Properties

Label 507.4.a.p.1.8
Level $507$
Weight $4$
Character 507.1
Self dual yes
Analytic conductor $29.914$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,4,Mod(1,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 507.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9139683729\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 56x^{7} - 27x^{6} + 945x^{5} + 763x^{4} - 4139x^{3} - 2478x^{2} + 63x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-4.14324\) of defining polynomial
Character \(\chi\) \(=\) 507.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.69820 q^{2} +3.00000 q^{3} +14.0731 q^{4} +4.47249 q^{5} +14.0946 q^{6} +27.2096 q^{7} +28.5326 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+4.69820 q^{2} +3.00000 q^{3} +14.0731 q^{4} +4.47249 q^{5} +14.0946 q^{6} +27.2096 q^{7} +28.5326 q^{8} +9.00000 q^{9} +21.0127 q^{10} -5.99207 q^{11} +42.2193 q^{12} +127.836 q^{14} +13.4175 q^{15} +21.4672 q^{16} +105.037 q^{17} +42.2838 q^{18} -156.462 q^{19} +62.9418 q^{20} +81.6287 q^{21} -28.1519 q^{22} -175.423 q^{23} +85.5978 q^{24} -104.997 q^{25} +27.0000 q^{27} +382.923 q^{28} +204.886 q^{29} +63.0380 q^{30} +31.9570 q^{31} -127.404 q^{32} -17.9762 q^{33} +493.483 q^{34} +121.695 q^{35} +126.658 q^{36} +344.140 q^{37} -735.088 q^{38} +127.612 q^{40} +46.5921 q^{41} +383.508 q^{42} -173.286 q^{43} -84.3269 q^{44} +40.2524 q^{45} -824.175 q^{46} -265.613 q^{47} +64.4016 q^{48} +397.361 q^{49} -493.296 q^{50} +315.110 q^{51} +172.912 q^{53} +126.851 q^{54} -26.7995 q^{55} +776.360 q^{56} -469.385 q^{57} +962.596 q^{58} -137.566 q^{59} +188.825 q^{60} -58.9384 q^{61} +150.140 q^{62} +244.886 q^{63} -770.306 q^{64} -84.4558 q^{66} +211.668 q^{67} +1478.19 q^{68} -526.270 q^{69} +571.746 q^{70} -436.317 q^{71} +256.793 q^{72} +1159.11 q^{73} +1616.84 q^{74} -314.990 q^{75} -2201.90 q^{76} -163.042 q^{77} -1017.51 q^{79} +96.0118 q^{80} +81.0000 q^{81} +218.899 q^{82} -150.251 q^{83} +1148.77 q^{84} +469.775 q^{85} -814.131 q^{86} +614.659 q^{87} -170.969 q^{88} +565.984 q^{89} +189.114 q^{90} -2468.75 q^{92} +95.8709 q^{93} -1247.90 q^{94} -699.773 q^{95} -382.211 q^{96} -286.741 q^{97} +1866.88 q^{98} -53.9286 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 6 q^{2} + 27 q^{3} + 44 q^{4} + 33 q^{5} + 18 q^{6} + 83 q^{7} + 87 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + 6 q^{2} + 27 q^{3} + 44 q^{4} + 33 q^{5} + 18 q^{6} + 83 q^{7} + 87 q^{8} + 81 q^{9} - 54 q^{10} + 85 q^{11} + 132 q^{12} + 158 q^{14} + 99 q^{15} + 216 q^{16} + 178 q^{17} + 54 q^{18} + 352 q^{19} + 402 q^{20} + 249 q^{21} - 630 q^{22} + 150 q^{23} + 