Properties

Label 5096.2.a.r.1.4
Level $5096$
Weight $2$
Character 5096.1
Self dual yes
Analytic conductor $40.692$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5096,2,Mod(1,5096)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5096, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5096.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5096 = 2^{3} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5096.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,-3,0,0,0,1,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.6917648700\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.23252.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.88474\) of defining polynomial
Character \(\chi\) \(=\) 5096.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.88474 q^{3} -1.82358 q^{5} +0.552237 q^{9} -0.945893 q^{11} +1.00000 q^{13} -3.43697 q^{15} -2.37582 q^{17} +5.75869 q^{19} -3.70832 q^{23} -1.67455 q^{25} -4.61339 q^{27} +8.67720 q^{29} +1.33250 q^{31} -1.78276 q^{33} -9.81984 q^{37} +1.88474 q^{39} -4.61339 q^{41} -3.26056 q^{43} -1.00705 q^{45} -5.26761 q^{47} -4.47780 q^{51} +9.19566 q^{53} +1.72491 q^{55} +10.8536 q^{57} -3.45996 q^{59} -8.73570 q^{61} -1.82358 q^{65} -5.27839 q^{67} -6.98921 q^{69} +9.95809 q^{71} +6.24977 q^{73} -3.15608 q^{75} -13.1683 q^{79} -10.3517 q^{81} -4.40694 q^{83} +4.33250 q^{85} +16.3542 q^{87} -6.76243 q^{89} +2.51142 q^{93} -10.5014 q^{95} -12.6842 q^{97} -0.522357 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 3 q^{5} + q^{9} + 9 q^{11} + 4 q^{13} - 4 q^{15} - 4 q^{17} - 5 q^{19} - 2 q^{23} + 3 q^{25} - 13 q^{27} - 5 q^{29} - 2 q^{31} - 23 q^{33} - 7 q^{37} - q^{39} - 13 q^{41} + q^{43} + 13 q^{45}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.88474 1.08815 0.544077 0.839035i \(-0.316880\pi\)
0.544077 + 0.839035i \(0.316880\pi\)
\(4\) 0 0
\(5\) −1.82358 −0.815531 −0.407765 0.913087i \(-0.633692\pi\)
−0.407765 + 0.913087i \(0.633692\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.552237 0.184079
\(10\) 0 0
\(11\) −0.945893 −0.285198 −0.142599 0.989781i \(-0.545546\pi\)
−0.142599 + 0.989781i \(0.545546\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −3.43697 −0.887423
\(16\) 0 0
\(17\) −2.37582 −0.576221 −0.288110 0.957597i \(-0.593027\pi\)
−0.288110 + 0.957597i \(0.593027\pi\)
\(18\) 0 0
\(19\) 5.75869 1.32113 0.660567 0.750767i \(-0.270316\pi\)
0.660567 + 0.750767i \(0.270316\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.70832 −0.773238 −0.386619 0.922239i \(-0.626357\pi\)
−0.386619 + 0.922239i \(0.626357\pi\)
\(24\) 0 0
\(25\) −1.67455 −0.334910
\(26\) 0 0
\(27\) −4.61339 −0.887848
\(28\) 0 0
\(29\) 8.67720 1.61132 0.805658 0.592382i \(-0.201812\pi\)
0.805658 + 0.592382i \(0.201812\pi\)
\(30\) 0 0
\(31\) 1.33250 0.239324 0.119662 0.992815i \(-0.461819\pi\)
0.119662 + 0.992815i \(0.461819\pi\)
\(32\) 0 0
\(33\) −1.78276 −0.310339
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9.81984 −1.61437 −0.807186 0.590297i \(-0.799011\pi\)
−0.807186 + 0.590297i \(0.799011\pi\)
\(38\) 0 0
\(39\) 1.88474 0.301800
\(40\) 0 0
\(41\) −4.61339 −0.720491 −0.360245 0.932858i \(-0.617307\pi\)
−0.360245 + 0.932858i \(0.617307\pi\)
\(42\) 0 0
\(43\) −3.26056 −0.497230 −0.248615 0.968602i \(-0.579975\pi\)
−0.248615 + 0.968602i \(0.579975\pi\)
\(44\) 0 0
\(45\) −1.00705 −0.150122
\(46\) 0 0
\(47\) −5.26761 −0.768359 −0.384180 0.923258i \(-0.625516\pi\)
−0.384180 + 0.923258i \(0.625516\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4.47780 −0.627017
\(52\) 0 0
\(53\) 9.19566 1.26312 0.631561 0.775327i \(-0.282415\pi\)
0.631561 + 0.775327i \(0.282415\pi\)
\(54\) 0 0
\(55\) 1.72491 0.232587
\(56\) 0 0
\(57\) 10.8536 1.43760
\(58\) 0 0
\(59\) −3.45996 −0.450448 −0.225224 0.974307i \(-0.572311\pi\)
−0.225224 + 0.974307i \(0.572311\pi\)
\(60\) 0 0
\(61\) −8.73570 −1.11849 −0.559246 0.829002i \(-0.688909\pi\)
−0.559246 + 0.829002i \(0.688909\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.82358 −0.226188
\(66\) 0 0
\(67\) −5.27839 −0.644859 −0.322429 0.946594i \(-0.604499\pi\)
−0.322429 + 0.946594i \(0.604499\pi\)
