Properties

Label 5070.2.b.o
Level $5070$
Weight $2$
Character orbit 5070.b
Analytic conductor $40.484$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5070.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(40.4841538248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12}^{3} q^{2} - q^{3} - q^{4} + \zeta_{12}^{3} q^{5} -\zeta_{12}^{3} q^{6} -2 \zeta_{12}^{3} q^{7} -\zeta_{12}^{3} q^{8} + q^{9} +O(q^{10})\) \( q + \zeta_{12}^{3} q^{2} - q^{3} - q^{4} + \zeta_{12}^{3} q^{5} -\zeta_{12}^{3} q^{6} -2 \zeta_{12}^{3} q^{7} -\zeta_{12}^{3} q^{8} + q^{9} - q^{10} + ( -2 + 4 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{11} + q^{12} + 2 q^{14} -\zeta_{12}^{3} q^{15} + q^{16} -4 q^{17} + \zeta_{12}^{3} q^{18} + ( 2 - 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{19} -\zeta_{12}^{3} q^{20} + 2 \zeta_{12}^{3} q^{21} + ( 3 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{22} + ( 2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{23} + \zeta_{12}^{3} q^{24} - q^{25} - q^{27} + 2 \zeta_{12}^{3} q^{28} + ( 2 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{29} + q^{30} + ( -1 + 2 \zeta_{12}^{2} ) q^{31} + \zeta_{12}^{3} q^{32} + ( 2 - 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{33} -4 \zeta_{12}^{3} q^{34} + 2 q^{35} - q^{36} + ( -3 + 6 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{37} + ( -4 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{38} + q^{40} -2 \zeta_{12}^{3} q^{41} -2 q^{42} + ( 5 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{43} + ( 2 - 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{44} + \zeta_{12}^{3} q^{45} + ( 1 - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{46} + ( 2 - 4 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{47} - q^{48} + 3 q^{49} -\zeta_{12}^{3} q^{50} + 4 q^{51} + ( -6 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{53} -\zeta_{12}^{3} q^{54} + ( 3 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{55} -2 q^{56} + ( -2 + 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{57} + ( -1 + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{58} + ( 2 - 4 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{59} + \zeta_{12}^{3} q^{60} + ( 12 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{61} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{62} -2 \zeta_{12}^{3} q^{63} - q^{64} + ( -3 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{66} + ( 2 - 4 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{67} + 4 q^{68} + ( -2 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{69} + 2 \zeta_{12}^{3} q^{70} + ( -6 + 12 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{71} -\zeta_{12}^{3} q^{72} + 2 \zeta_{12}^{3} q^{73} + ( 4 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{74} + q^{75} + ( -2 + 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{76} + ( -6 + 8 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{77} + ( -7 + 8 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{79} + \zeta_{12}^{3} q^{80} + q^{81} + 2 q^{82} + ( 4 - 8 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{83} -2 \zeta_{12}^{3} q^{84} -4 \zeta_{12}^{3} q^{85} + ( 4 - 8 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{86} + ( -2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{87} + ( -3 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{88} + ( -2 + 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{89} - q^{90} + ( -2 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{92} + ( 1 - 2 \zeta_{12}^{2} ) q^{93} + ( 7 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{94} + ( -4 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{95} -\zeta_{12}^{3} q^{96} + ( -2 + 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{97} + 3 \zeta_{12}^{3} q^{98} + ( -2 + 4 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{3} - 4q^{4} + 4q^{9} + O(q^{10}) \) \( 4q - 4q^{3} - 4q^{4} + 4q^{9} - 4q^{10} + 4q^{12} + 8q^{14} + 4q^{16} - 16q^{17} + 12q^{22} + 8q^{23} - 4q^{25} - 4q^{27} + 8q^{29} + 4q^{30} + 8q^{35} - 4q^{36} - 16q^{38} + 4q^{40} - 8q^{42} + 20q^{43} - 4q^{48} + 12q^{49} + 16q^{51} - 24q^{53} + 12q^{55} - 8q^{56} - 4q^{64} - 12q^{66} + 16q^{68} - 8q^{69} + 16q^{74} + 4q^{75} - 24q^{77} - 28q^{79} + 4q^{81} + 8q^{82} - 8q^{87} - 12q^{88} - 4q^{90} - 8q^{92} + 28q^{94} - 16q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5070\mathbb{Z}\right)^\times\).