261 q^{24} - 20 q^{25} + 243 q^{27} + 940 q^{28} - 97 q^{29} - 162 q^{30} + 717 q^{31} + 707 q^{32} + 255 q^{33} + 632 q^{34} - 418 q^{35} + 396 q^{36} + 1108 q^{37} - 660 q^{38} - 1506 q^{40} + 334 q^{41} + 474 q^{42} + 242 q^{43} - 307 q^{44} + 297 q^{45} + 979 q^{46} - 184 q^{47} + 648 q^{48} - 38 q^{49} - 2031 q^{50} + 534 q^{51} - 151 q^{53} + 162 q^{54} + 2064 q^{55} + 2276 q^{56} + 1056 q^{57} + 1161 q^{58} + 537 q^{59} + 1206 q^{60} - 1340 q^{61} + 347 q^{62} + 747 q^{63} + 893 q^{64} - 1890 q^{66} + 2308 q^{67} + 2785 q^{68} + 450 q^{69} - 1420 q^{70} + 96 q^{71} + 783 q^{72} + 2505 q^{73} - 1191 q^{74} - 60 q^{75} + 2409 q^{76} - 2142 q^{77} - 1591 q^{79} - 2671 q^{80} + 729 q^{81} + 1517 q^{82} + 1539 q^{83} + 2820 q^{84} + 4296 q^{85} - 3763 q^{86} - 291 q^{87} - 3716 q^{88} - 592 q^{89} - 486 q^{90} + 515 q^{92} + 2151 q^{93} - 692 q^{94} + 4158 q^{95} + 2121 q^{96} + 1445 q^{97} + 1457 q^{98} + 765 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.69820 1.66106 0.830532 0.556970i \(-0.188036\pi\)
0.830532 + 0.556970i \(0.188036\pi\)
\(3\) 3.00000 0.577350
\(4\) 14.0731 1.75914
\(5\) 4.47249 0.400032 0.200016 0.979793i \(-0.435901\pi\)
0.200016 + 0.979793i \(0.435901\pi\)
\(6\) 14.0946 0.959016
\(7\) 27.2096 1.46918 0.734589 0.678512i \(-0.237375\pi\)
0.734589 + 0.678512i \(0.237375\pi\)
\(8\) 28.5326 1.26098
\(9\) 9.00000 0.333333
\(10\) 21.0127 0.664479
\(11\) −5.99207 −0.164243 −0.0821216 0.996622i \(-0.526170\pi\)
−0.0821216 + 0.996622i \(0.526170\pi\)
\(12\) 42.2193 1.01564
\(13\) 0 0
\(14\) 127.836 2.44040
\(15\) 13.4175 0.230958
\(16\) 21.4672 0.335425
\(17\) 105.037 1.49854 0.749268 0.662267i \(-0.230406\pi\)
0.749268 + 0.662267i \(0.230406\pi\)
\(18\) 42.2838 0.553688
\(19\) −156.462 −1.88920 −0.944599 0.328227i \(-0.893549\pi\)
−0.944599 + 0.328227i \(0.893549\pi\)
\(20\) 62.9418 0.703711
\(21\) 81.6287 0.848231
\(22\) −28.1519 −0.272819
\(23\) −175.423 −1.59036 −0.795181 0.606372i \(-0.792624\pi\)
−0.795181 + 0.606372i \(0.792624\pi\)
\(24\) 85.5978 0.728024
\(25\) −104.997 −0.839975
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 382.923 2.58449
\(29\) 204.886 1.31195 0.655973 0.754785i \(-0.272259\pi\)
0.655973 + 0.754785i \(0.272259\pi\)
\(30\) 63.0380 0.383637
\(31\) 31.9570 0.185150 0.0925748 0.995706i \(-0.470490\pi\)
0.0925748 + 0.995706i \(0.470490\pi\)
\(32\) −127.404 −0.703813
\(33\) −17.9762 −0.0948259
\(34\) 493.483 2.48916
\(35\) 121.695 0.587718
\(36\) 126.658 0.586379
\(37\) 344.140 1.52909 0.764545 0.644571i \(-0.222964\pi\)
0.764545 + 0.644571i \(0.222964\pi\)
\(38\) −735.088 −3.13808
\(39\) 0 0