\(68\) 0 0
\(69\) −6.98921 −0.841402
\(70\) 0 0
\(71\) 9.95809 1.18181 0.590904 0.806742i \(-0.298771\pi\)
0.590904 + 0.806742i \(0.298771\pi\)
\(72\) 0 0
\(73\) 6.24977 0.731480 0.365740 0.930717i \(-0.380816\pi\)
0.365740 + 0.930717i \(0.380816\pi\)
\(74\) 0 0
\(75\) −3.15608 −0.364433
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −13.1683 −1.48155 −0.740774 0.671755i \(-0.765541\pi\)
−0.740774 + 0.671755i \(0.765541\pi\)
\(80\) 0 0
\(81\) −10.3517 −1.15019
\(82\) 0 0
\(83\) −4.40694 −0.483725 −0.241862 0.970311i \(-0.577758\pi\)
−0.241862 + 0.970311i \(0.577758\pi\)
\(84\) 0 0
\(85\) 4.33250 0.469926
\(86\) 0 0
\(87\) 16.3542 1.75336
\(88\) 0 0
\(89\) −6.76243 −0.716816 −0.358408 0.933565i \(-0.616680\pi\)
−0.358408 + 0.933565i \(0.616680\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.51142 0.260422
\(94\) 0 0
\(95\) −10.5014 −1.07742
\(96\) 0 0
\(97\) −12.6842 −1.28789 −0.643945 0.765072i \(-0.722703\pi\)
−0.643945 + 0.765072i \(0.722703\pi\)
\(98\) 0 0
\(99\) −0.522357 −0.0524989
\(100\) 0 0
\(101\) 1.76243 0.175368 0.0876840 0.996148i \(-0.472053\pi\)
0.0876840 + 0.996148i \(0.472053\pi\)
\(102\) 0 0
\(103\) −8.52111 −0.839610 −0.419805 0.907614i \(-0.637902\pi\)
−0.419805 + 0.907614i \(0.637902\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.45996 0.527834 0.263917 0.964545i \(-0.414985\pi\)
0.263917 + 0.964545i \(0.414985\pi\)
\(108\) 0 0
\(109\) 7.32876 0.701968 0.350984 0.936381i \(-0.385847\pi\)
0.350984 + 0.936381i \(0.385847\pi\)
\(110\) 0 0
\(111\) −18.5078 −1.75669
\(112\) 0 0
\(113\) −0.270102 −0.0254091 −0.0127045 0.999919i \(-0.504044\pi\)
−0.0127045 + 0.999919i \(0.504044\pi\)
\(114\) 0 0
\(115\) 6.76243 0.630600
\(116\) 0 0
\(117\) 0.552237 0.0510543
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.1053 −0.918662
\(122\) 0 0
\(123\) −8.69503 −0.784005
\(124\) 0 0
\(125\) 12.1716 1.08866
\(126\) 0 0
\(127\) −10.4262 −0.925174 −0.462587 0.886574i \(-0.653079\pi\)
−0.462587 + 0.886574i \(0.653079\pi\)
\(128\) 0 0
\(129\) −6.14529 −0.541063
\(130\) 0 0
\(131\) −8.99626 −0.786007 −0.393003 0.919537i \(-0.628564\pi\)
−0.393003 + 0.919537i \(0.628564\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 8.41290 0.724067
\(136\) 0 0
\(137\) −3.19235 −0.272741 −0.136371 0.990658i \(-0.543544\pi\)
−0.136371 + 0.990658i \(0.543544\pi\)
\(138\) 0 0
\(139\) −7.85471 −0.666227 −0.333114 0.942887i \(-0.608099\pi\)
−0.333114 + 0.942887i \(0.608099\pi\)
\(140\) 0 0
\(141\) −9.92806 −0.836093
\(142\) 0 0
\(143\) −0.945893 −0.0790996
\(144\) 0 0
\(145\) −15.8236 −1.31408
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.88739 0.646160 0.323080 0.946372i \(-0.395282\pi\)
0.323080 + 0.946372i \(0.395282\pi\)
\(150\) 0 0
\(151\) −4.33250 −0.352574 −0.176287 0.984339i \(-0.556409\pi\)
−0.176287 + 0.984339i \(0.556409\pi\)
\(152\) 0 0
\(153\) −1.31201 −0.106070
\(154\) 0 0
\(155\) −2.42993 −0.195176
\(156\) 0 0
\(157\) −14.0530 −1.12155 −0.560776 0.827967i \(-0.689497\pi\)
−0.560776 + 0.827967i \(0.689497\pi\)
\(158\) 0 0
\(159\) 17.3314 1.37447
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.99626 0.391337 0.195669 0.980670i \(-0.437312\pi\)
0.195669 + 0.980670i \(0.437312\pi\)
\(164\) 0 0
\(165\) 3.25101 0.253091
\(166\) 0 0
\(167\) 1.51406 0.117162 0.0585809 0.998283i \(-0.481342\pi\)
0.0585809 + 0.998283i \(0.481342\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 3.18016 0.243193
\(172\) 0 0
\(173\) 2.23193 0.169690 0.0848452 0.996394i \(-0.472960\pi\)
0.0848452 + 0.996394i \(0.472960\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.52111 −0.490157
\(178\) 0 0
\(179\) −8.43257 −0.630280 −0.315140 0.949045i \(-0.602052\pi\)
−0.315140 + 0.949045i \(0.602052\pi\)
\(180\) 0 0
\(181\) 10.7371 0.798083 0.399042 0.916933i \(-0.369343\pi\)
0.399042 + 0.916933i \(0.369343\pi\)
\(182\) 0 0
\(183\) −16.4645 −1.21709
\(184\) 0 0
\(185\) 17.9073 1.31657
\(186\) 0 0
\(187\) 2.24727 0.164337
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.2257 −0.739905 −0.369953 0.929051i \(-0.620626\pi\)
−0.369953 + 0.929051i \(0.620626\pi\)
\(192\) 0 0
