Properties

Label 51.2.a.b
Level $51$
Weight $2$
Character orbit 51.a
Self dual yes
Analytic conductor $0.407$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 51.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(0.407237050309\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \(x^{2} - x - 4\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta q^{2} - q^{3} + ( 2 + \beta ) q^{4} + ( 1 + \beta ) q^{5} + \beta q^{6} + ( -4 - \beta ) q^{8} + q^{9} +O(q^{10})\) \( q -\beta q^{2} - q^{3} + ( 2 + \beta ) q^{4} + ( 1 + \beta ) q^{5} + \beta q^{6} + ( -4 - \beta ) q^{8} + q^{9} + ( -4 - 2 \beta ) q^{10} + ( -1 + \beta ) q^{11} + ( -2 - \beta ) q^{12} + ( 3 - \beta ) q^{13} + ( -1 - \beta ) q^{15} + 3 \beta q^{16} + q^{17} -\beta q^{18} + ( 3 - 3 \beta ) q^{19} + ( 6 + 4 \beta ) q^{20} -4 q^{22} + ( -5 + \beta ) q^{23} + ( 4 + \beta ) q^{24} + 3 \beta q^{25} + ( 4 - 2 \beta ) q^{26} - q^{27} + ( 2 - 4 \beta ) q^{29} + ( 4 + 2 \beta ) q^{30} + ( -2 + 2 \beta ) q^{31} + ( -4 - \beta ) q^{32} + ( 1 - \beta ) q^{33} -\beta q^{34} + ( 2 + \beta ) q^{36} -2 \beta q^{37} + 12 q^{38} + ( -3 + \beta ) q^{39} + ( -8 - 6 \beta ) q^{40} + ( -1 - \beta ) q^{41} + ( -3 + 3 \beta ) q^{43} + ( 2 + 2 \beta ) q^{44} + ( 1 + \beta ) q^{45} + ( -4 + 4 \beta ) q^{46} + ( -6 - 2 \beta ) q^{47} -3 \beta q^{48} -7 q^{49} + ( -12 - 3 \beta ) q^{50} - q^{51} + 2 q^{52} + ( 2 + 4 \beta ) q^{53} + \beta q^{54} + ( 3 + \beta ) q^{55} + ( -3 + 3 \beta ) q^{57} + ( 16 + 2 \beta ) q^{58} + ( 2 + 2 \beta ) q^{59} + ( -6 - 4 \beta ) q^{60} + ( 4 + 2 \beta ) q^{61} -8 q^{62} + ( 4 - \beta ) q^{64} + ( -1 + \beta ) q^{65} + 4 q^{66} + 4 q^{67} + ( 2 + \beta ) q^{68} + ( 5 - \beta ) q^{69} + ( 4 - 4 \beta ) q^{71} + ( -4 - \beta ) q^{72} + ( -2 - 4 \beta ) q^{73} + ( 8 + 2 \beta ) q^{74} -3 \beta q^{75} + ( -6 - 6 \beta ) q^{76} + ( -4 + 2 \beta ) q^{78} + ( 6 - 6 \beta ) q^{79} + ( 12 + 6 \beta ) q^{80} + q^{81} + ( 4 + 2 \beta ) q^{82} + ( -6 + 2 \beta ) q^{83} + ( 1 + \beta ) q^{85} -12 q^{86} + ( -2 + 4 \beta ) q^{87} -4 \beta q^{88} + ( 4 - 2 \beta ) q^{89} + ( -4 - 2 \beta ) q^{90} + ( -6 - 2 \beta ) q^{92} + ( 2 - 2 \beta ) q^{93} + ( 8 + 8 \beta ) q^{94} + ( -9 - 3 \beta ) q^{95} + ( 4 + \beta ) q^{96} + ( -8 + 2 \beta ) q^{97} + 7 \beta q^{98} + ( -1 + \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - 2q^{3} + 5q^{4} + 3q^{5} + q^{6} - 9q^{8} + 2q^{9} + O(q^{10}) \) \( 2q - q^{2} - 2q^{3} + 5q^{4} + 3q^{5} + q^{6} - 9q^{8} + 2q^{9} - 10q^{10} - q^{11} - 5q^{12} + 5q^{13} - 3q^{15} + 3q^{16} + 2q^{17} - q^{18} + 3q^{19} + 16q^{20} - 8q^{22} - 9q^{23} + 9q^{24} + 3q^{25} + 6q^{26} - 2q^{27} + 10q^{30} - 2q^{31} - 9q^{32} + q^{33} - q^{34} + 5q^{36} - 2q^{37} + 24q^{38} - 5q^{39} - 22q^{40} - 3q^{41} - 3q^{43} + 6q^{44} + 