Properties

Label 5070.2.b.q
Level $5070$
Weight $2$
Character orbit 5070.b
Analytic conductor $40.484$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5070,2,Mod(1351,5070)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5070.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5070, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5070.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,-4,0,0,0,0,4,-4,0,-4,0,0,0,4,8,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4841538248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} - q^{4} - \beta_1 q^{5} - \beta_1 q^{6} - \beta_{2} q^{7} + \beta_1 q^{8} + q^{9} - q^{10} + 2 \beta_{2} q^{11} - q^{12} - \beta_{3} q^{14} - \beta_1 q^{15} + q^{16} + ( - \beta_{3} + 2) q^{17}+ \cdots + 2 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{4} + 4 q^{9} - 4 q^{10} - 4 q^{12} + 4 q^{16} + 8 q^{17} - 4 q^{25} + 4 q^{27} - 24 q^{29} - 4 q^{30} - 4 q^{36} + 4 q^{40} - 16 q^{43} + 4 q^{48} - 4 q^{49} + 8 q^{51} + 8 q^{53} + 24 q^{61}+ \cdots - 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5070\mathbb{Z}\right)^\times\).

\(n\) \(1691\) \(1861\) \(4057\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
1.00000i 1.00000 −1.00000 1.00000i 1.00000i 2.82843i 1.00000i 1.00000 −1.00000
1351.2 1.00000i 1.00000 −1.00000 1.00000i 1.00000i 2.82843i 1.00000i 1.00000 −1.00000
1351.3 1.00000i 1.00000 −1.00000 1.00000i 1.00000i 2.82843i 1.00000i 1.00000 −1.00000
1351.4 1.00000i 1.00000 −1.00000 1.00000i 1.00000i 2.82843i 1.00000i 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5070.2.b.q 4
13.b even 2 1 inner 5070.2.b.q 4
13.d odd 4 1 390.2.a.h 2
13.d odd 4 1 5070.2.a.bc 2
39.f even 4 1 1170.2.a.o 2
52.f even 4 1 3120.2.a.bc 2
65.f even 4 1 1950.2.e.o 4
65.g odd 4 1 1950.2.a.bd 2
65.k even 4 1 1950.2.e.o 4
156.l odd 4 1 9360.2.a.ch 2
195.j odd 4 1 5850.2.e.bk 4
195.n even 4 1 5850.2.a.cl 2
195.u odd 4 1 5850.2.e.bk 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.h 2 13.d odd 4 1
1170.2.a.o 2 39.f even 4 1
1950.2.a.bd 2 65.g odd 4 1
1950.2.e.o 4 65.f even 4 1
1950.2.e.o 4 65.k even 4 1
3120.2.a.bc 2 52.f even 4 1
5070.2.a.bc 2 13.d odd 4 1
5070.2.b.q 4 1.a even 1 1 trivial
5070.2.b.q 4 13.b even 2 1 inner
5850.2.a.cl 2 195.n even 4 1
5850.2.e.bk 4 195.j odd 4 1
5850.2.e.bk 4 195.u odd 4 1
9360.2.a.ch 2 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5070, [\chi])\):

\( T_{7}^{2} + 8 \) Copy content Toggle raw display
\( T_{11}^{2} + 32 \) Copy content Toggle raw display
\( T_{17}^{2} - 4T_{17} - 4 \) Copy content Toggle raw display
\( T_{31}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T - 4)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 12 T + 28)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
$41$ \( T^{4} + 72T^{2} + 784 \) Copy content Toggle raw display
$43$ \( (T^{2} + 8 T - 16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 4 T - 124)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 192T^{2} + 1024 \) Copy content Toggle raw display
$61$ \( (T - 6)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 216T^{2} + 1296 \) Copy content Toggle raw display
$79$ \( (T^{2} - 16 T + 32)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 352 T^{2} + 12544 \) Copy content Toggle raw display
$89$ \( T^{4} + 264T^{2} + 4624 \) Copy content Toggle raw display
$97$ \( T^{4} + 88T^{2} + 784 \) Copy content Toggle raw display
show more
show less