\(193\) 3.89179 0.280137 0.140068 0.990142i \(-0.455268\pi\)
0.140068 + 0.990142i \(0.455268\pi\)
\(194\) 0 0
\(195\) −3.43697 −0.246127
\(196\) 0 0
\(197\) 12.5918 0.897130 0.448565 0.893750i \(-0.351935\pi\)
0.448565 + 0.893750i \(0.351935\pi\)
\(198\) 0 0
\(199\) −8.15939 −0.578404 −0.289202 0.957268i \(-0.593390\pi\)
−0.289202 + 0.957268i \(0.593390\pi\)
\(200\) 0 0
\(201\) −9.94839 −0.701705
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 8.41290 0.587582
\(206\) 0 0
\(207\) −2.04787 −0.142337
\(208\) 0 0
\(209\) −5.44710 −0.376784
\(210\) 0 0
\(211\) −20.7205 −1.42646 −0.713230 0.700931i \(-0.752768\pi\)
−0.713230 + 0.700931i \(0.752768\pi\)
\(212\) 0 0
\(213\) 18.7684 1.28599
\(214\) 0 0
\(215\) 5.94589 0.405507
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 11.7792 0.795963
\(220\) 0 0
\(221\) −2.37582 −0.159815
\(222\) 0 0
\(223\) −11.7861 −0.789254 −0.394627 0.918841i \(-0.629126\pi\)
−0.394627 + 0.918841i \(0.629126\pi\)
\(224\) 0 0
\(225\) −0.924747 −0.0616498
\(226\) 0 0
\(227\) 16.9096 1.12233 0.561166 0.827704i \(-0.310353\pi\)
0.561166 + 0.827704i \(0.310353\pi\)
\(228\) 0 0
\(229\) −26.1250 −1.72639 −0.863193 0.504874i \(-0.831539\pi\)
−0.863193 + 0.504874i \(0.831539\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.964324 0.0631750 0.0315875 0.999501i \(-0.489944\pi\)
0.0315875 + 0.999501i \(0.489944\pi\)
\(234\) 0 0
\(235\) 9.60591 0.626621
\(236\) 0 0
\(237\) −24.8188 −1.61215
\(238\) 0 0
\(239\) 19.5033 1.26156 0.630781 0.775961i \(-0.282735\pi\)
0.630781 + 0.775961i \(0.282735\pi\)
\(240\) 0 0
\(241\) −29.3869 −1.89298 −0.946489 0.322736i \(-0.895397\pi\)
−0.946489 + 0.322736i \(0.895397\pi\)
\(242\) 0 0
\(243\) −5.67015 −0.363740
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.75869 0.366416
\(248\) 0 0
\(249\) −8.30593 −0.526367
\(250\) 0 0
\(251\) −26.8047 −1.69189 −0.845947 0.533266i \(-0.820964\pi\)
−0.845947 + 0.533266i \(0.820964\pi\)
\(252\) 0 0
\(253\) 3.50768 0.220526
\(254\) 0 0
\(255\) 8.16563 0.511352
\(256\) 0 0
\(257\) −7.50187 −0.467954 −0.233977 0.972242i \(-0.575174\pi\)
−0.233977 + 0.972242i \(0.575174\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.79187 0.296609
\(262\) 0 0
\(263\) 22.9002 1.41209 0.706045 0.708167i \(-0.250478\pi\)
0.706045 + 0.708167i \(0.250478\pi\)
\(264\) 0 0
\(265\) −16.7690 −1.03011
\(266\) 0 0
\(267\) −12.7454 −0.780006
\(268\) 0 0
\(269\) −6.72161 −0.409824 −0.204912 0.978780i \(-0.565691\pi\)
−0.204912 + 0.978780i \(0.565691\pi\)
\(270\) 0 0
\(271\) 3.75354 0.228011 0.114006 0.993480i \(-0.463632\pi\)
0.114006 + 0.993480i \(0.463632\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.58394 0.0955154
\(276\) 0 0
\(277\) 17.7091 1.06404 0.532019 0.846732i \(-0.321433\pi\)
0.532019 + 0.846732i \(0.321433\pi\)
\(278\) 0 0
\(279\) 0.735856 0.0440545
\(280\) 0 0
\(281\) 1.97967 0.118097 0.0590485 0.998255i \(-0.481193\pi\)
0.0590485 + 0.998255i \(0.481193\pi\)
\(282\) 0 0
\(283\) 26.3882 1.56861 0.784307 0.620373i \(-0.213019\pi\)
0.784307 + 0.620373i \(0.213019\pi\)
\(284\) 0 0
\(285\) −19.7925 −1.17240
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −11.3555 −0.667970
\(290\) 0 0
\(291\) −23.9065 −1.40142
\(292\) 0 0
\(293\) −11.8669 −0.693272 −0.346636 0.938000i \(-0.612676\pi\)
−0.346636 + 0.938000i \(0.612676\pi\)
\(294\) 0 0
\(295\) 6.30952 0.367354
\(296\) 0 0
\(297\) 4.36378 0.253212
\(298\) 0 0
\(299\) −3.70832 −0.214458
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3.32171 0.190827
\(304\) 0 0
\(305\) 15.9303 0.912165
\(306\) 0 0
\(307\) −14.8198 −0.845813 −0.422907 0.906173i \(-0.638990\pi\)
−0.422907 + 0.906173i \(0.638990\pi\)
\(308\) 0 0
\(309\) −16.0601 −0.913625
\(310\) 0 0
\(311\) 5.86880 0.332789 0.166395 0.986059i \(-0.446787\pi\)
0.166395 + 0.986059i \(0.446787\pi\)
\(312\) 0 0
\(313\) −13.7274 −0.775919 −0.387959 0.921677i \(-0.626820\pi\)
−0.387959 + 0.921677i \(0.626820\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.5230 0.984191 0.492095 0.870541i \(-0.336231\pi\)
0.492095 + 0.870541i \(0.336231\pi\)
\(318\) 0 0
\(319\) −8.20770 −0.459543
