Properties

Label 5070.2.b.b.1351.2
Level $5070$
Weight $2$
Character 5070.1351
Analytic conductor $40.484$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5070,2,Mod(1351,5070)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5070.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5070, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5070.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,-2,0,0,0,0,2,-2,0,2,0,-6,0,2,0,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4841538248\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 5070.1351
Dual form 5070.2.b.b.1351.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{3} -1.00000 q^{4} +1.00000i q^{5} -1.00000i q^{6} +3.00000i q^{7} -1.00000i q^{8} +1.00000 q^{9} -1.00000 q^{10} -3.00000i q^{11} +1.00000 q^{12} -3.00000 q^{14} -1.00000i q^{15} +1.00000 q^{16} +1.00000i q^{18} -3.00000i q^{19} -1.00000i q^{20} -3.00000i q^{21} +3.00000 q^{22} +4.00000 q^{23} +1.00000i q^{24} -1.00000 q^{25} -1.00000 q^{27} -3.00000i q^{28} -4.00000 q^{29} +1.00000 q^{30} -6.00000i q^{31} +1.00000i q^{32} +3.00000i q^{33} -3.00000 q^{35} -1.00000 q^{36} +9.00000i q^{37} +3.00000 q^{38} +1.00000 q^{40} +10.0000i q^{41} +3.00000 q^{42} +10.0000 q^{43} +3.00000i q^{44} +1.00000i q^{45} +4.00000i q^{46} -3.00000i q^{47} -1.00000 q^{48} -2.00000 q^{49} -1.00000i q^{50} +9.00000 q^{53} -1.00000i q^{54} +3.00000 q^{55} +3.00000 q^{56} +3.00000i q^{57} -4.00000i q^{58} +12.0000i q^{59} +1.00000i q^{60} -6.00000 q^{61} +6.00000 q^{62} +3.00000i q^{63} -1.00000 q^{64} -3.00000 q^{66} +8.00000i q^{67} -4.00000 q^{69} -3.00000i q^{70} +14.0000i q^{71} -1.00000i q^{72} -8.00000i q^{73} -9.00000 q^{74} +1.00000 q^{75} +3.00000i q^{76} +9.00000 q^{77} +6.00000 q^{79} +1.00000i q^{80} +1.00000 q^{81} -10.0000 q^{82} -16.0000i q^{83} +3.00000i q^{84} +10.0000i q^{86} +4.00000 q^{87} -3.00000 q^{88} -3.00000i q^{89} -1.00000 q^{90} -4.00000 q^{92} +6.00000i q^{93} +3.00000 q^{94} +3.00000 q^{95} -1.00000i q^{96} -8.00000i q^{97} -2.00000i q^{98} -3.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{4} + 2 q^{9} - 2 q^{10} + 2 q^{12} - 6 q^{14} + 2 q^{16} + 6 q^{22} + 8 q^{23} - 2 q^{25} - 2 q^{27} - 8 q^{29} + 2 q^{30} - 6 q^{35} - 2 q^{36} + 6 q^{38} + 2 q^{40} + 6 q^{42} + 20 q^{43}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5070\mathbb{Z}\right)^\times\).

\(n\) \(1691\) \(1861\) \(4057\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.00000 −0.577350
\(4\) −1.00000 −0.500000
\(5\) 1.00000i 0.447214i
\(6\) − 1.00000i − 0.408248i
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) − 3.00000i − 0.904534i −0.891883 0.452267i \(-0.850615\pi\)
0.891883 0.452267i \(-0.149385\pi\)
\(12\) 1.00000 0.288675
\(13\) 0 0
\(14\) −3.00000 −0.801784
\(15\) − 1.00000i − 0.258199i
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.00000i 0.235702i
\(19\) − 3.00000i − 0.688247i −0.938924 0.344124i \(-0.888176\pi\)
0.938924 0.344124i \(-0.111824\pi\)
\(20\) − 1.00000i − 0.223607i
\(21\) − 3.00000i − 0.654654i
\(22\) 3.00000 0.639602
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) − 3.00000i − 0.566947i
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 1.00000 0.182574
\(31\) − 6.00000i − 1.07763i −0.842424 0.538816i \(-0.818872\pi\)
0.842424 0.538816i \(-0.181128\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 3.00000i 0.522233i
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) −1.00000 −0.166667
\(37\) 9.00000i 1.47959i 0.672832 + 0.739795i \(0.265078\pi\)
−0.672832 + 0.739795i \(0.734922\pi\)
\(38\) 3.00000 0.486664
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 10.0000i 1.56174i 0.624695 + 0.780869i \(0.285223\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 3.00000 0.462910
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 3.00000i 0.452267i
\(45\) 1.00000i 0.149071i
\(46\) 4.00000i 0.589768i
\(47\) − 3.00000i − 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) −1.00000 −0.144338
\(49\) −2.00000 −0.285714
\(50\) − 1.00000i − 0.141421i
\(51\) 0 0
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) − 1.00000i − 0.136083i
\(55\) 3.00000 0.404520
\(56\) 3.00000 0.400892
\(57\) 3.00000i 0.397360i
\(58\) − 4.00000i − 0.525226i
\(59\) 12.0000i 1.56227i 0.624364 + 0.781133i \(0.285358\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(60\) 1.00000i 0.129099i
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 6.00000 0.762001
\(63\) 3.00000i 0.377964i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −3.00000 −0.369274
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) − 3.00000i − 0.358569i
\(71\) 14.0000i 1.66149i 0.556650 + 0.830747i \(0.312086\pi\)
