i \(-0.289141\pi\)
0.615037 + 0.788499i \(0.289141\pi\)
\(602\) 2056.80 0.139251
\(603\) −7105.23 −0.479846
\(604\) 10516.5 0.708459
\(605\) −21449.5 −1.44140
\(606\) 1635.90 0.109660
\(607\) 18377.1 1.22884 0.614419 0.788980i \(-0.289390\pi\)
0.614419 + 0.788980i \(0.289390\pi\)
\(608\) 20589.3 1.37336
\(609\) 9695.81 0.645146
\(610\) −39131.8 −2.59737
\(611\) −9116.55 −0.603627
\(612\) −1530.00 −0.101057
\(613\) 19642.4 1.29421 0.647105 0.762401i \(-0.275979\pi\)
0.647105 + 0.762401i \(0.275979\pi\)
\(614\) −7289.85 −0.479144
\(615\) −7924.22 −0.519569
\(616\) −2852.30 −0.186562
\(617\) 8738.58 0.570181 0.285091 0.958501i \(-0.407976\pi\)
0.285091 + 0.958501i \(0.407976\pi\)
\(618\) −68.1357 −0.00443498
\(619\) 18996.2 1.23348 0.616739 0.787168i \(-0.288453\pi\)
0.616739 + 0.787168i \(0.288453\pi\)
\(620\) 59899.9 3.88006
\(621\) 3131.21 0.202336
\(622\) 20857.0 1.34452
\(623\) −19400.8 −1.24764
\(624\) −4612.23 −0.295892
\(625\) 25126.3 1.60808
\(626\) 31293.1 1.99796
\(627\) 3889.49 0.247737
\(628\) 15874.7 1.00871
\(629\) −5363.99 −0.340026
\(630\) −15991.1 −1.01127
\(631\) 18454.2 1.16426 0.582130 0.813096i \(-0.302219\pi\)
0.582130 + 0.813096i \(0.302219\pi\)
\(632\) 2155.26 0.135651
\(633\) −14785.2 −0.928373
\(634\) 2217.66 0.138919
\(635\) 6798.17 0.424846
\(636\) 20282.6 1.26456
\(637\) −3381.06 −0.210302
\(638\) 10481.1 0.650393
\(639\) −6177.71 −0.382451
\(640\) −21012.5 −1.29780
\(641\) −2208.09 −0.136060 −0.0680300 0.997683i \(-0.521671\pi\)
−0.0680300 + 0.997683i \(0.521671\pi\)
\(642\) −6025.17 −0.370396
\(643\) −14048.7 −0.861625 −0.430813 0.902441i \(-0.641773\pi\)
−0.430813 + 0.902441i \(0.641773\pi\)
\(644\) 24319.7 1.48809
\(645\) 1385.02 0.0845508
\(646\) 5833.62 0.355295
\(647\) 7959.60 0.483654 0.241827 0.970319i \(-0.422253\pi\)
0.241827 + 0.970319i \(0.422253\pi\)
\(648\) 687.308 0.0416667
\(649\) 10087.2 0.610105
\(650\) −40592.3 −2.44948
\(651\) 18869.8 1.13605
\(652\) 17495.9 1.05091
\(653\) 8533.37 0.511388 0.255694 0.966758i \(-0.417696\pi\)
0.255694 + 0.966758i \(0.417696\pi\)
\(654\) 4484.72 0.268145
\(655\) −42614.2 −2.54210
\(656\) −5819.66 −0.346371
\(657\) 4364.21 0.259154
\(658\) −23213.5 −1.37531
\(659\) 8532.32 0.504358 0.252179 0.967681i \(-0.418853\pi\)
0.252179 + 0.967681i \(0.418853\pi\)
\(660\) −9603.51 −0.566388
\(661\) 24194.0 1.42366 0.711828 0.702353i \(-0.247867\pi\)
0.711828 + 0.702353i \(0.247867\pi\)
\(662\) 21283.1 1.24953
\(663\) −1782.00 −0.104385
\(664\) 4657.67 0.272218
\(665\) 33873.0 1.97525
\(666\) 12048.1 0.700982