\(40\) 127.612 0.504430
\(41\) 46.5921 0.177475 0.0887373 0.996055i \(-0.471717\pi\)
0.0887373 + 0.996055i \(0.471717\pi\)
\(42\) 383.508 1.40897
\(43\) −173.286 −0.614554 −0.307277 0.951620i \(-0.599418\pi\)
−0.307277 + 0.951620i \(0.599418\pi\)
\(44\) −84.3269 −0.288926
\(45\) 40.2524 0.133344
\(46\) −824.175 −2.64169
\(47\) −265.613 −0.824334 −0.412167 0.911108i \(-0.635228\pi\)
−0.412167 + 0.911108i \(0.635228\pi\)
\(48\) 64.4016 0.193658
\(49\) 397.361 1.15849
\(50\) −493.296 −1.39525
\(51\) 315.110 0.865180
\(52\) 0 0
\(53\) 172.912 0.448137 0.224068 0.974573i \(-0.428066\pi\)
0.224068 + 0.974573i \(0.428066\pi\)
\(54\) 126.851 0.319672
\(55\) −26.7995 −0.0657025
\(56\) 776.360 1.85260
\(57\) −469.385 −1.09073
\(58\) 962.596 2.17923
\(59\) −137.566 −0.303551 −0.151775 0.988415i \(-0.548499\pi\)
−0.151775 + 0.988415i \(0.548499\pi\)
\(60\) 188.825 0.406288
\(61\) −58.9384 −0.123710 −0.0618548 0.998085i \(-0.519702\pi\)
−0.0618548 + 0.998085i \(0.519702\pi\)
\(62\) 150.140 0.307546
\(63\) 244.886 0.489726
\(64\) −770.306 −1.50450
\(65\) 0 0
\(66\) −84.4558 −0.157512
\(67\) 211.668 0.385961 0.192980 0.981203i \(-0.438185\pi\)
0.192980 + 0.981203i \(0.438185\pi\)
\(68\) 1478.19 2.63613
\(69\) −526.270 −0.918196
\(70\) 571.746 0.976238
\(71\) −436.317 −0.729314 −0.364657 0.931142i \(-0.618814\pi\)
−0.364657 + 0.931142i \(0.618814\pi\)
\(72\) 256.793 0.420325
\(73\) 1159.11 1.85840 0.929199 0.369579i \(-0.120498\pi\)
0.929199 + 0.369579i \(0.120498\pi\)
\(74\) 1616.84 2.53992
\(75\) −314.990 −0.484960
\(76\) −2201.90 −3.32336
\(77\) −163.042 −0.241303
\(78\) 0 0
\(79\) −1017.51 −1.44910 −0.724548 0.689224i \(-0.757952\pi\)
−0.724548 + 0.689224i \(0.757952\pi\)
\(80\) 96.0118 0.134181
\(81\) 81.0000 0.111111
\(82\) 218.899 0.294797
\(83\) −150.251 −0.198701 −0.0993504 0.995053i \(-0.531676\pi\)
−0.0993504 + 0.995053i \(0.531676\pi\)
\(84\) 1148.77 1.49215
\(85\) 469.775 0.599462
\(86\) −814.131 −1.02081
\(87\) 614.659 0.757452
\(88\) −170.969 −0.207107
\(89\) 565.984 0.674092 0.337046 0.941488i \(-0.390572\pi\)
0.337046 + 0.941488i \(0.390572\pi\)
\(90\) 189.114 0.221493
\(91\) 0 0
\(92\) −2468.75 −2.79766
\(93\) 95.8709 0.106896
\(94\) −1247.90 −1.36927
\(95\) −699.773 −0.755739
\(96\) −382.211 −0.406346
\(97\) −286.741 −0.300145 −0.150073 0.988675i \(-0.547951\pi\)
−0.150073 + 0.988675i \(0.547951\pi\)
\(98\) 1866.88 1.92432
\(99\) −53.9286 −0.0547478
\(100\) −1477.63 −1.47763
\(101\) −1218.57 −1.20052 −0.600258 0.799807i \(-0.704935\pi\)
−0.600258 + 0.799807i \(0.704935\pi\)
\(102\) 1480.45 1.43712
\(103\) 74.2485 0.0710283 0.0355142 0.999369i \(-0.488693\pi\)