\(320\) 0 0
\(321\) 10.2906 0.574365
\(322\) 0 0
\(323\) −13.6816 −0.761264
\(324\) 0 0
\(325\) −1.67455 −0.0928872
\(326\) 0 0
\(327\) 13.8128 0.763849
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.689736 0.0379113 0.0189557 0.999820i \(-0.493966\pi\)
0.0189557 + 0.999820i \(0.493966\pi\)
\(332\) 0 0
\(333\) −5.42288 −0.297172
\(334\) 0 0
\(335\) 9.62559 0.525902
\(336\) 0 0
\(337\) 15.5570 0.847441 0.423721 0.905793i \(-0.360724\pi\)
0.423721 + 0.905793i \(0.360724\pi\)
\(338\) 0 0
\(339\) −0.509072 −0.0276490
\(340\) 0 0
\(341\) −1.26040 −0.0682547
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 12.7454 0.686189
\(346\) 0 0
\(347\) −14.2549 −0.765244 −0.382622 0.923905i \(-0.624979\pi\)
−0.382622 + 0.923905i \(0.624979\pi\)
\(348\) 0 0
\(349\) 0.431169 0.0230800 0.0115400 0.999933i \(-0.496327\pi\)
0.0115400 + 0.999933i \(0.496327\pi\)
\(350\) 0 0
\(351\) −4.61339 −0.246245
\(352\) 0 0
\(353\) 7.26695 0.386780 0.193390 0.981122i \(-0.438052\pi\)
0.193390 + 0.981122i \(0.438052\pi\)
\(354\) 0 0
\(355\) −18.1594 −0.963800
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 35.4489 1.87092 0.935460 0.353431i \(-0.114985\pi\)
0.935460 + 0.353431i \(0.114985\pi\)
\(360\) 0 0
\(361\) 14.1625 0.745393
\(362\) 0 0
\(363\) −19.0458 −0.999646
\(364\) 0 0
\(365\) −11.3970 −0.596544
\(366\) 0 0
\(367\) −6.96448 −0.363543 −0.181771 0.983341i \(-0.558183\pi\)
−0.181771 + 0.983341i \(0.558183\pi\)
\(368\) 0 0
\(369\) −2.54768 −0.132627
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 24.2257 1.25436 0.627179 0.778875i \(-0.284209\pi\)
0.627179 + 0.778875i \(0.284209\pi\)
\(374\) 0 0
\(375\) 22.9403 1.18463
\(376\) 0 0
\(377\) 8.67720 0.446898
\(378\) 0 0
\(379\) 26.9900 1.38638 0.693192 0.720753i \(-0.256204\pi\)
0.693192 + 0.720753i \(0.256204\pi\)
\(380\) 0 0
\(381\) −19.6506 −1.00673
\(382\) 0 0
\(383\) 35.1805 1.79764 0.898819 0.438320i \(-0.144426\pi\)
0.898819 + 0.438320i \(0.144426\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.80060 −0.0915296
\(388\) 0 0
\(389\) 13.2510 0.671853 0.335926 0.941888i \(-0.390951\pi\)
0.335926 + 0.941888i \(0.390951\pi\)
\(390\) 0 0
\(391\) 8.81030 0.445556
\(392\) 0 0
\(393\) −16.9556 −0.855296
\(394\) 0 0
\(395\) 24.0134 1.20825
\(396\) 0 0
\(397\) −8.18787 −0.410937 −0.205469 0.978664i \(-0.565872\pi\)
−0.205469 + 0.978664i \(0.565872\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.7072 −1.58338 −0.791692 0.610921i \(-0.790799\pi\)
−0.791692 + 0.610921i \(0.790799\pi\)
\(402\) 0 0
\(403\) 1.33250 0.0663766
\(404\) 0 0
\(405\) 18.8773 0.938018
\(406\) 0 0
\(407\) 9.28852 0.460415
\(408\) 0 0
\(409\) 10.5704 0.522672 0.261336 0.965248i \(-0.415837\pi\)
0.261336 + 0.965248i \(0.415837\pi\)
\(410\) 0 0
\(411\) −6.01675 −0.296784
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 8.03642 0.394492
\(416\) 0 0
\(417\) −14.8041 −0.724958
\(418\) 0 0
\(419\) −38.6098 −1.88621 −0.943106 0.332492i \(-0.892111\pi\)
−0.943106 + 0.332492i \(0.892111\pi\)
\(420\) 0 0
\(421\) −39.6738 −1.93358 −0.966791 0.255570i \(-0.917737\pi\)
−0.966791 + 0.255570i \(0.917737\pi\)
\(422\) 0 0
\(423\) −2.90896 −0.141439
\(424\) 0 0
\(425\) 3.97842 0.192982
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.78276 −0.0860725
\(430\) 0 0
\(431\) 14.9340 0.719346 0.359673 0.933078i \(-0.382888\pi\)
0.359673 + 0.933078i \(0.382888\pi\)
\(432\) 0 0
\(433\) 33.0347 1.58755 0.793774 0.608212i \(-0.208113\pi\)
0.793774 + 0.608212i \(0.208113\pi\)
\(434\) 0 0
\(435\) −29.8233 −1.42992
\(436\) 0 0
\(437\) −21.3551 −1.02155
\(438\) 0 0
\(439\) −19.9162 −0.950547 −0.475274 0.879838i \(-0.657651\pi\)
−0.475274 + 0.879838i \(0.657651\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.9667 1.32874 0.664369 0.747405i \(-0.268700\pi\)
0.664369 + 0.747405i \(0.268700\pi\)
\(444\) 0 0
\(445\) 12.3318 0.584585
\(446\) 0 0
\(447\) 14.8657 0.703121
\(448\) 0 0
\(449\) 4.33374 0.204522 0.102261 0.994758i \(-0.467392\pi\)
0.102261 + 0.994758i \(0.467392\pi\)
\(450\) 0 0
\(451\) 4.36378 0.205482
\(452\) 0 0
\(453\) −8.16563 −0.383655