\(667\) −17873.1 −1.03756
\(668\) −16242.1 −0.940755
\(669\) 226.418 0.0130850
\(670\) −66890.2 −3.85700
\(671\) −7403.23 −0.425929
\(672\) −16014.7 −0.919316
\(673\) −10069.6 −0.576750 −0.288375 0.957518i \(-0.593115\pi\)
−0.288375 + 0.957518i \(0.593115\pi\)
\(674\) −45866.3 −2.62122
\(675\) −7393.23 −0.421579
\(676\) −9761.18 −0.555370
\(677\) 13155.9 0.746856 0.373428 0.927659i \(-0.378182\pi\)
0.373428 + 0.927659i \(0.378182\pi\)
\(678\) 9337.42 0.528911
\(679\) −15363.4 −0.868326
\(680\) −2880.75 −0.162458
\(681\) 4889.92 0.275157
\(682\) 20398.1 1.14529
\(683\) −21814.1 −1.22210 −0.611049 0.791593i \(-0.709252\pi\)
−0.611049 + 0.791593i \(0.709252\pi\)
\(684\) −7279.40 −0.406922
\(685\) 1101.29 0.0614277
\(686\) 21907.7 1.21930
\(687\) −6001.04 −0.333267
\(688\) 1017.18 0.0563658
\(689\) 23623.3 1.30620
\(690\) 29477.8 1.62638
\(691\) −8237.48 −0.453500 −0.226750 0.973953i \(-0.572810\pi\)
−0.226750 + 0.973953i \(0.572810\pi\)
\(692\) −37345.0 −2.05151
\(693\) −3025.32 −0.165833
\(694\) −17553.3 −0.960105
\(695\) 5117.77 0.279321
\(696\) −3923.20 −0.213662
\(697\) −2248.50 −0.122192
\(698\) 31951.8 1.73265
\(699\) 12675.8 0.685897
\(700\) −57422.3 −3.10051
\(701\) 3684.13 0.198499 0.0992495 0.995063i \(-0.468356\pi\)
0.0992495 + 0.995063i \(0.468356\pi\)
\(702\) 4002.55 0.215195
\(703\) −25520.7 −1.36918
\(704\) −11669.4 −0.624728
\(705\) −15631.7 −0.835067
\(706\) −20671.4 −1.10195
\(707\) 2695.31 0.143377
\(708\) −18878.8 −1.00213
\(709\) 26765.8 1.41779 0.708894 0.705315i \(-0.249194\pi\)
0.708894 + 0.705315i \(0.249194\pi\)
\(710\) −58158.3 −3.07414
\(711\) 2286.00 0.120579
\(712\) 7850.12 0.413196
\(713\) −34784.3 −1.82705
\(714\) −4537.50 −0.237831
\(715\) −11185.2 −0.585041
\(716\) −14346.5 −0.748816
\(717\) 4844.91 0.252352
\(718\) −135.522 −0.00704407
\(719\) 20163.3 1.04585 0.522924 0.852379i \(-0.324841\pi\)
0.522924 + 0.852379i \(0.324841\pi\)
\(720\) −7908.34 −0.409342
\(721\) −112.261 −0.00579862
\(722\) −1345.18 −0.0693384
\(723\) 20285.0 1.04344
\(724\) −2192.63 −0.112553
\(725\) 42201.0 2.16180
\(726\) 13670.5 0.698844
\(727\) 23230.6 1.18511 0.592556 0.805529i \(-0.298119\pi\)
0.592556 + 0.805529i \(0.298119\pi\)
\(728\) 6217.46 0.316531
\(729\) 729.000 0.0370370
\(730\) 41085.6 2.08308
\(731\) 393.002 0.0198847
\(732\) 13855.6 0.699612
\(733\) −28594.4 −1.44087 −0.720436 0.693521i \(-0.756058\pi\)
−0.720436 + 0.693521i \(0.756058\pi\)
\(734\) 9598.62 0.482686
\(735\) −5797.32 −0.290935
\(736\) 29521.3 1.47849
\(737\) −12654.8 −0.632489