0.0355142 + 0.999369i \(0.488693\pi\)
\(104\) 0 0
\(105\) 365.084 0.339319
\(106\) 812.374 0.744384
\(107\) −1253.46 −1.13249 −0.566246 0.824237i \(-0.691605\pi\)
−0.566246 + 0.824237i \(0.691605\pi\)
\(108\) 379.973 0.338546
\(109\) 722.643 0.635015 0.317507 0.948256i \(-0.397154\pi\)
0.317507 + 0.948256i \(0.397154\pi\)
\(110\) −125.909 −0.109136
\(111\) 1032.42 0.882820
\(112\) 584.113 0.492799
\(113\) −855.913 −0.712544 −0.356272 0.934382i \(-0.615952\pi\)
−0.356272 + 0.934382i \(0.615952\pi\)
\(114\) −2205.26 −1.81177
\(115\) −784.580 −0.636195
\(116\) 2883.38 2.30789
\(117\) 0 0
\(118\) −646.310 −0.504218
\(119\) 2858.00 2.20162
\(120\) 382.836 0.291233
\(121\) −1295.10 −0.973024
\(122\) −276.905 −0.205490
\(123\) 139.776 0.102465
\(124\) 449.733 0.325703
\(125\) −1028.66 −0.736048
\(126\) 1150.52 0.813467
\(127\) 726.104 0.507333 0.253667 0.967292i \(-0.418363\pi\)
0.253667 + 0.967292i \(0.418363\pi\)
\(128\) −2599.82 −1.79526
\(129\) −519.857 −0.354813
\(130\) 0 0
\(131\) −1456.91 −0.971685 −0.485843 0.874046i \(-0.661487\pi\)
−0.485843 + 0.874046i \(0.661487\pi\)
\(132\) −252.981 −0.166812
\(133\) −4257.25 −2.77557
\(134\) 994.460 0.641106
\(135\) 120.757 0.0769862
\(136\) 2996.97 1.88962
\(137\) 1806.80 1.12675 0.563377 0.826200i \(-0.309502\pi\)
0.563377 + 0.826200i \(0.309502\pi\)
\(138\) −2472.52 −1.52518
\(139\) 1229.28 0.750117 0.375059 0.927001i \(-0.377623\pi\)
0.375059 + 0.927001i \(0.377623\pi\)
\(140\) 1712.62 1.03388
\(141\) −796.840 −0.475929
\(142\) −2049.90 −1.21144
\(143\) 0 0
\(144\) 193.205 0.111808
\(145\) 916.352 0.524820
\(146\) 5445.71 3.08692
\(147\) 1192.08 0.668853
\(148\) 4843.12 2.68988
\(149\) 446.127 0.245290 0.122645 0.992451i \(-0.460862\pi\)
0.122645 + 0.992451i \(0.460862\pi\)
\(150\) −1479.89 −0.805549
\(151\) 207.208 0.111671 0.0558355 0.998440i \(-0.482218\pi\)
0.0558355 + 0.998440i \(0.482218\pi\)
\(152\) −4464.26 −2.38223
\(153\) 945.329 0.499512
\(154\) −766.002 −0.400819
\(155\) 142.927 0.0740658
\(156\) 0 0
\(157\) 1096.60 0.557442 0.278721 0.960372i \(-0.410089\pi\)
0.278721 + 0.960372i \(0.410089\pi\)
\(158\) −4780.46 −2.40704
\(159\) 518.735 0.258732
\(160\) −569.812 −0.281547
\(161\) −4773.20 −2.33653
\(162\) 380.554 0.184563
\(163\) −3154.25 −1.51571 −0.757853 0.652425i \(-0.773752\pi\)
−0.757853 + 0.652425i \(0.773752\pi\)
\(164\) 655.694 0.312202
\(165\) −80.3984 −0.0379334
\(166\) −705.908 −0.330055
\(167\) 3679.65 1.70503 0.852514 0.522705i \(-0.175077\pi\)
0.852514 + 0.522705i \(0.175077\pi\)
\(168\) 2329.08 1.06960
\(169\) 0 0
\(170\) 2207.10 0.995745
\(171\) −1408.15 −0.629733
\(172\) −2438.66 −1.08108