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.77571 0.176620 0.0883102 0.996093i \(-0.471853\pi\)
0.0883102 + 0.996093i \(0.471853\pi\)
\(458\) 0 0
\(459\) 10.9606 0.511596
\(460\) 0 0
\(461\) −31.2462 −1.45528 −0.727640 0.685959i \(-0.759383\pi\)
−0.727640 + 0.685959i \(0.759383\pi\)
\(462\) 0 0
\(463\) 19.4066 0.901901 0.450951 0.892549i \(-0.351085\pi\)
0.450951 + 0.892549i \(0.351085\pi\)
\(464\) 0 0
\(465\) −4.57977 −0.212382
\(466\) 0 0
\(467\) −16.1735 −0.748420 −0.374210 0.927344i \(-0.622086\pi\)
−0.374210 + 0.927344i \(0.622086\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −26.4863 −1.22042
\(472\) 0 0
\(473\) 3.08414 0.141809
\(474\) 0 0
\(475\) −9.64320 −0.442460
\(476\) 0 0
\(477\) 5.07818 0.232514
\(478\) 0 0
\(479\) 28.9334 1.32200 0.660999 0.750386i \(-0.270133\pi\)
0.660999 + 0.750386i \(0.270133\pi\)
\(480\) 0 0
\(481\) −9.81984 −0.447746
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.1308 1.05031
\(486\) 0 0
\(487\) 13.5249 0.612870 0.306435 0.951892i \(-0.400864\pi\)
0.306435 + 0.951892i \(0.400864\pi\)
\(488\) 0 0
\(489\) 9.41664 0.425835
\(490\) 0 0
\(491\) 24.0768 1.08657 0.543286 0.839548i \(-0.317180\pi\)
0.543286 + 0.839548i \(0.317180\pi\)
\(492\) 0 0
\(493\) −20.6154 −0.928473
\(494\) 0 0
\(495\) 0.952561 0.0428144
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −12.7613 −0.571276 −0.285638 0.958338i \(-0.592205\pi\)
−0.285638 + 0.958338i \(0.592205\pi\)
\(500\) 0 0
\(501\) 2.85361 0.127490
\(502\) 0 0
\(503\) 3.53365 0.157558 0.0787789 0.996892i \(-0.474898\pi\)
0.0787789 + 0.996892i \(0.474898\pi\)
\(504\) 0 0
\(505\) −3.21393 −0.143018
\(506\) 0 0
\(507\) 1.88474 0.0837041
\(508\) 0 0
\(509\) −12.3473 −0.547286 −0.273643 0.961831i \(-0.588229\pi\)
−0.273643 + 0.961831i \(0.588229\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −26.5671 −1.17297
\(514\) 0 0
\(515\) 15.5390 0.684728
\(516\) 0 0
\(517\) 4.98259 0.219134
\(518\) 0 0
\(519\) 4.20660 0.184649
\(520\) 0 0
\(521\) −38.1558 −1.67164 −0.835818 0.549006i \(-0.815006\pi\)
−0.835818 + 0.549006i \(0.815006\pi\)
\(522\) 0 0
\(523\) 45.1605 1.97473 0.987366 0.158457i \(-0.0506520\pi\)
0.987366 + 0.158457i \(0.0506520\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.16578 −0.137904
\(528\) 0 0
\(529\) −9.24836 −0.402103
\(530\) 0 0
\(531\) −1.91072 −0.0829180
\(532\) 0 0
\(533\) −4.61339 −0.199828
\(534\) 0 0
\(535\) −9.95668 −0.430465
\(536\) 0 0
\(537\) −15.8932 −0.685842
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 19.8640 0.854019 0.427009 0.904247i \(-0.359567\pi\)
0.427009 + 0.904247i \(0.359567\pi\)
\(542\) 0 0
\(543\) 20.2366 0.868437
\(544\) 0 0
\(545\) −13.3646 −0.572477
\(546\) 0 0
\(547\) 35.5247 1.51893 0.759464 0.650549i \(-0.225461\pi\)
0.759464 + 0.650549i \(0.225461\pi\)
\(548\) 0 0
\(549\) −4.82418 −0.205891
\(550\) 0 0
\(551\) 49.9693 2.12876
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 33.7505 1.43263
\(556\) 0 0
\(557\) 3.29249 0.139507 0.0697537 0.997564i \(-0.477779\pi\)
0.0697537 + 0.997564i \(0.477779\pi\)
\(558\) 0 0
\(559\) −3.26056 −0.137907
\(560\) 0 0
\(561\) 4.23552 0.178824
\(562\) 0 0
\(563\) 9.89494 0.417022 0.208511 0.978020i \(-0.433138\pi\)
0.208511 + 0.978020i \(0.433138\pi\)
\(564\) 0 0
\(565\) 0.492553 0.0207219
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −30.8080 −1.29154 −0.645768 0.763533i \(-0.723463\pi\)
−0.645768 + 0.763533i \(0.723463\pi\)
\(570\) 0 0
\(571\) 16.8976 0.707142 0.353571 0.935408i \(-0.384967\pi\)
0.353571 + 0.935408i \(0.384967\pi\)
\(572\) 0 0
\(573\) −19.2728 −0.805131
\(574\) 0 0
\(575\) 6.20976 0.258965
\(576\) 0 0
\(577\) 27.2462 1.13427 0.567137 0.823624i \(-0.308051\pi\)
0.567137 + 0.823624i \(0.308051\pi\)
\(578\) 0 0
\(579\) 7.33500 0.304832
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8.69811 −0.360239
\(584\) 0 0
\(585\) −1.00705 −0.0416363
\(586\) 0 0
\(587\) 17.6033 0.726568 0.363284 0.931678i \(-0.381655\pi\)
0.363284 + 0.931678i \(0.381655\pi\)
\(588\) 0 0
\(589\) 7.67346 0.316179
\(590\) 0 0
\(591\) 23.7323 0.976215
\(592\) 0 0
\(593\) −13.6072 −0.558779 −0.279389 0.960178i \(-0.590132\pi\)
