Newspace parameters
| Level: | \( N \) | = | \( 5077 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Character orbit: | \([\chi]\) | = | 5077.a (trivial) |
Newform invariants
| Self dual: | Yes |
| Analytic conductor: | \(40.5400491062\) |
| Analytic rank: | \(3\) |
| Dimension: | \(1\) |
| Coefficient field: | \(\mathbb{Q}\) |
| Coefficient ring: | \(\mathbb{Z}\) |
| Coefficient ring index: | \( 1 \) |
| Fricke sign: | \(1\) |
| Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.1 |
|
−2.00000 | −3.00000 | 2.00000 | −4.00000 | 6.00000 | −4.00000 | 0 | 6.00000 | 8.00000 | |||||||||||||||||||||
Inner twists
This newform does not admit any (nontrivial) inner twists.
Atkin-Lehner signs
| \( p \) | Sign |
|---|---|
| \(5077\) | \(1\) |
Hecke kernels
This newform can be constructed as the kernel of the linear operator \( T_{2} + 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5077))\).