\(173\) −3666.99 −1.61154 −0.805768 0.592231i \(-0.798247\pi\)
−0.805768 + 0.592231i \(0.798247\pi\)
\(174\) 2887.79 1.25818
\(175\) −2856.92 −1.23407
\(176\) −128.633 −0.0550913
\(177\) −412.697 −0.175255
\(178\) 2659.11 1.11971
\(179\) 4173.50 1.74269 0.871347 0.490666i \(-0.163247\pi\)
0.871347 + 0.490666i \(0.163247\pi\)
\(180\) 566.476 0.234570
\(181\) −499.197 −0.205000 −0.102500 0.994733i \(-0.532684\pi\)
−0.102500 + 0.994733i \(0.532684\pi\)
\(182\) 0 0
\(183\) −176.815 −0.0714238
\(184\) −5005.29 −2.00541
\(185\) 1539.16 0.611685
\(186\) 450.421 0.177562
\(187\) −629.386 −0.246124
\(188\) −3738.00 −1.45012
\(189\) 734.659 0.282744
\(190\) −3287.68 −1.25533
\(191\) −3086.68 −1.16934 −0.584671 0.811271i \(-0.698776\pi\)
−0.584671 + 0.811271i \(0.698776\pi\)
\(192\) −2310.92 −0.868625
\(193\) 1644.14 0.613201 0.306601 0.951838i \(-0.400808\pi\)
0.306601 + 0.951838i \(0.400808\pi\)
\(194\) −1347.17 −0.498561
\(195\) 0 0
\(196\) 5592.10 2.03794
\(197\) −1371.21 −0.495911 −0.247956 0.968771i \(-0.579759\pi\)
−0.247956 + 0.968771i \(0.579759\pi\)
\(198\) −253.367 −0.0909396
\(199\) −4627.33 −1.64836 −0.824178 0.566332i \(-0.808362\pi\)
−0.824178 + 0.566332i \(0.808362\pi\)
\(200\) −2995.83 −1.05919
\(201\) 635.004 0.222835
\(202\) −5725.08 −1.99413
\(203\) 5574.87 1.92748
\(204\) 4434.57 1.52197
\(205\) 208.383 0.0709955
\(206\) 348.834 0.117983
\(207\) −1578.81 −0.530121
\(208\) 0 0
\(209\) 937.528 0.310288
\(210\) 1715.24 0.563631
\(211\) 5088.31 1.66016 0.830080 0.557644i \(-0.188294\pi\)
0.830080 + 0.557644i \(0.188294\pi\)
\(212\) 2433.40 0.788334
\(213\) −1308.95 −0.421069
\(214\) −5889.01 −1.88114
\(215\) −775.019 −0.245841
\(216\) 770.380 0.242675
\(217\) 869.535 0.272018
\(218\) 3395.12 1.05480
\(219\) 3477.32 1.07295
\(220\) −377.151 −0.115580
\(221\) 0 0
\(222\) 4850.52 1.46642
\(223\) 4744.82 1.42483 0.712415 0.701759i \(-0.247602\pi\)
0.712415 + 0.701759i \(0.247602\pi\)
\(224\) −3466.60 −1.03403
\(225\) −944.971 −0.279992
\(226\) −4021.25 −1.18358
\(227\) 1145.52 0.334937 0.167469 0.985877i \(-0.446441\pi\)
0.167469 + 0.985877i \(0.446441\pi\)
\(228\) −6605.70 −1.91874
\(229\) 1348.47 0.389123 0.194561 0.980890i \(-0.437672\pi\)
0.194561 + 0.980890i \(0.437672\pi\)
\(230\) −3686.12 −1.05676
\(231\) −489.125 −0.139316
\(232\) 5845.94 1.65433
\(233\) −952.002 −0.267673 −0.133836 0.991003i \(-0.542730\pi\)
−0.133836 + 0.991003i \(0.542730\pi\)
\(234\) 0 0
\(235\) −1187.95 −0.329760
\(236\) −1935.97 −0.533987
\(237\) −3052.52 −0.836636
\(238\) 13427.5 3.65703
\(239\) −3069.12 −0.830647 −0.415323 0.909674i \(-0.636332\pi\)
−0.415323 + 0.909674i \(0.636332\pi\)
