# Properties

 Label 5070.2.a.n Level $5070$ Weight $2$ Character orbit 5070.a Self dual yes Analytic conductor $40.484$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [5070,2,Mod(1,5070)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(5070, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("5070.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5070.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$40.4841538248$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 390) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 2 q^{7} + q^{8} + q^{9}+O(q^{10})$$ q + q^2 - q^3 + q^4 - q^5 - q^6 + 2 * q^7 + q^8 + q^9 $$q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 2 q^{7} + q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} + 2 q^{14} + q^{15} + q^{16} + 4 q^{17} + q^{18} + 2 q^{19} - q^{20} - 2 q^{21} - 4 q^{22} + 2 q^{23} - q^{24} + q^{25} - q^{27} + 2 q^{28} + 8 q^{29} + q^{30} - 4 q^{31} + q^{32} + 4 q^{33} + 4 q^{34} - 2 q^{35} + q^{36} - 6 q^{37} + 2 q^{38} - q^{40} - 10 q^{41} - 2 q^{42} + 4 q^{43} - 4 q^{44} - q^{45} + 2 q^{46} - q^{48} - 3 q^{49} + q^{50} - 4 q^{51} + 6 q^{53} - q^{54} + 4 q^{55} + 2 q^{56} - 2 q^{57} + 8 q^{58} + 12 q^{59} + q^{60} - 2 q^{61} - 4 q^{62} + 2 q^{63} + q^{64} + 4 q^{66} + 8 q^{67} + 4 q^{68} - 2 q^{69} - 2 q^{70} + q^{72} - 6 q^{74} - q^{75} + 2 q^{76} - 8 q^{77} - 8 q^{79} - q^{80} + q^{81} - 10 q^{82} + 12 q^{83} - 2 q^{84} - 4 q^{85} + 4 q^{86} - 8 q^{87} - 4 q^{88} + 10 q^{89} - q^{90} + 2 q^{92} + 4 q^{93} - 2 q^{95} - q^{96} + 8 q^{97} - 3 q^{98} - 4 q^{99}+O(q^{100})$$ q + q^2 - q^3 + q^4 - q^5 - q^6 + 2 * q^7 + q^8 + q^9 - q^10 - 4 * q^11 - q^12 + 2 * q^14 + q^15 + q^16 + 4 * q^17 + q^18 + 2 * q^19 - q^20 - 2 * q^21 - 4 * q^22 + 2 * q^23 - q^24 + q^25 - q^27 + 2 * q^28 + 8 * q^29 + q^30 - 4 * q^31 + q^32 + 4 * q^33 + 4 * q^34 - 2 * q^35 + q^36 - 6 * q^37 + 2 * q^38 - q^40 - 10 * q^41 - 2 * q^42 + 4 * q^43 - 4 * q^44 - q^45 + 2 * q^46 - q^48 - 3 * q^49 + q^50 - 4 * q^51 + 6 * q^53 - q^54 + 4 * q^55 + 2 * q^56 - 2 * q^57 + 8 * q^58 + 12 * q^59 + q^60 - 2 * q^61 - 4 * q^62 + 2 * q^63 + q^64 + 4 * q^66 + 8 * q^67 + 4 * q^68 - 2 * q^69 - 2 * q^70 + q^72 - 6 * q^74 - q^75 + 2 * q^76 - 8 * q^77 - 8 * q^79 - q^80 + q^81 - 10 * q^82 + 12 * q^83 - 2 * q^84 - 4 * q^85 + 4 * q^86 - 8 * q^87 - 4 * q^88 + 10 * q^89 - q^90 + 2 * q^92 + 4 * q^93 - 2 * q^95 - q^96 + 8 * q^97 - 3 * q^98 - 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 −1.00000 1.00000 −1.00000 −1.00000 2.00000 1.00000 1.00000 −1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5070.2.a.n 1
13.b even 2 1 390.2.a.b 1
13.d odd 4 2 5070.2.b.f 2
39.d odd 2 1 1170.2.a.j 1
52.b odd 2 1 3120.2.a.y 1
65.d even 2 1 1950.2.a.ba 1
65.h odd 4 2 1950.2.e.m 2
156.h even 2 1 9360.2.a.v 1
195.e odd 2 1 5850.2.a.s 1
195.s even 4 2 5850.2.e.h 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.b 1 13.b even 2 1
1170.2.a.j 1 39.d odd 2 1
1950.2.a.ba 1 65.d even 2 1
1950.2.e.m 2 65.h odd 4 2
3120.2.a.y 1 52.b odd 2 1
5070.2.a.n 1 1.a even 1 1 trivial
5070.2.b.f 2 13.d odd 4 2
5850.2.a.s 1 195.e odd 2 1
5850.2.e.h 2 195.s even 4 2
9360.2.a.v 1 156.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5070))$$:

 $$T_{7} - 2$$ T7 - 2 $$T_{11} + 4$$ T11 + 4 $$T_{17} - 4$$ T17 - 4 $$T_{31} + 4$$ T31 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T + 1$$
$5$ $$T + 1$$
$7$ $$T - 2$$
$11$ $$T + 4$$
$13$ $$T$$
$17$ $$T - 4$$
$19$ $$T - 2$$
$23$ $$T - 2$$
$29$ $$T - 8$$
$31$ $$T + 4$$
$37$ $$T + 6$$
$41$ $$T + 10$$
$43$ $$T - 4$$
$47$ $$T$$
$53$ $$T - 6$$
$59$ $$T - 12$$
$61$ $$T + 2$$
$67$ $$T - 8$$
$71$ $$T$$
$73$ $$T$$
$79$ $$T + 8$$
$83$ $$T - 12$$
$89$ $$T - 10$$
$97$ $$T - 8$$