\(738\) 5050.37 0.251906
\(739\) 8294.73 0.412891 0.206446 0.978458i \(-0.433810\pi\)
0.206446 + 0.978458i \(0.433810\pi\)
\(740\) 63012.9 3.13027
\(741\) −8478.35 −0.420324
\(742\) 60151.9 2.97607
\(743\) −5881.61 −0.290411 −0.145205 0.989402i \(-0.546384\pi\)
−0.145205 + 0.989402i \(0.546384\pi\)
\(744\) −7635.25 −0.376239
\(745\) −1685.19 −0.0828731
\(746\) −24559.4 −1.20534
\(747\) 4940.21 0.241971
\(748\) −2725.00 −0.133203
\(749\) −9927.08 −0.484283
\(750\) −37828.5 −1.84173
\(751\) 1255.39 0.0609984 0.0304992 0.999535i \(-0.490290\pi\)
0.0304992 + 0.999535i \(0.490290\pi\)
\(752\) −11480.1 −0.556698
\(753\) −8640.88 −0.418182
\(754\) −22846.8 −1.10349
\(755\) 21002.0 1.01237
\(756\) 5662.05 0.272390
\(757\) −38652.8 −1.85582 −0.927912 0.372799i \(-0.878398\pi\)
−0.927912 + 0.372799i \(0.878398\pi\)
\(758\) 46418.3 2.22426
\(759\) 5576.83 0.266701
\(760\) −13706.0 −0.654168
\(761\) −3286.48 −0.156550 −0.0782752 0.996932i \(-0.524941\pi\)
−0.0782752 + 0.996932i \(0.524941\pi\)
\(762\) −4332.71 −0.205981
\(763\) 7389.05 0.350592
\(764\) −31164.4 −1.47577
\(765\) −3055.50 −0.144407
\(766\) 10241.9 0.483099
\(767\) −21988.2 −1.03514
\(768\) −4080.00 −0.191698
\(769\) −29939.6 −1.40396 −0.701982 0.712195i \(-0.747701\pi\)
−0.701982 + 0.712195i \(0.747701\pi\)
\(770\) −28481.0 −1.33297
\(771\) 4381.33 0.204656
\(772\) −39218.2 −1.82836
\(773\) 40700.7 1.89379 0.946896 0.321541i \(-0.104201\pi\)
0.946896 + 0.321541i \(0.104201\pi\)
\(774\) −882.723 −0.0409933
\(775\) 82130.9 3.80675
\(776\) 6216.46 0.287575
\(777\) 19850.5 0.916514
\(778\) −19004.5 −0.875765
\(779\) −10697.9 −0.492030
\(780\) 20933.8 0.960963
\(781\) −11002.8 −0.504112
\(782\) 8364.36 0.382492
\(783\) −4161.18 −0.189921
\(784\) −4257.64 −0.193952
\(785\) 31702.7 1.44142
\(786\) 27159.5 1.23250
\(787\) −8126.31 −0.368071 −0.184035 0.982920i \(-0.558916\pi\)
−0.184035 + 0.982920i \(0.558916\pi\)
\(788\) 31416.8 1.42027
\(789\) 22803.9 1.02895
\(790\) 21520.9 0.969214
\(791\) 15384.4 0.691536
\(792\) 1224.13 0.0549211
\(793\) 16137.6 0.722653
\(794\) −7554.53 −0.337658
\(795\) 40505.5 1.80702
\(796\) 18327.9 0.816100
\(797\) 11987.8 0.532787 0.266393 0.963864i \(-0.414168\pi\)
0.266393 + 0.963864i \(0.414168\pi\)
\(798\) −21588.4 −0.957671
\(799\) −4435.50 −0.196391
\(800\) −69704.1 −3.08051
\(801\) 8326.31 0.367285
\(802\) −17258.9 −0.759892
\(803\) 7772.86 0.341592
\(804\) 23684.1 1.03890
\(805\) 48567.8 2.12645
\(806\) −44464.1 −1.94315
\(807\) −20688.8 −0.902453
\(808\) −1090.60 −0.0474840