−0.556650 + 0.830747i \(0.687914\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) − 8.00000i − 0.936329i −0.883641 0.468165i \(-0.844915\pi\)
0.883641 0.468165i \(-0.155085\pi\)
\(74\) −9.00000 −1.04623
\(75\) 1.00000 0.115470
\(76\) 3.00000i 0.344124i
\(77\) 9.00000 1.02565
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 1.00000 0.111111
\(82\) −10.0000 −1.10432
\(83\) − 16.0000i − 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 3.00000i 0.327327i
\(85\) 0 0
\(86\) 10.0000i 1.07833i
\(87\) 4.00000 0.428845
\(88\) −3.00000 −0.319801
\(89\) − 3.00000i − 0.317999i −0.987279 0.159000i \(-0.949173\pi\)
0.987279 0.159000i \(-0.0508269\pi\)
\(90\) −1.00000 −0.105409
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 6.00000i 0.622171i
\(94\) 3.00000 0.309426
\(95\) 3.00000 0.307794
\(96\) − 1.00000i − 0.102062i
\(97\) − 8.00000i − 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) − 2.00000i − 0.202031i
\(99\) − 3.00000i − 0.301511i
\(100\) 1.00000 0.100000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 15.0000 1.47799 0.738997 0.673709i \(-0.235300\pi\)
0.738997 + 0.673709i \(0.235300\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) 9.00000i 0.874157i
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 1.00000 0.0962250
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 3.00000i 0.286039i
\(111\) − 9.00000i − 0.854242i
\(112\) 3.00000i 0.283473i
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) −3.00000 −0.280976
\(115\) 4.00000i 0.373002i
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) 2.00000 0.181818
\(122\) − 6.00000i − 0.543214i
\(123\) − 10.0000i − 0.901670i
\(124\) 6.00000i 0.538816i
\(125\) − 1.00000i − 0.0894427i
\(126\) −3.00000 −0.267261
\(127\) −3.00000 −0.266207 −0.133103 0.991102i \(-0.542494\pi\)
−0.133103 + 0.991102i \(0.542494\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) − 3.00000i − 0.261116i
\(133\) 9.00000 0.780399
\(134\) −8.00000 −0.691095
\(135\) − 1.00000i − 0.0860663i
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) − 4.00000i − 0.340503i
\(139\) −17.0000 −1.44192 −0.720961 0.692976i \(-0.756299\pi\)
−0.720961 + 0.692976i \(0.756299\pi\)
\(140\) 3.00000 0.253546
\(141\) 3.00000i 0.252646i
\(142\) −14.0000 −1.17485
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) − 4.00000i − 0.332182i
\(146\) 8.00000 0.662085
\(147\) 2.00000 0.164957
\(148\) − 9.00000i − 0.739795i
\(149\) 2.00000i 0.163846i 0.996639 + 0.0819232i \(0.0261062\pi\)
−0.996639 + 0.0819232i \(0.973894\pi\)
\(150\) 1.00000i 0.0816497i
\(151\) 14.0000i 1.13930i 0.821886 + 0.569652i \(0.192922\pi\)
−0.821886 + 0.569652i \(0.807078\pi\)
\(152\) −3.00000 −0.243332
\(153\) 0 0
\(154\) 9.00000i 0.725241i
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) −17.0000 −1.35675 −0.678374 0.734717i \(-0.737315\pi\)
−0.678374 + 0.734717i \(0.737315\pi\)
\(158\) 6.00000i 0.477334i
\(159\) −9.00000 −0.713746
\(160\) −1.00000 −0.0790569
\(161\) 12.0000i 0.945732i
\(162\) 1.00000i 0.0785674i
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) − 10.0000i − 0.780869i
\(165\) −3.00000 −0.233550
\(166\) 16.0000 1.24184
\(167\) 9.00000i 0.696441i 0.937413 + 0.348220i \(0.113214\pi\)
−0.937413 + 0.348220i \(0.886786\pi\)
\(168\) −3.00000 −0.231455
\(169\) 0 0
\(170\) 0 0
\(171\) − 3.00000i − 0.229416i
\(172\) −10.0000 −0.762493
\(173\) −13.0000 −0.988372 −0.494186 0.869356i \(-0.664534\pi\)
−0.494186 + 0.869356i \(0.664534\pi\)
\(174\) 4.00000i 0.303239i
\(175\) − 3.00000i − 0.226779i
\(176\) − 3.00000i − 0.226134i
\(177\) − 12.0000i − 0.901975i
\(178\) 3.00000 0.224860
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) − 1.00000i − 0.0745356i
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) − 4.00000i − 0.294884i
\(185\) −9.00000 −0.661693
\(186\) −6.00000 −0.439941
\(187\) 0 0
\(188\) 3.00000i 0.218797i
\(189\) − 3.00000i − 0.218218i
\(190\) 3.00000i 0.217643i
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 1.00000 0.0721688
\(193\) 8.00000i 0.575853i 0.957653 + 0.287926i \(0.0929658\pi\)
−0.957653 + 0.287926i \(0.907034\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) − 11.0000i − 0.783718i −0.920025 0.391859i \(-0.871832\pi\)
0.920025 0.391859i \(-0.128168\pi\)
\(198\) 3.00000 0.213201
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) − 8.00000i − 0.564276i
\(202\) 0 0
\(203\) − 12.0000i − 0.842235i
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) 15.0000i 1.04510i
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 3.00000i 0.207020i
\(211\) 9.00000 0.619586 0.309793 0.950804i \(-0.399740\pi\)
0.309793 + 0.950804i \(0.399740\pi\)
\(212\) −9.00000 −0.618123
\(213\) − 14.0000i − 0.959264i
\(214\) 2.00000i 0.136717i
\(215\) 10.0000i 0.681994i
\(216\) 1.00000i 0.0680414i
\(217\) 18.0000 1.22192
