# Properties

 Label 5070.2.a.i Level $5070$ Weight $2$ Character orbit 5070.a Self dual yes Analytic conductor $40.484$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5070.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$40.4841538248$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 390) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 5q^{7} - q^{8} + q^{9} + O(q^{10})$$ $$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 5q^{7} - q^{8} + q^{9} + q^{10} - 3q^{11} + q^{12} + 5q^{14} - q^{15} + q^{16} - 8q^{17} - q^{18} - 5q^{19} - q^{20} - 5q^{21} + 3q^{22} - 4q^{23} - q^{24} + q^{25} + q^{27} - 5q^{28} - 4q^{29} + q^{30} - 2q^{31} - q^{32} - 3q^{33} + 8q^{34} + 5q^{35} + q^{36} - 7q^{37} + 5q^{38} + q^{40} + 6q^{41} + 5q^{42} + 6q^{43} - 3q^{44} - q^{45} + 4q^{46} - 3q^{47} + q^{48} + 18q^{49} - q^{50} - 8q^{51} + q^{53} - q^{54} + 3q^{55} + 5q^{56} - 5q^{57} + 4q^{58} + 12q^{59} - q^{60} + 2q^{61} + 2q^{62} - 5q^{63} + q^{64} + 3q^{66} + 8q^{67} - 8q^{68} - 4q^{69} - 5q^{70} + 2q^{71} - q^{72} + 7q^{74} + q^{75} - 5q^{76} + 15q^{77} - 2q^{79} - q^{80} + q^{81} - 6q^{82} + 8q^{83} - 5q^{84} + 8q^{85} - 6q^{86} - 4q^{87} + 3q^{88} - 11q^{89} + q^{90} - 4q^{92} - 2q^{93} + 3q^{94} + 5q^{95} - q^{96} - 18q^{98} - 3q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 1.00000 1.00000 −1.00000 −1.00000 −5.00000 −1.00000 1.00000 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$5$$ $$1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5070.2.a.i 1
13.b even 2 1 5070.2.a.x 1
13.c even 3 2 390.2.i.d 2
13.d odd 4 2 5070.2.b.l 2
39.i odd 6 2 1170.2.i.g 2
65.n even 6 2 1950.2.i.i 2
65.q odd 12 4 1950.2.z.j 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.i.d 2 13.c even 3 2
1170.2.i.g 2 39.i odd 6 2
1950.2.i.i 2 65.n even 6 2
1950.2.z.j 4 65.q odd 12 4
5070.2.a.i 1 1.a even 1 1 trivial
5070.2.a.x 1 13.b even 2 1
5070.2.b.l 2 13.d odd 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5070))$$:

 $$T_{7} + 5$$ $$T_{11} + 3$$ $$T_{17} + 8$$ $$T_{31} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T$$
$3$ $$-1 + T$$
$5$ $$1 + T$$
$7$ $$5 + T$$
$11$ $$3 + T$$
$13$ $$T$$
$17$ $$8 + T$$
$19$ $$5 + T$$
$23$ $$4 + T$$
$29$ $$4 + T$$
$31$ $$2 + T$$
$37$ $$7 + T$$
$41$ $$-6 + T$$
$43$ $$-6 + T$$
$47$ $$3 + T$$
$53$ $$-1 + T$$
$59$ $$-12 + T$$
$61$ $$-2 + T$$
$67$ $$-8 + T$$
$71$ $$-2 + T$$
$73$ $$T$$
$79$ $$2 + T$$
$83$ $$-8 + T$$
$89$ $$11 + T$$
$97$ $$T$$