\(809\) −36146.3 −1.57087 −0.785436 0.618943i \(-0.787561\pi\)
−0.785436 + 0.618943i \(0.787561\pi\)
\(810\) 6862.96 0.297704
\(811\) −6244.38 −0.270370 −0.135185 0.990820i \(-0.543163\pi\)
−0.135185 + 0.990820i \(0.543163\pi\)
\(812\) −32319.4 −1.39678
\(813\) −2547.70 −0.109904
\(814\) 21458.2 0.923969
\(815\) 34940.3 1.50172
\(816\) −2244.00 −0.0962693
\(817\) 1869.82 0.0800692
\(818\) −2682.63 −0.114665
\(819\) 6594.62 0.281361
\(820\) 26414.1 1.12490
\(821\) 28413.7 1.20785 0.603924 0.797042i \(-0.293603\pi\)
0.603924 + 0.797042i \(0.293603\pi\)
\(822\) −701.887 −0.0297824
\(823\) −18803.1 −0.796399 −0.398199 0.917299i \(-0.630365\pi\)
−0.398199 + 0.917299i \(0.630365\pi\)
\(824\) 45.4238 0.00192040
\(825\) −13167.7 −0.555686
\(826\) −55988.6 −2.35847
\(827\) 33860.3 1.42375 0.711873 0.702309i \(-0.247847\pi\)
0.711873 + 0.702309i \(0.247847\pi\)
\(828\) −10437.4 −0.438071
\(829\) −19746.0 −0.827270 −0.413635 0.910443i \(-0.635741\pi\)
−0.413635 + 0.910443i \(0.635741\pi\)
\(830\) 46508.1 1.94497
\(831\) −12240.3 −0.510963
\(832\) 25437.1 1.05994
\(833\) −1645.00 −0.0684223
\(834\) −3261.73 −0.135425
\(835\) −32436.3 −1.34432
\(836\) −12965.0 −0.536367
\(837\) −8098.41 −0.334435
\(838\) −4696.85 −0.193616
\(839\) −31045.8 −1.27750 −0.638748 0.769416i \(-0.720547\pi\)
−0.638748 + 0.769416i \(0.720547\pi\)
\(840\) 10660.8 0.437894
\(841\) −636.719 −0.0261068
\(842\) −67785.9 −2.77441
\(843\) −14903.7 −0.608910
\(844\) 49284.1 2.00999
\(845\) −19493.6 −0.793611
\(846\) 9962.59 0.404871
\(847\) 22523.6 0.913718
\(848\) 29747.8 1.20465
\(849\) 4427.48 0.178976
\(850\) −19749.5 −0.796943
\(851\) −36592.1 −1.47398
\(852\) 20592.4 0.828031
\(853\) 36020.9 1.44587 0.722937 0.690914i \(-0.242792\pi\)
0.722937 + 0.690914i \(0.242792\pi\)
\(854\) 41091.2 1.64650
\(855\) −14537.4 −0.581483
\(856\) 4016.78 0.160386
\(857\) −35927.0 −1.43202 −0.716010 0.698090i \(-0.754034\pi\)
−0.716010 + 0.698090i \(0.754034\pi\)
\(858\) 7128.74 0.283649
\(859\) −20914.3 −0.830718 −0.415359 0.909658i \(-0.636344\pi\)
−0.415359 + 0.909658i \(0.636344\pi\)
\(860\) −4616.74 −0.183058
\(861\) 8321.01 0.329360
\(862\) 43627.0 1.72383
\(863\) −5395.57 −0.212824 −0.106412 0.994322i \(-0.533936\pi\)
−0.106412 + 0.994322i \(0.533936\pi\)
\(864\) 6873.08 0.270633
\(865\) −74580.0 −2.93156
\(866\) −30056.1 −1.17939
\(867\) −867.000 −0.0339618
\(868\) −62899.3 −2.45961
\(869\) 4071.48 0.158936
\(870\) −39174.2 −1.52659
\(871\) 27585.0 1.07311
\(872\) −2989.82 −0.116110
\(873\) 6593.56 0.255622
\(874\) 39795.8 1.54018
\(875\) −62326.3 −2.40802