\(240\) 288.036 0.0774692
\(241\) 2508.17 0.670396 0.335198 0.942148i \(-0.391197\pi\)
0.335198 + 0.942148i \(0.391197\pi\)
\(242\) −6084.62 −1.61626
\(243\) 243.000 0.0641500
\(244\) −829.446 −0.217622
\(245\) 1777.19 0.463432
\(246\) 656.697 0.170201
\(247\) 0 0
\(248\) 911.815 0.233469
\(249\) −450.752 −0.114720
\(250\) −4832.85 −1.22262
\(251\) 3405.91 0.856490 0.428245 0.903663i \(-0.359132\pi\)
0.428245 + 0.903663i \(0.359132\pi\)
\(252\) 3446.31 0.861495
\(253\) 1051.15 0.261206
\(254\) 3411.38 0.842714
\(255\) 1409.33 0.346100
\(256\) −6052.04 −1.47755
\(257\) −4733.95 −1.14901 −0.574506 0.818501i \(-0.694806\pi\)
−0.574506 + 0.818501i \(0.694806\pi\)
\(258\) −2442.39 −0.589367
\(259\) 9363.91 2.24651
\(260\) 0 0
\(261\) 1843.98 0.437315
\(262\) −6844.85 −1.61403
\(263\) −1866.11 −0.437526 −0.218763 0.975778i \(-0.570202\pi\)
−0.218763 + 0.975778i \(0.570202\pi\)
\(264\) −512.908 −0.119573
\(265\) 773.346 0.179269
\(266\) −20001.4 −4.61040
\(267\) 1697.95 0.389187
\(268\) 2978.83 0.678958
\(269\) 1580.19 0.358164 0.179082 0.983834i \(-0.442687\pi\)
0.179082 + 0.983834i \(0.442687\pi\)
\(270\) 567.342 0.127879
\(271\) 4922.09 1.10330 0.551652 0.834074i \(-0.313998\pi\)
0.551652 + 0.834074i \(0.313998\pi\)
\(272\) 2254.84 0.502646
\(273\) 0 0
\(274\) 8488.71 1.87161
\(275\) 629.148 0.137960
\(276\) −7406.25 −1.61523
\(277\) 2687.08 0.582856 0.291428 0.956593i \(-0.405870\pi\)
0.291428 + 0.956593i \(0.405870\pi\)
\(278\) 5775.41 1.24599
\(279\) 287.613 0.0617165
\(280\) 3472.26 0.741098
\(281\) 883.753 0.187617 0.0938083 0.995590i \(-0.470096\pi\)
0.0938083 + 0.995590i \(0.470096\pi\)
\(282\) −3743.71 −0.790550
\(283\) −469.776 −0.0986759 −0.0493379 0.998782i \(-0.515711\pi\)
−0.0493379 + 0.998782i \(0.515711\pi\)
\(284\) −6140.33 −1.28296
\(285\) −2099.32 −0.436326
\(286\) 0 0
\(287\) 1267.75 0.260742
\(288\) −1146.63 −0.234604
\(289\) 6119.68 1.24561
\(290\) 4305.20 0.871760
\(291\) −860.222 −0.173289
\(292\) 16312.2 3.26918
\(293\) −3403.76 −0.678668 −0.339334 0.940666i \(-0.610202\pi\)
−0.339334 + 0.940666i \(0.610202\pi\)
\(294\) 5600.65 1.11101
\(295\) −615.261 −0.121430
\(296\) 9819.22 1.92814
\(297\) −161.786 −0.0316086
\(298\) 2095.99 0.407442
\(299\) 0 0
\(300\) −4432.89 −0.853110
\(301\) −4715.03 −0.902889
\(302\) 973.504 0.185493
\(303\) −3655.70 −0.693118
\(304\) −3358.79 −0.633684
\(305\) −263.602 −0.0494878
\(306\) 4441.35 0.829722
\(307\) −888.862 −0.165244 −0.0826222 0.996581i \(-0.526329\pi\)
−0.0826222 + 0.996581i \(0.526329\pi\)
\(308\) −2294.50 −0.424484
\(309\) 222.745 0.0410082
\(310\) 671.501 0.123028