−0.279389 + 0.960178i \(0.590132\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −15.3783 −0.629393
\(598\) 0 0
\(599\) −8.03693 −0.328380 −0.164190 0.986429i \(-0.552501\pi\)
−0.164190 + 0.986429i \(0.552501\pi\)
\(600\) 0 0
\(601\) 7.71603 0.314743 0.157372 0.987539i \(-0.449698\pi\)
0.157372 + 0.987539i \(0.449698\pi\)
\(602\) 0 0
\(603\) −2.91492 −0.118705
\(604\) 0 0
\(605\) 18.4278 0.749197
\(606\) 0 0
\(607\) 2.17187 0.0881533 0.0440766 0.999028i \(-0.485965\pi\)
0.0440766 + 0.999028i \(0.485965\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.26761 −0.213105
\(612\) 0 0
\(613\) 12.4964 0.504724 0.252362 0.967633i \(-0.418793\pi\)
0.252362 + 0.967633i \(0.418793\pi\)
\(614\) 0 0
\(615\) 15.8561 0.639380
\(616\) 0 0
\(617\) 1.01784 0.0409766 0.0204883 0.999790i \(-0.493478\pi\)
0.0204883 + 0.999790i \(0.493478\pi\)
\(618\) 0 0
\(619\) −49.3203 −1.98235 −0.991176 0.132553i \(-0.957683\pi\)
−0.991176 + 0.132553i \(0.957683\pi\)
\(620\) 0 0
\(621\) 17.1079 0.686518
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.8232 −0.552926
\(626\) 0 0
\(627\) −10.2664 −0.409999
\(628\) 0 0
\(629\) 23.3302 0.930235
\(630\) 0 0
\(631\) 30.6028 1.21828 0.609138 0.793064i \(-0.291515\pi\)
0.609138 + 0.793064i \(0.291515\pi\)
\(632\) 0 0
\(633\) −39.0527 −1.55221
\(634\) 0 0
\(635\) 19.0130 0.754508
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.49922 0.217546
\(640\) 0 0
\(641\) −29.5189 −1.16593 −0.582964 0.812498i \(-0.698107\pi\)
−0.582964 + 0.812498i \(0.698107\pi\)
\(642\) 0 0
\(643\) 23.0066 0.907290 0.453645 0.891183i \(-0.350123\pi\)
0.453645 + 0.891183i \(0.350123\pi\)
\(644\) 0 0
\(645\) 11.2065 0.441254
\(646\) 0 0
\(647\) 32.3352 1.27123 0.635613 0.772008i \(-0.280747\pi\)
0.635613 + 0.772008i \(0.280747\pi\)
\(648\) 0 0
\(649\) 3.27275 0.128467
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.6575 −0.964923 −0.482462 0.875917i \(-0.660257\pi\)
−0.482462 + 0.875917i \(0.660257\pi\)
\(654\) 0 0
\(655\) 16.4054 0.641013
\(656\) 0 0
\(657\) 3.45135 0.134650
\(658\) 0 0
\(659\) 40.1322 1.56333 0.781664 0.623700i \(-0.214371\pi\)
0.781664 + 0.623700i \(0.214371\pi\)
\(660\) 0 0
\(661\) 41.7733 1.62479 0.812396 0.583107i \(-0.198163\pi\)
0.812396 + 0.583107i \(0.198163\pi\)
\(662\) 0 0
\(663\) −4.47780 −0.173903
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −32.1778 −1.24593
\(668\) 0 0
\(669\) −22.2137 −0.858829
\(670\) 0 0
\(671\) 8.26304 0.318991
\(672\) 0 0
\(673\) −22.8676 −0.881480 −0.440740 0.897635i \(-0.645284\pi\)
−0.440740 + 0.897635i \(0.645284\pi\)
\(674\) 0 0
\(675\) 7.72535 0.297349
\(676\) 0 0
\(677\) −38.4443 −1.47754 −0.738768 0.673960i \(-0.764592\pi\)
−0.738768 + 0.673960i \(0.764592\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 31.8702 1.22127
\(682\) 0 0
\(683\) 13.3791 0.511938 0.255969 0.966685i \(-0.417605\pi\)
0.255969 + 0.966685i \(0.417605\pi\)
\(684\) 0 0
\(685\) 5.82152 0.222429
\(686\) 0 0
\(687\) −49.2387 −1.87857
\(688\) 0 0
\(689\) 9.19566 0.350327
\(690\) 0 0
\(691\) −5.55473 −0.211312 −0.105656 0.994403i \(-0.533694\pi\)
−0.105656 + 0.994403i \(0.533694\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.3237 0.543329
\(696\) 0 0
\(697\) 10.9606 0.415162
\(698\) 0 0
\(699\) 1.81750 0.0687441
\(700\) 0 0
\(701\) −46.8737 −1.77039 −0.885197 0.465216i \(-0.845977\pi\)
−0.885197 + 0.465216i \(0.845977\pi\)
\(702\) 0 0
\(703\) −56.5494 −2.13280
\(704\) 0 0
\(705\) 18.1046 0.681860
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 14.1320 0.530739 0.265369 0.964147i \(-0.414506\pi\)
0.265369 + 0.964147i \(0.414506\pi\)
\(710\) 0 0
\(711\) −7.27201 −0.272722
\(712\) 0 0
\(713\) −4.94134 −0.185055
\(714\) 0 0
\(715\) 1.72491 0.0645081
\(716\) 0 0
\(717\) 36.7586 1.37277
\(718\) 0 0
\(719\) −20.4337 −0.762048 −0.381024 0.924565i \(-0.624429\pi\)
−0.381024 + 0.924565i \(0.624429\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −55.3866 −2.05985
\(724\) 0 0
\(725\) −14.5304 −0.539645
\(726\) 0 0
\(727\) 28.3669 1.05207 0.526036 0.850463i \(-0.323678\pi\)
0.526036 + 0.850463i \(0.323678\pi\)
\(728\) 0 0