\(218\) −2.00000 −0.135457
\(219\) 8.00000i 0.540590i
\(220\) −3.00000 −0.202260
\(221\) 0 0
\(222\) 9.00000 0.604040
\(223\) 11.0000i 0.736614i 0.929704 + 0.368307i \(0.120063\pi\)
−0.929704 + 0.368307i \(0.879937\pi\)
\(224\) −3.00000 −0.200446
\(225\) −1.00000 −0.0666667
\(226\) − 8.00000i − 0.532152i
\(227\) 16.0000i 1.06196i 0.847385 + 0.530979i \(0.178176\pi\)
−0.847385 + 0.530979i \(0.821824\pi\)
\(228\) − 3.00000i − 0.198680i
\(229\) − 10.0000i − 0.660819i −0.943838 0.330409i \(-0.892813\pi\)
0.943838 0.330409i \(-0.107187\pi\)
\(230\) −4.00000 −0.263752
\(231\) −9.00000 −0.592157
\(232\) 4.00000i 0.262613i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) − 12.0000i − 0.781133i
\(237\) −6.00000 −0.389742
\(238\) 0 0
\(239\) 26.0000i 1.68180i 0.541190 + 0.840900i \(0.317974\pi\)
−0.541190 + 0.840900i \(0.682026\pi\)
\(240\) − 1.00000i − 0.0645497i
\(241\) 7.00000i 0.450910i 0.974254 + 0.225455i \(0.0723868\pi\)
−0.974254 + 0.225455i \(0.927613\pi\)
\(242\) 2.00000i 0.128565i
\(243\) −1.00000 −0.0641500
\(244\) 6.00000 0.384111
\(245\) − 2.00000i − 0.127775i
\(246\) 10.0000 0.637577
\(247\) 0 0
\(248\) −6.00000 −0.381000
\(249\) 16.0000i 1.01396i
\(250\) 1.00000 0.0632456
\(251\) 1.00000 0.0631194 0.0315597 0.999502i \(-0.489953\pi\)
0.0315597 + 0.999502i \(0.489953\pi\)
\(252\) − 3.00000i − 0.188982i
\(253\) − 12.0000i − 0.754434i
\(254\) − 3.00000i − 0.188237i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) − 10.0000i − 0.622573i
\(259\) −27.0000 −1.67770
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) − 3.00000i − 0.185341i
\(263\) −31.0000 −1.91154 −0.955771 0.294112i \(-0.904976\pi\)
−0.955771 + 0.294112i \(0.904976\pi\)
\(264\) 3.00000 0.184637
\(265\) 9.00000i 0.552866i
\(266\) 9.00000i 0.551825i
\(267\) 3.00000i 0.183597i
\(268\) − 8.00000i − 0.488678i
\(269\) −4.00000 −0.243884 −0.121942 0.992537i \(-0.538912\pi\)
−0.121942 + 0.992537i \(0.538912\pi\)
\(270\) 1.00000 0.0608581
\(271\) − 12.0000i − 0.728948i −0.931214 0.364474i \(-0.881249\pi\)
0.931214 0.364474i \(-0.118751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −12.0000 −0.724947
\(275\) 3.00000i 0.180907i
\(276\) 4.00000 0.240772
\(277\) 31.0000 1.86261 0.931305 0.364241i \(-0.118672\pi\)
0.931305 + 0.364241i \(0.118672\pi\)
\(278\) − 17.0000i − 1.01959i
\(279\) − 6.00000i − 0.359211i
\(280\) 3.00000i 0.179284i
\(281\) − 30.0000i − 1.78965i −0.446417 0.894825i \(-0.647300\pi\)
0.446417 0.894825i \(-0.352700\pi\)
\(282\) −3.00000 −0.178647
\(283\) −6.00000 −0.356663 −0.178331 0.983970i \(-0.557070\pi\)
−0.178331 + 0.983970i \(0.557070\pi\)
\(284\) − 14.0000i − 0.830747i
\(285\) −3.00000 −0.177705
\(286\) 0 0
\(287\) −30.0000 −1.77084
\(288\) 1.00000i 0.0589256i
\(289\) −17.0000 −1.00000
\(290\) 4.00000 0.234888
\(291\) 8.00000i 0.468968i
\(292\) 8.00000i 0.468165i
\(293\) − 1.00000i − 0.0584206i −0.999573 0.0292103i \(-0.990701\pi\)
0.999573 0.0292103i \(-0.00929925\pi\)
\(294\) 2.00000i 0.116642i
\(295\) −12.0000 −0.698667
\(296\) 9.00000 0.523114
\(297\) 3.00000i 0.174078i
\(298\) −2.00000 −0.115857
\(299\) 0 0
\(300\) −1.00000 −0.0577350
\(301\) 30.0000i 1.72917i
\(302\) −14.0000 −0.805609
\(303\) 0 0
\(304\) − 3.00000i − 0.172062i
\(305\) − 6.00000i − 0.343559i
\(306\) 0 0
\(307\) 26.0000i 1.48390i 0.670456 + 0.741949i \(0.266098\pi\)
−0.670456 + 0.741949i \(0.733902\pi\)
\(308\) −9.00000 −0.512823
\(309\) −15.0000 −0.853320
\(310\) 6.00000i 0.340777i
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) − 17.0000i − 0.959366i
\(315\) −3.00000 −0.169031
\(316\) −6.00000 −0.337526
\(317\) − 17.0000i − 0.954815i −0.878682 0.477408i \(-0.841577\pi\)
0.878682 0.477408i \(-0.158423\pi\)
\(318\) − 9.00000i − 0.504695i
\(319\) 12.0000i 0.671871i
\(320\) − 1.00000i − 0.0559017i
\(321\) −2.00000 −0.111629
\(322\) −12.0000 −0.668734
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −20.0000 −1.10770
\(327\) − 2.00000i − 0.110600i
\(328\) 10.0000 0.552158
\(329\) 9.00000 0.496186
\(330\) − 3.00000i − 0.165145i
\(331\) 28.0000i 1.53902i 0.638635 + 0.769510i \(0.279499\pi\)
−0.638635 + 0.769510i \(0.720501\pi\)
\(332\) 16.0000i 0.878114i
\(333\) 9.00000i 0.493197i
\(334\) −9.00000 −0.492458
\(335\) −8.00000 −0.437087
\(336\) − 3.00000i − 0.163663i
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) 0 0
\(339\) 8.00000 0.434500
\(340\) 0 0
\(341\) −18.0000 −0.974755
\(342\) 3.00000 0.162221
\(343\) 15.0000i 0.809924i
\(344\) − 10.0000i − 0.539164i
\(345\) − 4.00000i − 0.215353i
\(346\) − 13.0000i − 0.698884i
\(347\) −24.0000 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(348\) −4.00000 −0.214423
\(349\) 16.0000i 0.856460i 0.903670 + 0.428230i \(0.140863\pi\)
−0.903670 + 0.428230i \(0.859137\pi\)
