Properties

Label 5070.2.b.u
Level $5070$
Weight $2$
Character orbit 5070.b
Analytic conductor $40.484$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5070.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(40.4841538248\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Defining polynomial: \(x^{6} + 5 x^{4} + 6 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{5} q^{2} - q^{3} - q^{4} + \beta_{5} q^{5} + \beta_{5} q^{6} + ( \beta_{1} - 3 \beta_{5} ) q^{7} + \beta_{5} q^{8} + q^{9} +O(q^{10})\) \( q -\beta_{5} q^{2} - q^{3} - q^{4} + \beta_{5} q^{5} + \beta_{5} q^{6} + ( \beta_{1} - 3 \beta_{5} ) q^{7} + \beta_{5} q^{8} + q^{9} + q^{10} + ( -\beta_{3} - \beta_{5} ) q^{11} + q^{12} + ( -3 + \beta_{4} ) q^{14} -\beta_{5} q^{15} + q^{16} + ( -2 - \beta_{2} + 4 \beta_{4} ) q^{17} -\beta_{5} q^{18} -3 \beta_{1} q^{19} -\beta_{5} q^{20} + ( -\beta_{1} + 3 \beta_{5} ) q^{21} + ( -\beta_{2} - \beta_{4} ) q^{22} + ( -2 - \beta_{2} - 4 \beta_{4} ) q^{23} -\beta_{5} q^{24} - q^{25} - q^{27} + ( -\beta_{1} + 3 \beta_{5} ) q^{28} + ( 1 + 2 \beta_{2} - 3 \beta_{4} ) q^{29} - q^{30} + ( 2 \beta_{1} - \beta_{3} - \beta_{5} ) q^{31} -\beta_{5} q^{32} + ( \beta_{3} + \beta_{5} ) q^{33} + ( -5 \beta_{1} + \beta_{3} + 3 \beta_{5} ) q^{34} + ( 3 - \beta_{4} ) q^{35} - q^{36} + ( 3 \beta_{1} - 8 \beta_{3} - \beta_{5} ) q^{37} -3 \beta_{4} q^{38} - q^{40} + ( -\beta_{1} - 2 \beta_{3} + 4 \beta_{5} ) q^{41} + ( 3 - \beta_{4} ) q^{42} + ( 3 - \beta_{2} - 3 \beta_{4} ) q^{43} + ( \beta_{3} + \beta_{5} ) q^{44} + \beta_{5} q^{45} + ( 3 \beta_{1} + \beta_{3} + 3 \beta_{5} ) q^{46} + ( -6 \beta_{1} + 10 \beta_{3} + 3 \beta_{5} ) q^{47} - q^{48} + ( -4 + \beta_{2} + 6 \beta_{4} ) q^{49} + \beta_{5} q^{50} + ( 2 + \beta_{2} - 4 \beta_{4} ) q^{51} + ( 10 - 6 \beta_{2} - 5 \beta_{4} ) q^{53} + \beta_{5} q^{54} + ( \beta_{2} + \beta_{4} ) q^{55} + ( 3 - \beta_{4} ) q^{56} + 3 \beta_{1} q^{57} + ( 5 \beta_{1} - 2 \beta_{3} - 3 \beta_{5} ) q^{58} + ( 4 \beta_{1} - 3 \beta_{3} - 10 \beta_{5} ) q^{59} + \beta_{5} q^{60} + ( -5 + \beta_{2} + 5 \beta_{4} ) q^{61} + ( -\beta_{2} + \beta_{4} ) q^{62} + ( \beta_{1} - 3 \beta_{5} ) q^{63} - q^{64} + ( \beta_{2} + \beta_{4} ) q^{66} + ( -5 \beta_{1} + 3 \beta_{3} + 7 \beta_{5} ) q^{67} + ( 2 + \beta_{2} - 4 \beta_{4} ) q^{68} + ( 2 + \beta_{2} + 4 \beta_{4} ) q^{69} + ( \beta_{1} - 3 \beta_{5} ) q^{70} + ( \beta_{1} + \beta_{3} + \beta_{5} ) q^{71} + \beta_{5} q^{72} + ( -5 \beta_{1} + 3 \beta_{3} - 3 \beta_{5} ) q^{73} + ( 7 - 8 \beta_{2} - 5 \beta_{4} ) q^{74} + q^{75} + 3 \beta_{1} q^{76} + ( 1 - 3 \beta_{2} - 3 \beta_{4} ) q^{77} + ( -10 + 5 \beta_{4} ) q^{79} + \beta_{5} q^{80} + q^{81} + ( 6 - 2 \beta_{2} - 3 \beta_{4} ) q^{82} + ( 7 \beta_{3} + 9 \beta_{5} ) q^{83} + ( \beta_{1} - 3 \beta_{5} ) q^{84} + ( 5 \beta_{1} - \beta_{3} - 3 \beta_{5} ) q^{85} + ( 2 \beta_{1} + \beta_{3} - 2 \beta_{5} ) q^{86} + ( -1 - 2 \beta_{2} + 3 \beta_{4} ) q^{87} + ( \beta_{2} + \beta_{4} ) q^{88} + ( -5 \beta_{1} - 5 \beta_{3} - 7 \beta_{5} ) q^{89} + q^{90} + ( 2 + \beta_{2} + 4 \beta_{4} ) q^{92} + ( -2 \beta_{1} + \beta_{3} + \beta_{5} ) q^{93} + ( -7 + 10 \beta_{2} + 4 \beta_{4} ) q^{94} + 3 \beta_{4} q^{95} + \beta_{5} q^{96} + ( 3 \beta_{1} - 6 \beta_{3} - \beta_{5} ) q^{97} + ( -5 \beta_{1} - \beta_{3} + 3 \beta_{5} ) q^{98} + ( -\beta_{3} - \beta_{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 6q^{3} - 6q^{4} + 6q^{9} + O(q^{10}) \) \( 6q - 6q^{3} - 6q^{4} + 6q^{9} + 6q^{10} + 6q^{12} - 16q^{14} + 6q^{16} - 6q^{17} - 4q^{22} - 22q^{23} - 6q^{25} - 6q^{27} + 4q^{29} - 6q^{30} + 16q^{35} - 6q^{36} - 6q^{38} - 6q^{40} + 16q^{42} + 10q^{43} - 6q^{48} - 10q^{49} + 6q^{51} + 38q^{53} + 4q^{55} + 16q^{56} - 18q^{61} - 6q^{64} + 4q^{66} + 6q^{68} + 22q^{69} + 16q^{74} + 6q^{75} - 6q^{77} - 50q^{79} + 6q^{81} + 26q^{82} - 4q^{87} + 4q^{88} + 6q^{90} + 22q^{92} - 14q^{94} + 6q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} + 5 x^{4} + 6 x^{2} + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} + 2 \)
\(\beta_{3}\)\(=\)\( \nu^{3} + 3 \nu \)
\(\beta_{4}\)\(=\)\( \nu^{4} + 3 \nu^{2} + 1 \)
\(\beta_{5}\)\(=\)\( \nu^{5} + 4 \nu^{3} + 3 \nu \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} - 2\)
\(\nu^{3}\)\(=\)\(\beta_{3} - 3 \beta_{1}\)
\(\nu^{4}\)\(=\)\(\beta_{4} - 3 \beta_{2} + 5\)
\(\nu^{5}\)\(=\)\(\beta_{5} - 4 \beta_{3} + 9 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5070\mathbb{Z}\right)^\times\).

