Properties

Label 5070.2.a.j
Level $5070$
Weight $2$
Character orbit 5070.a
Self dual yes
Analytic conductor $40.484$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5070.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(40.4841538248\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 2 q^{7} - q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 2 q^{7} - q^{8} + q^{9} + q^{10} - 3 q^{11} + q^{12} - 2 q^{14} - q^{15} + q^{16} + 6 q^{17} - q^{18} + 2 q^{19} - q^{20} + 2 q^{21} + 3 q^{22} + 3 q^{23} - q^{24} + q^{25} + q^{27} + 2 q^{28} + 3 q^{29} + q^{30} + 5 q^{31} - q^{32} - 3 q^{33} - 6 q^{34} - 2 q^{35} + q^{36} - 7 q^{37} - 2 q^{38} + q^{40} + 6 q^{41} - 2 q^{42} - q^{43} - 3 q^{44} - q^{45} - 3 q^{46} - 3 q^{47} + q^{48} - 3 q^{49} - q^{50} + 6 q^{51} - 6 q^{53} - q^{54} + 3 q^{55} - 2 q^{56} + 2 q^{57} - 3 q^{58} - 9 q^{59} - q^{60} + 2 q^{61} - 5 q^{62} + 2 q^{63} + q^{64} + 3 q^{66} + 8 q^{67} + 6 q^{68} + 3 q^{69} + 2 q^{70} - 12 q^{71} - q^{72} + 14 q^{73} + 7 q^{74} + q^{75} + 2 q^{76} - 6 q^{77} + 5 q^{79} - q^{80} + q^{81} - 6 q^{82} - 6 q^{83} + 2 q^{84} - 6 q^{85} + q^{86} + 3 q^{87} + 3 q^{88} - 18 q^{89} + q^{90} + 3 q^{92} + 5 q^{93} + 3 q^{94} - 2 q^{95} - q^{96} + 14 q^{97} + 3 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 −1.00000 −1.00000 2.00000 −1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5070.2.a.j 1
13.b even 2 1 5070.2.a.v 1
13.c even 3 2 390.2.i.c 2
13.d odd 4 2 5070.2.b.j 2
39.i odd 6 2 1170.2.i.d 2
65.n even 6 2 1950.2.i.n 2
65.q odd 12 4 1950.2.z.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.i.c 2 13.c even 3 2
1170.2.i.d 2 39.i odd 6 2
1950.2.i.n 2 65.n even 6 2
1950.2.z.k 4 65.q odd 12 4
5070.2.a.j 1 1.a even 1 1 trivial
5070.2.a.v 1 13.b even 2 1
5070.2.b.j 2 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5070))\):

\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display
\( T_{17} - 6 \) Copy content Toggle raw display
\( T_{31} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T + 3 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T - 3 \) Copy content Toggle raw display
$29$ \( T - 3 \) Copy content Toggle raw display
$31$ \( T - 5 \) Copy content Toggle raw display
$37$ \( T + 7 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T + 3 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 9 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 8 \) Copy content Toggle raw display
$71$ \( T + 12 \) Copy content Toggle raw display
$73$ \( T - 14 \) Copy content Toggle raw display
$79$ \( T - 5 \) Copy content Toggle raw display
$83$ \( T + 6 \) Copy content Toggle raw display
$89$ \( T + 18 \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less