\(n\) \(1691\) \(1861\) \(4057\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.00000i 1.00000i 1.00000 −1.00000
1351.2 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.00000i 1.00000i 1.00000 −1.00000
1351.3 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.00000i 1.00000i 1.00000 −1.00000
1351.4 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.00000i 1.00000i 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5070.2.b.o 4
13.b even 2 1 inner 5070.2.b.o 4
13.c even 3 1 390.2.bb.b 4
13.d odd 4 1 5070.2.a.y 2
13.d odd 4 1 5070.2.a.bg 2
13.e even 6 1 390.2.bb.b 4
39.h odd 6 1 1170.2.bs.e 4
39.i odd 6 1 1170.2.bs.e 4
65.l even 6 1 1950.2.bc.b 4
65.n even 6 1 1950.2.bc.b 4
65.q odd 12 1 1950.2.y.c 4
65.q odd 12 1 1950.2.y.f 4
65.r odd 12 1 1950.2.y.c 4
65.r odd 12 1 1950.2.y.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.bb.b 4 13.c even 3 1
390.2.bb.b 4 13.e even 6 1
1170.2.bs.e 4 39.h odd 6 1
1170.2.bs.e 4 39.i odd 6 1
1950.2.y.c 4 65.q odd 12 1
1950.2.y.c 4 65.r odd 12 1
1950.2.y.f 4 65.q odd 12 1
1950.2.y.f 4 65.r odd 12 1
1950.2.bc.b 4 65.l even 6 1
1950.2.bc.b 4 65.n even 6 1
5070.2.a.y 2 13.d odd 4 1
5070.2.a.bg 2 13.d odd 4 1
5070.2.b.o 4 1.a even 1 1 trivial
5070.2.b.o 4 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5070, [\chi])\):

\( T_{7}^{2} + 4 \)
\( T_{11}^{4} + 42 T_{11}^{2} + 9 \)
\( T_{17} + 4 \)
\( T_{31}^{2} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T^{2} )^{2} \)
$3$ \( ( 1 + T )^{4} \)
$5$ \( ( 1 + T^{2} )^{2} \)
$7$ \( ( 4 + T^{2} )^{2} \)
$11$ \( 9 + 42 T^{2} + T^{4} \)
$13$ \( T^{4} \)
$17$ \( ( 4 + T )^{4} \)
$19$ \( 16 + 56 T^{2} + T^{4} \)
$23$ \( ( 1 - 4 T + T^{2} )^{2} \)
$29$ \( ( 1 - 4 T + T^{2} )^{2} \)
$31$ \( ( 3 + T^{2} )^{2} \)
$37$ \( 121 + 86 T^{2} + T^{4} \)
$41$ \( ( 4 + T^{2} )^{2} \)
$43$ \( ( -23 - 10 T + T^{2} )^{2} \)
$47$ \( 1369 + 122 T^{2} + T^{4} \)
$53$ \( ( -12 + 12 T + T^{2} )^{2} \)
$59$ \( 169 + 74 T^{2} + T^{4} \)
$61$ \( ( -108 + T^{2} )^{2} \)
$67$ \( 2704 + 152 T^{2} + T^{4} \)
$71$ \( 10816 + 224 T^{2} + T^{4} \)
$73$ \( ( 4 + T^{2} )^{2} \)
$79$ \( ( 1 + 14 T + T^{2} )^{2} \)
$83$ \( 1936 + 104 T^{2} + T^{4} \)
$89$ \( 16 + 56 T^{2} + T^{4} \)
$97$ \( 16 + 56 T^{2} + T^{4} \)
show more
show less