\(350\) 3.00000 0.160357
\(351\) 0 0
\(352\) 3.00000 0.159901
\(353\) 8.00000i 0.425797i 0.977074 + 0.212899i \(0.0682904\pi\)
−0.977074 + 0.212899i \(0.931710\pi\)
\(354\) 12.0000 0.637793
\(355\) −14.0000 −0.743043
\(356\) 3.00000i 0.159000i
\(357\) 0 0
\(358\) − 4.00000i − 0.211407i
\(359\) 30.0000i 1.58334i 0.610949 + 0.791670i \(0.290788\pi\)
−0.610949 + 0.791670i \(0.709212\pi\)
\(360\) 1.00000 0.0527046
\(361\) 10.0000 0.526316
\(362\) 10.0000i 0.525588i
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) 6.00000i 0.313625i
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 4.00000 0.208514
\(369\) 10.0000i 0.520579i
\(370\) − 9.00000i − 0.467888i
\(371\) 27.0000i 1.40177i
\(372\) − 6.00000i − 0.311086i
\(373\) −26.0000 −1.34623 −0.673114 0.739538i \(-0.735044\pi\)
−0.673114 + 0.739538i \(0.735044\pi\)
\(374\) 0 0
\(375\) 1.00000i 0.0516398i
\(376\) −3.00000 −0.154713
\(377\) 0 0
\(378\) 3.00000 0.154303
\(379\) 33.0000i 1.69510i 0.530719 + 0.847548i \(0.321922\pi\)
−0.530719 + 0.847548i \(0.678078\pi\)
\(380\) −3.00000 −0.153897
\(381\) 3.00000 0.153695
\(382\) − 6.00000i − 0.306987i
\(383\) − 4.00000i − 0.204390i −0.994764 0.102195i \(-0.967413\pi\)
0.994764 0.102195i \(-0.0325866\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 9.00000i 0.458682i
\(386\) −8.00000 −0.407189
\(387\) 10.0000 0.508329
\(388\) 8.00000i 0.406138i
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.00000i 0.101015i
\(393\) 3.00000 0.151330
\(394\) 11.0000 0.554172
\(395\) 6.00000i 0.301893i
\(396\) 3.00000i 0.150756i
\(397\) − 23.0000i − 1.15434i −0.816625 0.577168i \(-0.804158\pi\)
0.816625 0.577168i \(-0.195842\pi\)
\(398\) 10.0000i 0.501255i
\(399\) −9.00000 −0.450564
\(400\) −1.00000 −0.0500000
\(401\) − 27.0000i − 1.34832i −0.738587 0.674158i \(-0.764507\pi\)
0.738587 0.674158i \(-0.235493\pi\)
\(402\) 8.00000 0.399004
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 12.0000 0.595550
\(407\) 27.0000 1.33834
\(408\) 0 0
\(409\) 7.00000i 0.346128i 0.984911 + 0.173064i \(0.0553667\pi\)
−0.984911 + 0.173064i \(0.944633\pi\)
\(410\) − 10.0000i − 0.493865i
\(411\) − 12.0000i − 0.591916i
\(412\) −15.0000 −0.738997
\(413\) −36.0000 −1.77144
\(414\) 4.00000i 0.196589i
\(415\) 16.0000 0.785409
\(416\) 0 0
\(417\) 17.0000 0.832494
\(418\) − 9.00000i − 0.440204i
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) −3.00000 −0.146385
\(421\) 28.0000i 1.36464i 0.731055 + 0.682318i \(0.239028\pi\)
−0.731055 + 0.682318i \(0.760972\pi\)
\(422\) 9.00000i 0.438113i
\(423\) − 3.00000i − 0.145865i
\(424\) − 9.00000i − 0.437079i
\(425\) 0 0
\(426\) 14.0000 0.678302
\(427\) − 18.0000i − 0.871081i
\(428\) −2.00000 −0.0966736
\(429\) 0 0
\(430\) −10.0000 −0.482243
\(431\) 12.0000i 0.578020i 0.957326 + 0.289010i \(0.0933260\pi\)
−0.957326 + 0.289010i \(0.906674\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 18.0000i 0.864028i
\(435\) 4.00000i 0.191785i
\(436\) − 2.00000i − 0.0957826i
\(437\) − 12.0000i − 0.574038i
\(438\) −8.00000 −0.382255
\(439\) 30.0000 1.43182 0.715911 0.698192i \(-0.246012\pi\)
0.715911 + 0.698192i \(0.246012\pi\)
\(440\) − 3.00000i − 0.143019i
\(441\) −2.00000 −0.0952381
\(442\) 0 0
\(443\) −10.0000 −0.475114 −0.237557 0.971374i \(-0.576347\pi\)
−0.237557 + 0.971374i \(0.576347\pi\)
\(444\) 9.00000i 0.427121i
\(445\) 3.00000 0.142214
\(446\) −11.0000 −0.520865
\(447\) − 2.00000i − 0.0945968i
\(448\) − 3.00000i − 0.141737i
\(449\) − 35.0000i − 1.65175i −0.563852 0.825876i \(-0.690681\pi\)
0.563852 0.825876i \(-0.309319\pi\)
\(450\) − 1.00000i − 0.0471405i
\(451\) 30.0000 1.41264
\(452\) 8.00000 0.376288
\(453\) − 14.0000i − 0.657777i
\(454\) −16.0000 −0.750917
\(455\) 0 0
\(456\) 3.00000 0.140488
\(457\) 42.0000i 1.96468i 0.187112 + 0.982339i \(0.440087\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) 10.0000 0.467269
\(459\) 0 0
\(460\) − 4.00000i − 0.186501i
\(461\) 32.0000i 1.49039i 0.666847 + 0.745194i \(0.267643\pi\)
−0.666847 + 0.745194i \(0.732357\pi\)
\(462\) − 9.00000i − 0.418718i
\(463\) − 24.0000i − 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) −4.00000 −0.185695
\(465\) −6.00000 −0.278243
\(466\) 6.00000i 0.277945i
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) 3.00000i 0.138380i
\(471\) 17.0000 0.783319
\(472\) 12.0000 0.552345
\(473\) − 30.0000i − 1.37940i
\(474\) − 6.00000i − 0.275589i
\(475\) 3.00000i 0.137649i
\(476\) 0 0
\(477\) 9.00000 0.412082
\(478\) −26.0000 −1.18921
\(479\) 12.0000i 0.548294i 0.961688 + 0.274147i \(0.0883955\pi\)
−0.961688 + 0.274147i \(0.911605\pi\)
\(480\) 1.00000 0.0456435
\(481\) 0 0
\(482\) −7.00000 −0.318841
\(483\) − 12.0000i − 0.546019i
\(484\) −2.00000 −0.0909091
\(485\) 8.00000 0.363261
\(486\) − 1.00000i − 0.0453609i