\(876\) −14547.4 −0.561084
\(877\) −31305.2 −1.20536 −0.602681 0.797983i \(-0.705901\pi\)
−0.602681 + 0.797983i \(0.705901\pi\)
\(878\) −22522.1 −0.865700
\(879\) −1563.17 −0.0599822
\(880\) −14085.1 −0.539557
\(881\) 19975.4 0.763891 0.381945 0.924185i \(-0.375254\pi\)
0.381945 + 0.924185i \(0.375254\pi\)
\(882\) 3694.83 0.141056
\(883\) 32032.5 1.22081 0.610407 0.792088i \(-0.291006\pi\)
0.610407 + 0.792088i \(0.291006\pi\)
\(884\) 5939.99 0.225999
\(885\) −37702.0 −1.43202
\(886\) 14990.3 0.568409
\(887\) 32668.4 1.23664 0.618319 0.785927i \(-0.287814\pi\)
0.618319 + 0.785927i \(0.287814\pi\)
\(888\) −8032.06 −0.303534
\(889\) −7138.58 −0.269314
\(890\) 78385.7 2.95224
\(891\) 1298.38 0.0488188
\(892\) −754.727 −0.0283298
\(893\) −21103.1 −0.790805
\(894\) 1074.03 0.0401799
\(895\) −28650.7 −1.07004
\(896\) 22064.7 0.822690
\(897\) −12156.4 −0.452499
\(898\) 20310.3 0.754747
\(899\) 46226.3 1.71494
\(900\) 24644.1 0.912745
\(901\) 11493.5 0.424976
\(902\) 8994.96 0.332039
\(903\) −1454.38 −0.0535976
\(904\) −6224.95 −0.229025
\(905\) −4378.81 −0.160836
\(906\) −13385.3 −0.490835
\(907\) −39521.1 −1.44683 −0.723417 0.690411i \(-0.757429\pi\)
−0.723417 + 0.690411i \(0.757429\pi\)
\(908\) −16299.7 −0.595733
\(909\) −1156.75 −0.0422080
\(910\) 62083.1 2.26158
\(911\) 47835.9 1.73971 0.869854 0.493310i \(-0.164213\pi\)
0.869854 + 0.493310i \(0.164213\pi\)
\(912\) −10676.5 −0.387646
\(913\) 8798.75 0.318944
\(914\) 55870.6 2.02192
\(915\) 27670.3 0.999730
\(916\) 20003.5 0.721543
\(917\) 44748.1 1.61146
\(918\) 1947.37 0.0700140
\(919\) −39689.7 −1.42464 −0.712319 0.701856i \(-0.752355\pi\)
−0.712319 + 0.701856i \(0.752355\pi\)
\(920\) −19651.9 −0.704243
\(921\) 5154.70 0.184423
\(922\) −30317.1 −1.08291
\(923\) 23984.0 0.855302
\(924\) 10084.4 0.359039
\(925\) 86399.2 3.07112
\(926\) 40146.9 1.42474
\(927\) 48.1792 0.00170703
\(928\) −39232.0 −1.38777
\(929\) −4579.27 −0.161723 −0.0808617 0.996725i \(-0.525767\pi\)
−0.0808617 + 0.996725i \(0.525767\pi\)
\(930\) −76240.2 −2.68819
\(931\) −7826.53 −0.275515
\(932\) −42252.6 −1.48501
\(933\) −14748.2 −0.517506
\(934\) −22511.8 −0.788661
\(935\) −5441.99 −0.190344
\(936\) −2668.37 −0.0931820
\(937\) −38046.5 −1.32649 −0.663246 0.748401i \(-0.730822\pi\)
−0.663246 + 0.748401i \(0.730822\pi\)
\(938\) 70239.6 2.44499
\(939\) −22127.5 −0.769015
\(940\) 52105.5 1.80797
\(941\) −9081.31 −0.314604 −0.157302 0.987551i \(-0.550280\pi\)
−0.157302 + 0.987551i \(0.550280\pi\)
\(942\) −20205.2 −0.698855
\(943\) −15338.8 −0.529694