\(311\) −1218.36 −0.222145 −0.111072 0.993812i \(-0.535429\pi\)
−0.111072 + 0.993812i \(0.535429\pi\)
\(312\) 0 0
\(313\) −4870.41 −0.879526 −0.439763 0.898114i \(-0.644938\pi\)
−0.439763 + 0.898114i \(0.644938\pi\)
\(314\) 5152.06 0.925948
\(315\) 1095.25 0.195906
\(316\) −14319.5 −2.54916
\(317\) 4340.93 0.769120 0.384560 0.923100i \(-0.374353\pi\)
0.384560 + 0.923100i \(0.374353\pi\)
\(318\) 2437.12 0.429770
\(319\) −1227.69 −0.215478
\(320\) −3445.19 −0.601849
\(321\) −3760.38 −0.653844
\(322\) −22425.4 −3.88112
\(323\) −16434.2 −2.83103
\(324\) 1139.92 0.195460
\(325\) 0 0
\(326\) −14819.3 −2.51769
\(327\) 2167.93 0.366626
\(328\) 1329.39 0.223791
\(329\) −7227.23 −1.21109
\(330\) −377.728 −0.0630098
\(331\) 907.289 0.150662 0.0753310 0.997159i \(-0.475999\pi\)
0.0753310 + 0.997159i \(0.475999\pi\)
\(332\) −2114.49 −0.349542
\(333\) 3097.26 0.509697
\(334\) 17287.7 2.83216
\(335\) 946.684 0.154397
\(336\) 1752.34 0.284518
\(337\) 8660.88 1.39997 0.699983 0.714160i \(-0.253191\pi\)
0.699983 + 0.714160i \(0.253191\pi\)
\(338\) 0 0
\(339\) −2567.74 −0.411388
\(340\) 6611.19 1.05454
\(341\) −191.488 −0.0304096
\(342\) −6615.79 −1.04603
\(343\) 1479.14 0.232846
\(344\) −4944.29 −0.774937
\(345\) −2353.74 −0.367308
\(346\) −17228.2 −2.67687
\(347\) −347.605 −0.0537763 −0.0268882 0.999638i \(-0.508560\pi\)
−0.0268882 + 0.999638i \(0.508560\pi\)
\(348\) 8650.15 1.33246
\(349\) 10970.2 1.68258 0.841292 0.540581i \(-0.181795\pi\)
0.841292 + 0.540581i \(0.181795\pi\)
\(350\) −13422.4 −2.04988
\(351\) 0 0
\(352\) 763.411 0.115596
\(353\) −10384.8 −1.56580 −0.782901 0.622146i \(-0.786261\pi\)
−0.782901 + 0.622146i \(0.786261\pi\)
\(354\) −1938.93 −0.291110
\(355\) −1951.42 −0.291749
\(356\) 7965.15 1.18582
\(357\) 8574.00 1.27110
\(358\) 19608.0 2.89473
\(359\) −8665.80 −1.27399 −0.636996 0.770867i \(-0.719823\pi\)
−0.636996 + 0.770867i \(0.719823\pi\)
\(360\) 1148.51 0.168143
\(361\) 17621.2 2.56907
\(362\) −2345.33 −0.340518
\(363\) −3885.29 −0.561776
\(364\) 0 0
\(365\) 5184.09 0.743419
\(366\) −830.714 −0.118640
\(367\) 1234.22 0.175547 0.0877734 0.996140i \(-0.472025\pi\)
0.0877734 + 0.996140i \(0.472025\pi\)
\(368\) −3765.85 −0.533447
\(369\) 419.329 0.0591582
\(370\) 7231.31 1.01605
\(371\) 4704.85 0.658393
\(372\) 1349.20 0.188045
\(373\) −427.483 −0.0593410 −0.0296705 0.999560i \(-0.509446\pi\)
−0.0296705 + 0.999560i \(0.509446\pi\)
\(374\) −2956.98 −0.408829
\(375\) −3085.98 −0.424958
\(376\) −7578.64 −1.03946
\(377\) 0 0
\(378\) 3451.57 0.469656
\(379\) 124.241 0.0168386 0.00841929 0.999965i \(-0.497320\pi\)
0.00841929 + 0.999965i \(0.497320\pi\)
\(380\) −9847.98 −1.32945