\(487\) − 29.0000i − 1.31412i −0.753840 0.657058i \(-0.771801\pi\)
0.753840 0.657058i \(-0.228199\pi\)
\(488\) 6.00000i 0.271607i
\(489\) − 20.0000i − 0.904431i
\(490\) 2.00000 0.0903508
\(491\) −5.00000 −0.225647 −0.112823 0.993615i \(-0.535989\pi\)
−0.112823 + 0.993615i \(0.535989\pi\)
\(492\) 10.0000i 0.450835i
\(493\) 0 0
\(494\) 0 0
\(495\) 3.00000 0.134840
\(496\) − 6.00000i − 0.269408i
\(497\) −42.0000 −1.88396
\(498\) −16.0000 −0.716977
\(499\) − 20.0000i − 0.895323i −0.894203 0.447661i \(-0.852257\pi\)
0.894203 0.447661i \(-0.147743\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) − 9.00000i − 0.402090i
\(502\) 1.00000i 0.0446322i
\(503\) 21.0000 0.936344 0.468172 0.883637i \(-0.344913\pi\)
0.468172 + 0.883637i \(0.344913\pi\)
\(504\) 3.00000 0.133631
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) 3.00000 0.133103
\(509\) − 10.0000i − 0.443242i −0.975133 0.221621i \(-0.928865\pi\)
0.975133 0.221621i \(-0.0711348\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) 1.00000i 0.0441942i
\(513\) 3.00000i 0.132453i
\(514\) − 12.0000i − 0.529297i
\(515\) 15.0000i 0.660979i
\(516\) 10.0000 0.440225
\(517\) −9.00000 −0.395820
\(518\) − 27.0000i − 1.18631i
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) −35.0000 −1.53338 −0.766689 0.642019i \(-0.778097\pi\)
−0.766689 + 0.642019i \(0.778097\pi\)
\(522\) − 4.00000i − 0.175075i
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) 3.00000 0.131056
\(525\) 3.00000i 0.130931i
\(526\) − 31.0000i − 1.35166i
\(527\) 0 0
\(528\) 3.00000i 0.130558i
\(529\) −7.00000 −0.304348
\(530\) −9.00000 −0.390935
\(531\) 12.0000i 0.520756i
\(532\) −9.00000 −0.390199
\(533\) 0 0
\(534\) −3.00000 −0.129823
\(535\) 2.00000i 0.0864675i
\(536\) 8.00000 0.345547
\(537\) 4.00000 0.172613
\(538\) − 4.00000i − 0.172452i
\(539\) 6.00000i 0.258438i
\(540\) 1.00000i 0.0430331i
\(541\) − 22.0000i − 0.945854i −0.881102 0.472927i \(-0.843197\pi\)
0.881102 0.472927i \(-0.156803\pi\)
\(542\) 12.0000 0.515444
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) − 12.0000i − 0.512615i
\(549\) −6.00000 −0.256074
\(550\) −3.00000 −0.127920
\(551\) 12.0000i 0.511217i
\(552\) 4.00000i 0.170251i
\(553\) 18.0000i 0.765438i
\(554\) 31.0000i 1.31706i
\(555\) 9.00000 0.382029
\(556\) 17.0000 0.720961
\(557\) − 9.00000i − 0.381342i −0.981654 0.190671i \(-0.938934\pi\)
0.981654 0.190671i \(-0.0610664\pi\)
\(558\) 6.00000 0.254000
\(559\) 0 0
\(560\) −3.00000 −0.126773
\(561\) 0 0
\(562\) 30.0000 1.26547
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) − 3.00000i − 0.126323i
\(565\) − 8.00000i − 0.336563i
\(566\) − 6.00000i − 0.252199i
\(567\) 3.00000i 0.125988i
\(568\) 14.0000 0.587427
\(569\) 39.0000 1.63497 0.817483 0.575953i \(-0.195369\pi\)
0.817483 + 0.575953i \(0.195369\pi\)
\(570\) − 3.00000i − 0.125656i
\(571\) −23.0000 −0.962520 −0.481260 0.876578i \(-0.659821\pi\)
−0.481260 + 0.876578i \(0.659821\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) − 30.0000i − 1.25218i
\(575\) −4.00000 −0.166812
\(576\) −1.00000 −0.0416667
\(577\) 38.0000i 1.58196i 0.611842 + 0.790980i \(0.290429\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(578\) − 17.0000i − 0.707107i
\(579\) − 8.00000i − 0.332469i
\(580\) 4.00000i 0.166091i
\(581\) 48.0000 1.99138
\(582\) −8.00000 −0.331611
\(583\) − 27.0000i − 1.11823i
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 1.00000 0.0413096
\(587\) − 18.0000i − 0.742940i −0.928445 0.371470i \(-0.878854\pi\)
0.928445 0.371470i \(-0.121146\pi\)
\(588\) −2.00000 −0.0824786
\(589\) −18.0000 −0.741677
\(590\) − 12.0000i − 0.494032i
\(591\) 11.0000i 0.452480i
\(592\) 9.00000i 0.369898i
\(593\) 36.0000i 1.47834i 0.673517 + 0.739171i \(0.264783\pi\)
−0.673517 + 0.739171i \(0.735217\pi\)
\(594\) −3.00000 −0.123091
\(595\) 0 0
\(596\) − 2.00000i − 0.0819232i
\(597\) −10.0000 −0.409273
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) − 1.00000i − 0.0408248i
\(601\) 21.0000 0.856608 0.428304 0.903635i \(-0.359111\pi\)
0.428304 + 0.903635i \(0.359111\pi\)
\(602\) −30.0000 −1.22271
\(603\) 8.00000i 0.325785i
\(604\) − 14.0000i − 0.569652i
\(605\) 2.00000i 0.0813116i
\(606\) 0 0
\(607\) 27.0000 1.09590 0.547948 0.836512i \(-0.315409\pi\)
0.547948 + 0.836512i \(0.315409\pi\)
\(608\) 3.00000 0.121666
\(609\) 12.0000i 0.486265i
\(610\) 6.00000 0.242933
\(611\) 0 0
\(612\) 0 0
\(613\) 7.00000i 0.282727i 0.989958 + 0.141364i \(0.0451487\pi\)
−0.989958 + 0.141364i \(0.954851\pi\)
\(614\) −26.0000 −1.04927
\(615\) 10.0000 0.403239
\(616\) − 9.00000i − 0.362620i
\(617\) 30.0000i 1.20775i 0.797077 + 0.603877i \(0.206378\pi\)
−0.797077 + 0.603877i \(0.793622\pi\)
\(618\) − 15.0000i − 0.603388i
\(619\) − 23.0000i − 0.924448i −0.886763 0.462224i \(-0.847052\pi\)