\(944\) −27688.9 −0.954658
\(945\) 11307.4 0.389239
\(946\) −1572.17 −0.0540335
\(947\) 39575.9 1.35802 0.679009 0.734130i \(-0.262410\pi\)
0.679009 + 0.734130i \(0.262410\pi\)
\(948\) −7620.00 −0.261061
\(949\) −16943.4 −0.579562
\(950\) −93963.7 −3.20904
\(951\) −1568.12 −0.0534698
\(952\) 3025.00 0.102984
\(953\) −28601.6 −0.972189 −0.486095 0.873906i \(-0.661579\pi\)
−0.486095 + 0.873906i \(0.661579\pi\)
\(954\) −25815.6 −0.876111
\(955\) −62237.0 −2.10884
\(956\) −16149.7 −0.546358
\(957\) −7411.26 −0.250337
\(958\) 49772.2 1.67857
\(959\) −1156.43 −0.0389396
\(960\) 43615.7 1.46634
\(961\) 60173.7 2.01986
\(962\) −46774.9 −1.56765
\(963\) 4260.44 0.142566
\(964\) −67616.7 −2.25912
\(965\) −78320.9 −2.61268
\(966\) −30953.9 −1.03098
\(967\) 2591.39 0.0861773 0.0430887 0.999071i \(-0.486280\pi\)
0.0430887 + 0.999071i \(0.486280\pi\)
\(968\) −9113.68 −0.302608
\(969\) −4124.99 −0.136753
\(970\) 62073.1 2.05469
\(971\) −49692.4 −1.64233 −0.821166 0.570689i \(-0.806676\pi\)
−0.821166 + 0.570689i \(0.806676\pi\)
\(972\) −2430.00 −0.0801875
\(973\) −5374.04 −0.177064
\(974\) 46989.2 1.54582
\(975\) 28703.1 0.942805
\(976\) 20321.5 0.666470
\(977\) −44489.8 −1.45686 −0.728432 0.685119i \(-0.759750\pi\)
−0.728432 + 0.685119i \(0.759750\pi\)
\(978\) −22268.6 −0.728091
\(979\) 14829.6 0.484121
\(980\) 19324.4 0.629894
\(981\) −3171.18 −0.103209
\(982\) 8524.05 0.276999
\(983\) −37606.9 −1.22022 −0.610109 0.792318i \(-0.708874\pi\)
−0.610109 + 0.792318i \(0.708874\pi\)
\(984\) −3366.92 −0.109079
\(985\) 62741.0 2.02954
\(986\) −11115.7 −0.359023
\(987\) 16414.4 0.529358
\(988\) 28261.2 0.910028
\(989\) 2680.98 0.0861983
\(990\) 12223.3 0.392405
\(991\) −55446.9 −1.77732 −0.888662 0.458563i \(-0.848364\pi\)
−0.888662 + 0.458563i \(0.848364\pi\)
\(992\) −76352.5 −2.44375
\(993\) −15049.4 −0.480945
\(994\) 61070.5 1.94873
\(995\) 36601.9 1.16619
\(996\) −16467.4 −0.523884
\(997\) −39314.6 −1.24885 −0.624426 0.781084i \(-0.714667\pi\)
−0.624426 + 0.781084i \(0.714667\pi\)
\(998\) 42240.8 1.33979
\(999\) −8519.28 −0.269808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.4.a.d.1.2 2
3.2 odd 2 153.4.a.e.1.1 2
4.3 odd 2 816.4.a.o.1.2 2
5.4 even 2 1275.4.a.m.1.1 2
7.6 odd 2 2499.4.a.l.1.2 2
12.11 even 2 2448.4.a.v.1.1 2
17.16 even 2 867.4.a.j.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.d.1.2 2 1.1 even 1 trivial
153.4.a.e.1.1 2 3.2 odd 2
816.4.a.o.1.2 2 4.3 odd 2
867.4.a.j.1.2 2 17.16 even 2
1275.4.a.m.1.1 2 5.4 even 2
2448.4.a.v.1.1 2 12.11 even 2
2499.4.a.l.1.2 2 7.6 odd 2