3q^{45} - 4q^{46} - 14q^{47} - 3q^{48} - 14q^{49} - 27q^{50} - 2q^{51} + 4q^{52} + 8q^{53} + q^{54} + 7q^{55} - 3q^{57} + 34q^{58} + 6q^{59} - 16q^{60} + 10q^{61} - 16q^{62} + 7q^{64} - q^{65} + 8q^{66} + 8q^{67} + 5q^{68} + 9q^{69} + 4q^{71} - 9q^{72} - 8q^{73} + 18q^{74} - 3q^{75} - 18q^{76} - 6q^{78} + 6q^{79} + 30q^{80} + 2q^{81} + 10q^{82} - 10q^{83} + 3q^{85} - 24q^{86} - 4q^{88} + 6q^{89} - 10q^{90} - 14q^{92} + 2q^{93} + 24q^{94} - 21q^{95} + 9q^{96} - 14q^{97} + 7q^{98} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−2.56155 −1.00000 4.56155 3.56155 2.56155 0 −6.56155 1.00000 −9.12311
1.2 1.56155 −1.00000 0.438447 −0.561553 −1.56155 0 −2.43845 1.00000 −0.876894
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(17\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 51.2.a.b 2
3.b odd 2 1 153.2.a.e 2
4.b odd 2 1 816.2.a.m 2
5.b even 2 1 1275.2.a.n 2
5.c odd 4 2 1275.2.b.d 4
7.b odd 2 1 2499.2.a.o 2
8.b even 2 1 3264.2.a.bl 2
8.d odd 2 1 3264.2.a.bg 2
11.b odd 2 1 6171.2.a.p 2
12.b even 2 1 2448.2.a.v 2
13.b even 2 1 8619.2.a.q 2
15.d odd 2 1 3825.2.a.s 2
17.b even 2 1 867.2.a.f 2
17.c even 4 2 867.2.d.c 4
17.d even 8 4 867.2.e.f 8
17.e odd 16 8 867.2.h.j 16
21.c even 2 1 7497.2.a.v 2
24.f even 2 1 9792.2.a.cz 2
24.h odd 2 1 9792.2.a.cy 2
51.c odd 2 1 2601.2.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.a.b 2 1.a even 1 1 trivial
153.2.a.e 2 3.b odd 2 1
816.2.a.m 2 4.b odd 2 1
867.2.a.f 2 17.b even 2 1
867.2.d.c 4 17.c even 4 2
867.2.e.f 8 17.d even 8 4
867.2.h.j 16 17.e odd 16 8
1275.2.a.n 2 5.b even 2 1
1275.2.b.d 4 5.c odd 4 2
2448.2.a.v 2 12.b even 2 1
2499.2.a.o 2 7.b odd 2 1
2601.2.a.t 2 51.c odd 2 1
3264.2.a.bg 2 8.d odd 2 1
3264.2.a.bl 2 8.b even 2 1
3825.2.a.s 2 15.d odd 2 1
6171.2.a.p 2 11.b odd 2 1
7497.2.a.v 2 21.c even 2 1
8619.2.a.q 2 13.b even 2 1
9792.2.a.cy 2 24.h odd 2 1
9792.2.a.cz 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + T_{2} - 4 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(51))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -4 + T + T^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( -2 - 3 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( -4 + T + T^{2} \)
$13$ \( 2 - 5 T + T^{2} \)
$17$ \( ( -1 + T )^{2} \)
$19$ \( -36 - 3 T + T^{2} \)
$23$ \( 16 + 9 T + T^{2} \)
$29$ \( -68 + T^{2} \)
$31$ \( -16 + 2 T + T^{2} \)
$37$ \( -16 + 2 T + T^{2} \)
$41$ \( -2 + 3 T + T^{2} \)
$43$ \( -36 + 3 T + T^{2} \)
$47$ \( 32 + 14 T + T^{2} \)
$53$ \( -52 - 8 T + T^{2} \)
$59$ \( -8 - 6 T + T^{2} \)
$61$ \( 8 - 10 T + T^{2} \)
$67$ \( ( -4 + T )^{2} \)
$71$ \( -64 - 4 T + T^{2} \)
$73$ \( -52 + 8 T + T^{2} \)
$79$ \( -144 - 6 T + T^{2} \)
$83$ \( 8 + 10 T + T^{2} \)
$89$ \( -8 - 6 T + T^{2} \)
$97$ \( 32 + 14 T + T^{2} \)
show more
show less