\(729\) 20.3685 0.754389
\(730\) 0 0
\(731\) 7.74649 0.286514
\(732\) 0 0
\(733\) 5.83768 0.215620 0.107810 0.994172i \(-0.465616\pi\)
0.107810 + 0.994172i \(0.465616\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.99280 0.183912
\(738\) 0 0
\(739\) −15.6794 −0.576777 −0.288388 0.957514i \(-0.593119\pi\)
−0.288388 + 0.957514i \(0.593119\pi\)
\(740\) 0 0
\(741\) 10.8536 0.398717
\(742\) 0 0
\(743\) 20.8905 0.766399 0.383200 0.923666i \(-0.374822\pi\)
0.383200 + 0.923666i \(0.374822\pi\)
\(744\) 0 0
\(745\) −14.3833 −0.526963
\(746\) 0 0
\(747\) −2.43367 −0.0890435
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −29.8014 −1.08747 −0.543734 0.839257i \(-0.682990\pi\)
−0.543734 + 0.839257i \(0.682990\pi\)
\(752\) 0 0
\(753\) −50.5197 −1.84104
\(754\) 0 0
\(755\) 7.90067 0.287535
\(756\) 0 0
\(757\) −37.3422 −1.35723 −0.678613 0.734496i \(-0.737418\pi\)
−0.678613 + 0.734496i \(0.737418\pi\)
\(758\) 0 0
\(759\) 6.61105 0.239966
\(760\) 0 0
\(761\) 45.3569 1.64419 0.822093 0.569353i \(-0.192806\pi\)
0.822093 + 0.569353i \(0.192806\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.39257 0.0865034
\(766\) 0 0
\(767\) −3.45996 −0.124932
\(768\) 0 0
\(769\) 17.8893 0.645104 0.322552 0.946552i \(-0.395459\pi\)
0.322552 + 0.946552i \(0.395459\pi\)
\(770\) 0 0
\(771\) −14.1391 −0.509206
\(772\) 0 0
\(773\) −28.3291 −1.01893 −0.509463 0.860493i \(-0.670156\pi\)
−0.509463 + 0.860493i \(0.670156\pi\)
\(774\) 0 0
\(775\) −2.23134 −0.0801520
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −26.5671 −0.951864
\(780\) 0 0
\(781\) −9.41929 −0.337049
\(782\) 0 0
\(783\) −40.0313 −1.43060
\(784\) 0 0
\(785\) 25.6268 0.914661
\(786\) 0 0
\(787\) 3.25432 0.116004 0.0580020 0.998316i \(-0.481527\pi\)
0.0580020 + 0.998316i \(0.481527\pi\)
\(788\) 0 0
\(789\) 43.1610 1.53657
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −8.73570 −0.310214
\(794\) 0 0
\(795\) −31.6053 −1.12092
\(796\) 0 0
\(797\) 6.59430 0.233582 0.116791 0.993157i \(-0.462739\pi\)
0.116791 + 0.993157i \(0.462739\pi\)
\(798\) 0 0
\(799\) 12.5149 0.442745
\(800\) 0 0
\(801\) −3.73446 −0.131951
\(802\) 0 0
\(803\) −5.91161 −0.208616
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.6685 −0.445951
\(808\) 0 0
\(809\) −3.68094 −0.129415 −0.0647074 0.997904i \(-0.520611\pi\)
−0.0647074 + 0.997904i \(0.520611\pi\)
\(810\) 0 0
\(811\) −31.6997 −1.11313 −0.556564 0.830804i \(-0.687881\pi\)
−0.556564 + 0.830804i \(0.687881\pi\)
\(812\) 0 0
\(813\) 7.07444 0.248111
\(814\) 0 0
\(815\) −9.11109 −0.319148
\(816\) 0 0
\(817\) −18.7765 −0.656907
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 37.3469 1.30342 0.651708 0.758470i \(-0.274053\pi\)
0.651708 + 0.758470i \(0.274053\pi\)
\(822\) 0 0
\(823\) −23.5982 −0.822582 −0.411291 0.911504i \(-0.634922\pi\)
−0.411291 + 0.911504i \(0.634922\pi\)
\(824\) 0 0
\(825\) 2.98532 0.103935
\(826\) 0 0
\(827\) −20.0028 −0.695566 −0.347783 0.937575i \(-0.613065\pi\)
−0.347783 + 0.937575i \(0.613065\pi\)
\(828\) 0 0
\(829\) −43.7174 −1.51837 −0.759185 0.650875i \(-0.774402\pi\)
−0.759185 + 0.650875i \(0.774402\pi\)
\(830\) 0 0
\(831\) 33.3771 1.15784
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.76102 −0.0955491
\(836\) 0 0
\(837\) −6.14735 −0.212484
\(838\) 0 0
\(839\) −0.957428 −0.0330541 −0.0165270 0.999863i \(-0.505261\pi\)
−0.0165270 + 0.999863i \(0.505261\pi\)
\(840\) 0 0
\(841\) 46.2937 1.59634
\(842\) 0 0
\(843\) 3.73115 0.128508
\(844\) 0 0
\(845\) −1.82358 −0.0627331
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 49.7348 1.70689
\(850\) 0 0
\(851\) 36.4151 1.24829
\(852\) 0 0
\(853\) 18.7955 0.643544 0.321772 0.946817i \(-0.395722\pi\)
0.321772 + 0.946817i \(0.395722\pi\)
\(854\) 0 0
\(855\) −5.79928 −0.198331
\(856\) 0 0
\(857\) −48.9000 −1.67039 −0.835195 0.549953i \(-0.814646\pi\)
−0.835195 + 0.549953i \(0.814646\pi\)
\(858\) 0 0
\(859\) −1.47705 −0.0503963 −0.0251981 0.999682i \(-0.508022\pi\)
−0.0251981 + 0.999682i \(0.508022\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −27.3225 −0.930070 −0.465035 0.885292i \(-0.653958\pi\)
−0.465035 + 0.885292i \(0.653958\pi\)