0.886763 0.462224i \(-0.152948\pi\)
\(620\) −6.00000 −0.240966
\(621\) −4.00000 −0.160514
\(622\) 4.00000i 0.160385i
\(623\) 9.00000 0.360577
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 26.0000i 1.03917i
\(627\) 9.00000 0.359425
\(628\) 17.0000 0.678374
\(629\) 0 0
\(630\) − 3.00000i − 0.119523i
\(631\) 12.0000i 0.477712i 0.971055 + 0.238856i \(0.0767725\pi\)
−0.971055 + 0.238856i \(0.923228\pi\)
\(632\) − 6.00000i − 0.238667i
\(633\) −9.00000 −0.357718
\(634\) 17.0000 0.675156
\(635\) − 3.00000i − 0.119051i
\(636\) 9.00000 0.356873
\(637\) 0 0
\(638\) −12.0000 −0.475085
\(639\) 14.0000i 0.553831i
\(640\) 1.00000 0.0395285
\(641\) −35.0000 −1.38242 −0.691208 0.722655i \(-0.742921\pi\)
−0.691208 + 0.722655i \(0.742921\pi\)
\(642\) − 2.00000i − 0.0789337i
\(643\) − 28.0000i − 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) − 12.0000i − 0.472866i
\(645\) − 10.0000i − 0.393750i
\(646\) 0 0
\(647\) 45.0000 1.76913 0.884566 0.466415i \(-0.154454\pi\)
0.884566 + 0.466415i \(0.154454\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) −18.0000 −0.705476
\(652\) − 20.0000i − 0.783260i
\(653\) 3.00000 0.117399 0.0586995 0.998276i \(-0.481305\pi\)
0.0586995 + 0.998276i \(0.481305\pi\)
\(654\) 2.00000 0.0782062
\(655\) − 3.00000i − 0.117220i
\(656\) 10.0000i 0.390434i
\(657\) − 8.00000i − 0.312110i
\(658\) 9.00000i 0.350857i
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) 3.00000 0.116775
\(661\) 30.0000i 1.16686i 0.812162 + 0.583432i \(0.198291\pi\)
−0.812162 + 0.583432i \(0.801709\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) −16.0000 −0.620920
\(665\) 9.00000i 0.349005i
\(666\) −9.00000 −0.348743
\(667\) −16.0000 −0.619522
\(668\) − 9.00000i − 0.348220i
\(669\) − 11.0000i − 0.425285i
\(670\) − 8.00000i − 0.309067i
\(671\) 18.0000i 0.694882i
\(672\) 3.00000 0.115728
\(673\) −48.0000 −1.85026 −0.925132 0.379646i \(-0.876046\pi\)
−0.925132 + 0.379646i \(0.876046\pi\)
\(674\) − 6.00000i − 0.231111i
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 8.00000i 0.307238i
\(679\) 24.0000 0.921035
\(680\) 0 0
\(681\) − 16.0000i − 0.613121i
\(682\) − 18.0000i − 0.689256i
\(683\) 30.0000i 1.14792i 0.818884 + 0.573959i \(0.194593\pi\)
−0.818884 + 0.573959i \(0.805407\pi\)
\(684\) 3.00000i 0.114708i
\(685\) −12.0000 −0.458496
\(686\) −15.0000 −0.572703
\(687\) 10.0000i 0.381524i
\(688\) 10.0000 0.381246
\(689\) 0 0
\(690\) 4.00000 0.152277
\(691\) 7.00000i 0.266293i 0.991096 + 0.133146i \(0.0425080\pi\)
−0.991096 + 0.133146i \(0.957492\pi\)
\(692\) 13.0000 0.494186
\(693\) 9.00000 0.341882
\(694\) − 24.0000i − 0.911028i
\(695\) − 17.0000i − 0.644847i
\(696\) − 4.00000i − 0.151620i
\(697\) 0 0
\(698\) −16.0000 −0.605609
\(699\) −6.00000 −0.226941
\(700\) 3.00000i 0.113389i
\(701\) −24.0000 −0.906467 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(702\) 0 0
\(703\) 27.0000 1.01832
\(704\) 3.00000i 0.113067i
\(705\) −3.00000 −0.112987
\(706\) −8.00000 −0.301084
\(707\) 0 0
\(708\) 12.0000i 0.450988i
\(709\) − 40.0000i − 1.50223i −0.660171 0.751116i \(-0.729516\pi\)
0.660171 0.751116i \(-0.270484\pi\)
\(710\) − 14.0000i − 0.525411i
\(711\) 6.00000 0.225018
\(712\) −3.00000 −0.112430
\(713\) − 24.0000i − 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) − 26.0000i − 0.970988i
\(718\) −30.0000 −1.11959
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 1.00000i 0.0372678i
\(721\) 45.0000i 1.67589i
\(722\) 10.0000i 0.372161i
\(723\) − 7.00000i − 0.260333i
\(724\) −10.0000 −0.371647
\(725\) 4.00000 0.148556
\(726\) − 2.00000i − 0.0742270i
\(727\) 3.00000 0.111264 0.0556319 0.998451i \(-0.482283\pi\)
0.0556319 + 0.998451i \(0.482283\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 8.00000i 0.296093i
\(731\) 0 0
\(732\) −6.00000 −0.221766
\(733\) − 53.0000i − 1.95760i −0.204819 0.978800i \(-0.565661\pi\)
0.204819 0.978800i \(-0.434339\pi\)
\(734\) 8.00000i 0.295285i
\(735\) 2.00000i 0.0737711i
\(736\) 4.00000i 0.147442i
\(737\) 24.0000 0.884051
\(738\) −10.0000 −0.368105
\(739\) 11.0000i 0.404642i 0.979319 + 0.202321i \(0.0648484\pi\)
−0.979319 + 0.202321i \(0.935152\pi\)
\(740\) 9.00000 0.330847
\(741\) 0 0
\(742\) −27.0000 −0.991201
\(743\) − 48.0000i − 1.76095i −0.474093 0.880475i \(-0.657224\pi\)
0.474093 0.880475i \(-0.342776\pi\)
\(744\) 6.00000 0.219971
\(745\) −2.00000 −0.0732743
\(746\) − 26.0000i − 0.951928i
\(747\) − 16.0000i − 0.585409i
\(748\) 0 0
\(749\) 6.00000i 0.219235i
\(750\) −1.00000 −0.0365148
\(751\) 24.0000 0.875772 0.437886 0.899030i \(-0.355727\pi\)
0.437886 + 0.899030i \(0.355727\pi\)
\(752\) − 3.00000i − 0.109399i
\(753\) −1.00000 −0.0364420
\(754\) 0 0
\(755\) −14.0000 −0.509512
\(756\) 3.00000i 0.109109i
\(757\) 17.0000 0.617876 0.308938 0.951082i \(-0.400027\pi\)
