Properties

Label 51.2.a.b
Level $51$
Weight $2$
Character orbit 51.a
Self dual yes
Analytic conductor $0.407$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,2,Mod(1,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 51.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.407237050309\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} - q^{3} + (\beta + 2) q^{4} + (\beta + 1) q^{5} + \beta q^{6} + ( - \beta - 4) q^{8} + q^{9} + ( - 2 \beta - 4) q^{10} + (\beta - 1) q^{11} + ( - \beta - 2) q^{12} + ( - \beta + 3) q^{13} + \cdots + (\beta - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 2 q^{3} + 5 q^{4} + 3 q^{5} + q^{6} - 9 q^{8} + 2 q^{9} - 10 q^{10} - q^{11} - 5 q^{12} + 5 q^{13} - 3 q^{15} + 3 q^{16} + 2 q^{17} - q^{18} + 3 q^{19} + 16 q^{20} - 8 q^{22} - 9 q^{23}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−2.56155 −1.00000 4.56155 3.56155 2.56155 0 −6.56155 1.00000 −9.12311
1.2 1.56155 −1.00000 0.438447 −0.561553 −1.56155 0 −2.43845 1.00000 −0.876894
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 51.2.a.b 2
3.b odd 2 1 153.2.a.e 2
4.b odd 2 1 816.2.a.m 2
5.b even 2 1 1275.2.a.n 2
5.c odd 4 2 1275.2.b.d 4
7.b odd 2 1 2499.2.a.o 2
8.b even 2 1 3264.2.a.bl 2
8.d odd 2 1 3264.2.a.bg 2
11.b odd 2 1 6171.2.a.p 2
12.b even 2 1 2448.2.a.v 2
13.b even 2 1 8619.2.a.q 2
15.d odd 2 1 3825.2.a.s 2
17.b even 2 1 867.2.a.f 2
17.c even 4 2 867.2.d.c 4
17.d even 8 4 867.2.e.f 8
17.e odd 16 8 867.2.h.j 16
21.c even 2 1 7497.2.a.v 2
24.f even 2 1 9792.2.a.cz 2
24.h odd 2 1 9792.2.a.cy 2
51.c odd 2 1 2601.2.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.a.b 2 1.a even 1 1 trivial
153.2.a.e 2 3.b odd 2 1
816.2.a.m 2 4.b odd 2 1
867.2.a.f 2 17.b even 2 1
867.2.d.c 4 17.c even 4 2
867.2.e.f 8 17.d even 8 4
867.2.h.j 16 17.e odd 16 8
1275.2.a.n 2 5.b even 2 1
1275.2.b.d 4 5.c odd 4 2
2448.2.a.v 2 12.b even 2 1
2499.2.a.o 2 7.b odd 2 1
2601.2.a.t 2 51.c odd 2 1
3264.2.a.bg 2 8.d odd 2 1
3264.2.a.bl 2 8.b even 2 1
3825.2.a.s 2 15.d odd 2 1
6171.2.a.p 2 11.b odd 2 1
7497.2.a.v 2 21.c even 2 1
8619.2.a.q 2 13.b even 2 1
9792.2.a.cy 2 24.h odd 2 1
9792.2.a.cz 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + T_{2} - 4 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(51))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 3T - 36 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 16 \) Copy content Toggle raw display
$29$ \( T^{2} - 68 \) Copy content Toggle raw display
$31$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$41$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$43$ \( T^{2} + 3T - 36 \) Copy content Toggle raw display
$47$ \( T^{2} + 14T + 32 \) Copy content Toggle raw display
$53$ \( T^{2} - 8T - 52 \) Copy content Toggle raw display
$59$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$61$ \( T^{2} - 10T + 8 \) Copy content Toggle raw display
$67$ \( (T - 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 64 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T - 52 \) Copy content Toggle raw display
$79$ \( T^{2} - 6T - 144 \) Copy content Toggle raw display
$83$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$89$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$97$ \( T^{2} + 14T + 32 \) Copy content Toggle raw display
show more
show less