\(864\) 0 0
\(865\) −4.07011 −0.138388
\(866\) 0 0
\(867\) −21.4021 −0.726854
\(868\) 0 0
\(869\) 12.4558 0.422534
\(870\) 0 0
\(871\) −5.27839 −0.178852
\(872\) 0 0
\(873\) −7.00471 −0.237073
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.6747 −0.630600 −0.315300 0.948992i \(-0.602105\pi\)
−0.315300 + 0.948992i \(0.602105\pi\)
\(878\) 0 0
\(879\) −22.3660 −0.754386
\(880\) 0 0
\(881\) 15.3669 0.517723 0.258861 0.965914i \(-0.416653\pi\)
0.258861 + 0.965914i \(0.416653\pi\)
\(882\) 0 0
\(883\) −54.4184 −1.83132 −0.915662 0.401950i \(-0.868333\pi\)
−0.915662 + 0.401950i \(0.868333\pi\)
\(884\) 0 0
\(885\) 11.8918 0.399738
\(886\) 0 0
\(887\) 45.5340 1.52888 0.764440 0.644694i \(-0.223015\pi\)
0.764440 + 0.644694i \(0.223015\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 9.79165 0.328033
\(892\) 0 0
\(893\) −30.3345 −1.01511
\(894\) 0 0
\(895\) 15.3775 0.514013
\(896\) 0 0
\(897\) −6.98921 −0.233363
\(898\) 0 0
\(899\) 11.5624 0.385627
\(900\) 0 0
\(901\) −21.8472 −0.727837
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19.5800 −0.650861
\(906\) 0 0
\(907\) 9.04678 0.300393 0.150197 0.988656i \(-0.452009\pi\)
0.150197 + 0.988656i \(0.452009\pi\)
\(908\) 0 0
\(909\) 0.973277 0.0322815
\(910\) 0 0
\(911\) −2.14728 −0.0711427 −0.0355713 0.999367i \(-0.511325\pi\)
−0.0355713 + 0.999367i \(0.511325\pi\)
\(912\) 0 0
\(913\) 4.16850 0.137957
\(914\) 0 0
\(915\) 30.0244 0.992576
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 41.4007 1.36568 0.682842 0.730566i \(-0.260744\pi\)
0.682842 + 0.730566i \(0.260744\pi\)
\(920\) 0 0
\(921\) −27.9315 −0.920375
\(922\) 0 0
\(923\) 9.95809 0.327774
\(924\) 0 0
\(925\) 16.4438 0.540669
\(926\) 0 0
\(927\) −4.70567 −0.154555
\(928\) 0 0
\(929\) 43.7952 1.43687 0.718437 0.695593i \(-0.244858\pi\)
0.718437 + 0.695593i \(0.244858\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 11.0612 0.362126
\(934\) 0 0
\(935\) −4.09808 −0.134022
\(936\) 0 0
\(937\) 27.3543 0.893626 0.446813 0.894627i \(-0.352559\pi\)
0.446813 + 0.894627i \(0.352559\pi\)
\(938\) 0 0
\(939\) −25.8726 −0.844319
\(940\) 0 0
\(941\) 12.9615 0.422534 0.211267 0.977428i \(-0.432241\pi\)
0.211267 + 0.977428i \(0.432241\pi\)
\(942\) 0 0
\(943\) 17.1079 0.557111
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −10.6116 −0.344829 −0.172415 0.985024i \(-0.555157\pi\)
−0.172415 + 0.985024i \(0.555157\pi\)
\(948\) 0 0
\(949\) 6.24977 0.202876
\(950\) 0 0
\(951\) 33.0263 1.07095
\(952\) 0 0
\(953\) 4.45167 0.144204 0.0721018 0.997397i \(-0.477029\pi\)
0.0721018 + 0.997397i \(0.477029\pi\)
\(954\) 0 0
\(955\) 18.6474 0.603415
\(956\) 0 0
\(957\) −15.4694 −0.500054
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.2244 −0.942724
\(962\) 0 0
\(963\) 3.01519 0.0971631
\(964\) 0 0
\(965\) −7.09699 −0.228460
\(966\) 0 0
\(967\) 48.3585 1.55511 0.777553 0.628818i \(-0.216461\pi\)
0.777553 + 0.628818i \(0.216461\pi\)
\(968\) 0 0
\(969\) −25.7862 −0.828373
\(970\) 0 0
\(971\) −51.7617 −1.66111 −0.830555 0.556936i \(-0.811977\pi\)
−0.830555 + 0.556936i \(0.811977\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.15608 −0.101076
\(976\) 0 0
\(977\) −41.9365 −1.34167 −0.670834 0.741608i \(-0.734064\pi\)
−0.670834 + 0.741608i \(0.734064\pi\)
\(978\) 0 0
\(979\) 6.39653 0.204434
\(980\) 0 0
\(981\) 4.04721 0.129217
\(982\) 0 0
\(983\) −48.8892 −1.55932 −0.779661 0.626202i \(-0.784609\pi\)
−0.779661 + 0.626202i \(0.784609\pi\)
\(984\) 0 0
\(985\) −22.9622 −0.731637
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.0912 0.384477
\(990\) 0 0
\(991\) 7.41715 0.235613 0.117807 0.993037i \(-0.462414\pi\)
0.117807 + 0.993037i \(0.462414\pi\)
\(992\) 0 0
\(993\) 1.29997 0.0412534
\(994\) 0 0
\(995\) 14.8793 0.471706
\(996\) 0 0
\(997\) −23.1539 −0.733291 −0.366646 0.930361i \(-0.619494\pi\)
−0.366646 + 0.930361i \(0.619494\pi\)
\(998\) 0 0
\(999\) 45.3028 1.43332
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5096.2.a.r.1.4 4
7.6 odd 2 5096.2.a.w.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5096.2.a.r.1.4 4 1.1 even 1 trivial
5096.2.a.w.1.1 yes 4 7.6 odd 2