0.308938 + 0.951082i \(0.400027\pi\)
\(758\) −33.0000 −1.19861
\(759\) 12.0000i 0.435572i
\(760\) − 3.00000i − 0.108821i
\(761\) − 31.0000i − 1.12375i −0.827222 0.561875i \(-0.810080\pi\)
0.827222 0.561875i \(-0.189920\pi\)
\(762\) 3.00000i 0.108679i
\(763\) −6.00000 −0.217215
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 4.00000 0.144526
\(767\) 0 0
\(768\) −1.00000 −0.0360844
\(769\) − 46.0000i − 1.65880i −0.558653 0.829401i \(-0.688682\pi\)
0.558653 0.829401i \(-0.311318\pi\)
\(770\) −9.00000 −0.324337
\(771\) 12.0000 0.432169
\(772\) − 8.00000i − 0.287926i
\(773\) 7.00000i 0.251773i 0.992045 + 0.125886i \(0.0401774\pi\)
−0.992045 + 0.125886i \(0.959823\pi\)
\(774\) 10.0000i 0.359443i
\(775\) 6.00000i 0.215526i
\(776\) −8.00000 −0.287183
\(777\) 27.0000 0.968620
\(778\) − 24.0000i − 0.860442i
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) 42.0000 1.50288
\(782\) 0 0
\(783\) 4.00000 0.142948
\(784\) −2.00000 −0.0714286
\(785\) − 17.0000i − 0.606756i
\(786\) 3.00000i 0.107006i
\(787\) − 36.0000i − 1.28326i −0.767014 0.641631i \(-0.778258\pi\)
0.767014 0.641631i \(-0.221742\pi\)
\(788\) 11.0000i 0.391859i
\(789\) 31.0000 1.10363
\(790\) −6.00000 −0.213470
\(791\) − 24.0000i − 0.853342i
\(792\) −3.00000 −0.106600
\(793\) 0 0
\(794\) 23.0000 0.816239
\(795\) − 9.00000i − 0.319197i
\(796\) −10.0000 −0.354441
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) − 9.00000i − 0.318597i
\(799\) 0 0
\(800\) − 1.00000i − 0.0353553i
\(801\) − 3.00000i − 0.106000i
\(802\) 27.0000 0.953403
\(803\) −24.0000 −0.846942
\(804\) 8.00000i 0.282138i
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) 4.00000 0.140807
\(808\) 0 0
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) −1.00000 −0.0351364
\(811\) 31.0000i 1.08856i 0.838905 + 0.544279i \(0.183197\pi\)
−0.838905 + 0.544279i \(0.816803\pi\)
\(812\) 12.0000i 0.421117i
\(813\) 12.0000i 0.420858i
\(814\) 27.0000i 0.946350i
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) − 30.0000i − 1.04957i
\(818\) −7.00000 −0.244749
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) − 50.0000i − 1.74501i −0.488603 0.872506i \(-0.662493\pi\)
0.488603 0.872506i \(-0.337507\pi\)
\(822\) 12.0000 0.418548
\(823\) 11.0000 0.383436 0.191718 0.981450i \(-0.438594\pi\)
0.191718 + 0.981450i \(0.438594\pi\)
\(824\) − 15.0000i − 0.522550i
\(825\) − 3.00000i − 0.104447i
\(826\) − 36.0000i − 1.25260i
\(827\) − 18.0000i − 0.625921i −0.949766 0.312961i \(-0.898679\pi\)
0.949766 0.312961i \(-0.101321\pi\)
\(828\) −4.00000 −0.139010
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 16.0000i 0.555368i
\(831\) −31.0000 −1.07538
\(832\) 0 0
\(833\) 0 0
\(834\) 17.0000i 0.588662i
\(835\) −9.00000 −0.311458
\(836\) 9.00000 0.311272
\(837\) 6.00000i 0.207390i
\(838\) − 12.0000i − 0.414533i
\(839\) − 6.00000i − 0.207143i −0.994622 0.103572i \(-0.966973\pi\)
0.994622 0.103572i \(-0.0330271\pi\)
\(840\) − 3.00000i − 0.103510i
\(841\) −13.0000 −0.448276
\(842\) −28.0000 −0.964944
\(843\) 30.0000i 1.03325i
\(844\) −9.00000 −0.309793
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) 6.00000i 0.206162i
\(848\) 9.00000 0.309061
\(849\) 6.00000 0.205919
\(850\) 0 0
\(851\) 36.0000i 1.23406i
\(852\) 14.0000i 0.479632i
\(853\) − 26.0000i − 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) 18.0000 0.615947
\(855\) 3.00000 0.102598
\(856\) − 2.00000i − 0.0683586i
\(857\) 50.0000 1.70797 0.853984 0.520300i \(-0.174180\pi\)
0.853984 + 0.520300i \(0.174180\pi\)
\(858\) 0 0
\(859\) −5.00000 −0.170598 −0.0852989 0.996355i \(-0.527185\pi\)
−0.0852989 + 0.996355i \(0.527185\pi\)
\(860\) − 10.0000i − 0.340997i
\(861\) 30.0000 1.02240
\(862\) −12.0000 −0.408722
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) − 1.00000i − 0.0340207i
\(865\) − 13.0000i − 0.442013i
\(866\) 16.0000i 0.543702i
\(867\) 17.0000 0.577350
\(868\) −18.0000 −0.610960
\(869\) − 18.0000i − 0.610608i
\(870\) −4.00000 −0.135613
\(871\) 0 0
\(872\) 2.00000 0.0677285
\(873\) − 8.00000i − 0.270759i
\(874\) 12.0000 0.405906
\(875\) 3.00000 0.101419
\(876\) − 8.00000i − 0.270295i
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 30.0000i 1.01245i
\(879\) 1.00000i 0.0337292i
\(880\) 3.00000 0.101130
\(881\) 23.0000 0.774890 0.387445 0.921893i \(-0.373358\pi\)
0.387445 + 0.921893i \(0.373358\pi\)
\(882\) − 2.00000i − 0.0673435i
\(883\) −22.0000 −0.740359 −0.370179 0.928960i \(-0.620704\pi\)
−0.370179 + 0.928960i \(0.620704\pi\)
\(884\) 0 0
\(885\) 12.0000 0.403376
\(886\) − 10.0000i − 0.335957i
\(887\) 9.00000 0.302190 0.151095 0.988519i \(-0.451720\pi\)
0.151095 + 0.988519i \(0.451720\pi\)
\(888\) −9.00000 −0.302020
\(889\) − 9.00000i − 0.301850i
\(890\) 3.00000i 0.100560i