\(n\) \(1691\) \(1861\) \(4057\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
1.24698i
0.445042i
1.80194i
1.80194i
0.445042i
1.24698i
1.00000i −1.00000 −1.00000 1.00000i 1.00000i 4.24698i 1.00000i 1.00000 1.00000
1351.2 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.55496i 1.00000i 1.00000 1.00000
1351.3 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 1.19806i 1.00000i 1.00000 1.00000
1351.4 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 1.19806i 1.00000i 1.00000 1.00000
1351.5 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.55496i 1.00000i 1.00000 1.00000
1351.6 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 4.24698i 1.00000i 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1351.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5070.2.b.u 6
13.b even 2 1 inner 5070.2.b.u 6
13.d odd 4 1 5070.2.a.bm 3
13.d odd 4 1 5070.2.a.br yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5070.2.a.bm 3 13.d odd 4 1
5070.2.a.br yes 3 13.d odd 4 1
5070.2.b.u 6 1.a even 1 1 trivial
5070.2.b.u 6 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5070, [\chi])\):

\( T_{7}^{6} + 26 T_{7}^{4} + 153 T_{7}^{2} + 169 \)
\( T_{11}^{6} + 6 T_{11}^{4} + 5 T_{11}^{2} + 1 \)
\( T_{17}^{3} + 3 T_{17}^{2} - 46 T_{17} - 97 \)
\( T_{31}^{6} + 14 T_{31}^{4} + 49 T_{31}^{2} + 49 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T^{2} )^{3} \)
$3$ \( ( 1 + T )^{6} \)
$5$ \( ( 1 + T^{2} )^{3} \)
$7$ \( 169 + 153 T^{2} + 26 T^{4} + T^{6} \)
$11$ \( 1 + 5 T^{2} + 6 T^{4} + T^{6} \)
$13$ \( T^{6} \)
$17$ \( ( -97 - 46 T + 3 T^{2} + T^{3} )^{2} \)
$19$ \( 729 + 486 T^{2} + 45 T^{4} + T^{6} \)
$23$ \( ( -113 + 10 T + 11 T^{2} + T^{3} )^{2} \)
$29$ \( ( 127 - 43 T - 2 T^{2} + T^{3} )^{2} \)
$31$ \( 49 + 49 T^{2} + 14 T^{4} + T^{6} \)
$37$ \( 552049 + 20537 T^{2} + 250 T^{4} + T^{6} \)
$41$ \( 841 + 846 T^{2} + 89 T^{4} + T^{6} \)
$43$ \( ( -1 - 8 T - 5 T^{2} + T^{3} )^{2} \)
$47$ \( 1399489 + 42483 T^{2} + 371 T^{4} + T^{6} \)
$53$ \( ( 349 + 48 T - 19 T^{2} + T^{3} )^{2} \)
$59$ \( 27889 + 13634 T^{2} + 237 T^{4} + T^{6} \)
$61$ \( ( -29 - 22 T + 9 T^{2} + T^{3} )^{2} \)
$67$ \( 49729 + 5942 T^{2} + 145 T^{4} + T^{6} \)
$71$ \( 169 + 94 T^{2} + 17 T^{4} + T^{6} \)
$73$ \( 1849 + 1242 T^{2} + 185 T^{4} + T^{6} \)
$79$ \( ( 125 + 150 T + 25 T^{2} + T^{3} )^{2} \)
$83$ \( 142129 + 15441 T^{2} + 362 T^{4} + T^{6} \)
$89$ \( 3087049 + 74578 T^{2} + 497 T^{4} + T^{6} \)
$97$ \( 94249 + 6285 T^{2} + 138 T^{4} + T^{6} \)
show more
show less