\(891\) − 3.00000i − 0.100504i
\(892\) − 11.0000i − 0.368307i
\(893\) −9.00000 −0.301174
\(894\) 2.00000 0.0668900
\(895\) − 4.00000i − 0.133705i
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) 35.0000 1.16797
\(899\) 24.0000i 0.800445i
\(900\) 1.00000 0.0333333
\(901\) 0 0
\(902\) 30.0000i 0.998891i
\(903\) − 30.0000i − 0.998337i
\(904\) 8.00000i 0.266076i
\(905\) 10.0000i 0.332411i
\(906\) 14.0000 0.465119
\(907\) 14.0000 0.464862 0.232431 0.972613i \(-0.425332\pi\)
0.232431 + 0.972613i \(0.425332\pi\)
\(908\) − 16.0000i − 0.530979i
\(909\) 0 0
\(910\) 0 0
\(911\) 28.0000 0.927681 0.463841 0.885919i \(-0.346471\pi\)
0.463841 + 0.885919i \(0.346471\pi\)
\(912\) 3.00000i 0.0993399i
\(913\) −48.0000 −1.58857
\(914\) −42.0000 −1.38924
\(915\) 6.00000i 0.198354i
\(916\) 10.0000i 0.330409i
\(917\) − 9.00000i − 0.297206i
\(918\) 0 0
\(919\) 14.0000 0.461817 0.230909 0.972975i \(-0.425830\pi\)
0.230909 + 0.972975i \(0.425830\pi\)
\(920\) 4.00000 0.131876
\(921\) − 26.0000i − 0.856729i
\(922\) −32.0000 −1.05386
\(923\) 0 0
\(924\) 9.00000 0.296078
\(925\) − 9.00000i − 0.295918i
\(926\) 24.0000 0.788689
\(927\) 15.0000 0.492665
\(928\) − 4.00000i − 0.131306i
\(929\) − 2.00000i − 0.0656179i −0.999462 0.0328089i \(-0.989555\pi\)
0.999462 0.0328089i \(-0.0104453\pi\)
\(930\) − 6.00000i − 0.196748i
\(931\) 6.00000i 0.196642i
\(932\) −6.00000 −0.196537
\(933\) −4.00000 −0.130954
\(934\) − 8.00000i − 0.261768i
\(935\) 0 0
\(936\) 0 0
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) − 24.0000i − 0.783628i
\(939\) −26.0000 −0.848478
\(940\) −3.00000 −0.0978492
\(941\) 32.0000i 1.04317i 0.853199 + 0.521585i \(0.174659\pi\)
−0.853199 + 0.521585i \(0.825341\pi\)
\(942\) 17.0000i 0.553890i
\(943\) 40.0000i 1.30258i
\(944\) 12.0000i 0.390567i
\(945\) 3.00000 0.0975900
\(946\) 30.0000 0.975384
\(947\) 18.0000i 0.584921i 0.956278 + 0.292461i \(0.0944741\pi\)
−0.956278 + 0.292461i \(0.905526\pi\)
\(948\) 6.00000 0.194871
\(949\) 0 0
\(950\) −3.00000 −0.0973329
\(951\) 17.0000i 0.551263i
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 9.00000i 0.291386i
\(955\) − 6.00000i − 0.194155i
\(956\) − 26.0000i − 0.840900i
\(957\) − 12.0000i − 0.387905i
\(958\) −12.0000 −0.387702
\(959\) −36.0000 −1.16250
\(960\) 1.00000i 0.0322749i
\(961\) −5.00000 −0.161290
\(962\) 0 0
\(963\) 2.00000 0.0644491
\(964\) − 7.00000i − 0.225455i
\(965\) −8.00000 −0.257529
\(966\) 12.0000 0.386094
\(967\) − 25.0000i − 0.803946i −0.915652 0.401973i \(-0.868325\pi\)
0.915652 0.401973i \(-0.131675\pi\)
\(968\) − 2.00000i − 0.0642824i
\(969\) 0 0
\(970\) 8.00000i 0.256865i
\(971\) 15.0000 0.481373 0.240686 0.970603i \(-0.422627\pi\)
0.240686 + 0.970603i \(0.422627\pi\)
\(972\) 1.00000 0.0320750
\(973\) − 51.0000i − 1.63498i
\(974\) 29.0000 0.929220
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) 44.0000i 1.40768i 0.710356 + 0.703842i \(0.248534\pi\)
−0.710356 + 0.703842i \(0.751466\pi\)
\(978\) 20.0000 0.639529
\(979\) −9.00000 −0.287641
\(980\) 2.00000i 0.0638877i
\(981\) 2.00000i 0.0638551i
\(982\) − 5.00000i − 0.159556i
\(983\) 55.0000i 1.75423i 0.480283 + 0.877114i \(0.340534\pi\)
−0.480283 + 0.877114i \(0.659466\pi\)
\(984\) −10.0000 −0.318788
\(985\) 11.0000 0.350489
\(986\) 0 0
\(987\) −9.00000 −0.286473
\(988\) 0 0
\(989\) 40.0000 1.27193
\(990\) 3.00000i 0.0953463i
\(991\) 58.0000 1.84243 0.921215 0.389053i \(-0.127198\pi\)
0.921215 + 0.389053i \(0.127198\pi\)
\(992\) 6.00000 0.190500
\(993\) − 28.0000i − 0.888553i
\(994\) − 42.0000i − 1.33216i
\(995\) 10.0000i 0.317021i
\(996\) − 16.0000i − 0.506979i
\(997\) 47.0000 1.48850 0.744252 0.667898i \(-0.232806\pi\)
0.744252 + 0.667898i \(0.232806\pi\)
\(998\) 20.0000 0.633089
\(999\) − 9.00000i − 0.284747i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5070.2.b.b.1351.2 2
13.5 odd 4 5070.2.a.r.1.1 1
13.7 odd 12 390.2.i.e.211.1 yes 2
13.8 odd 4 5070.2.a.b.1.1 1
13.11 odd 12 390.2.i.e.61.1 2
13.12 even 2 inner 5070.2.b.b.1351.1 2
39.11 even 12 1170.2.i.c.451.1 2
39.20 even 12 1170.2.i.c.991.1 2
65.7 even 12 1950.2.z.d.1849.1 4
65.24 odd 12 1950.2.i.f.451.1 2
65.33 even 12 1950.2.z.d.1849.2 4
65.37 even 12 1950.2.z.d.1699.2 4
65.59 odd 12 1950.2.i.f.601.1 2
65.63 even 12 1950.2.z.d.1699.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.i.e.61.1 2 13.11 odd 12
390.2.i.e.211.1 yes 2 13.7 odd 12
1170.2.i.c.451.1 2 39.11 even 12
1170.2.i.c.991.1 2 39.20 even 12
1950.2.i.f.451.1 2 65.24 odd 12
1950.2.i.f.601.1 2 65.59 odd 12
1950.2.z.d.1699.1 4 65.63 even 12
1950.2.z.d.1699.2 4 65.37 even 12
1950.2.z.d.1849.1 4 65.7 even 12
1950.2.z.d.1849.2 4 65.33 even 12
5070.2.a.b.1.1 1 13.8 odd 4
5070.2.a.r.1.1 1 13.5 odd 4
5070.2.b.b.1351.1 2 13.12 even 2 inner
5070.2.b.b.1351.2 2 1.1 even 1 trivial