\(381\) 2178.31 0.292909
\(382\) −14501.8 −1.94235
\(383\) 9341.21 1.24625 0.623125 0.782122i \(-0.285863\pi\)
0.623125 + 0.782122i \(0.285863\pi\)
\(384\) −7799.46 −1.03650
\(385\) −729.202 −0.0965288
\(386\) 7724.51 1.01857
\(387\) −1559.57 −0.204851
\(388\) −4035.33 −0.527997
\(389\) 11368.9 1.48182 0.740908 0.671607i \(-0.234396\pi\)
0.740908 + 0.671607i \(0.234396\pi\)
\(390\) 0 0
\(391\) −18425.9 −2.38321
\(392\) 11337.7 1.46082
\(393\) −4370.73 −0.561003
\(394\) −6442.21 −0.823741
\(395\) −4550.80 −0.579685
\(396\) −758.942 −0.0963088
\(397\) −12077.8 −1.52687 −0.763436 0.645883i \(-0.776489\pi\)
−0.763436 + 0.645883i \(0.776489\pi\)
\(398\) −21740.1 −2.73802
\(399\) −12771.8 −1.60248
\(400\) −2253.99 −0.281748
\(401\) −4856.74 −0.604823 −0.302411 0.953178i \(-0.597792\pi\)
−0.302411 + 0.953178i \(0.597792\pi\)
\(402\) 2983.38 0.370143
\(403\) 0 0
\(404\) −17149.0 −2.11187
\(405\) 362.272 0.0444480
\(406\) 26191.8 3.20167
\(407\) −2062.11 −0.251143
\(408\) 8990.90 1.09097
\(409\) 2981.80 0.360490 0.180245 0.983622i \(-0.442311\pi\)
0.180245 + 0.983622i \(0.442311\pi\)
\(410\) 979.023 0.117928
\(411\) 5420.40 0.650532
\(412\) 1044.91 0.124949
\(413\) −3743.10 −0.445971
\(414\) −7417.57 −0.880565
\(415\) −671.995 −0.0794866
\(416\) 0 0
\(417\) 3687.84 0.433080
\(418\) 4404.70 0.515409
\(419\) 7774.01 0.906408 0.453204 0.891407i \(-0.350281\pi\)
0.453204 + 0.891407i \(0.350281\pi\)
\(420\) 5137.86 0.596909
\(421\) 3959.71 0.458396 0.229198 0.973380i \(-0.426390\pi\)
0.229198 + 0.973380i \(0.426390\pi\)
\(422\) 23905.9 2.75763
\(423\) −2390.52 −0.274778
\(424\) 4933.62 0.565089
\(425\) −11028.5 −1.25873
\(426\) −6149.71 −0.699424
\(427\) −1603.69 −0.181752
\(428\) −17640.1 −1.99221
\(429\) 0 0
\(430\) −3641.19 −0.408358
\(431\) 4375.12 0.488961 0.244480 0.969654i \(-0.421383\pi\)
0.244480 + 0.969654i \(0.421383\pi\)
\(432\) 579.614 0.0645525
\(433\) 8992.74 0.998068 0.499034 0.866582i \(-0.333688\pi\)
0.499034 + 0.866582i \(0.333688\pi\)
\(434\) 4085.25 0.451839
\(435\) 2749.06 0.303005
\(436\) 10169.8 1.11708
\(437\) 27447.0 3.00451
\(438\) 16337.1 1.78223
\(439\) −195.465 −0.0212506 −0.0106253 0.999944i \(-0.503382\pi\)
−0.0106253 + 0.999944i \(0.503382\pi\)
\(440\) −764.659 −0.0828493
\(441\) 3576.25 0.386162
\(442\) 0 0
\(443\) 7369.97 0.790424 0.395212 0.918590i \(-0.370671\pi\)
0.395212 + 0.918590i \(0.370671\pi\)
\(444\) 14529.4 1.55300
\(445\) 2531.36 0.269658
\(446\) 22292.1 2.36673
\(447\) 1338.38 0.141618
\(448\) −20959.7 −2.21038
\(449\) −164.281 −0.0172670 −0.00863351 0.999963i \(-0.502748\pi\)
−0.00863351 + 0.999963i \(0.502748\pi\)
\(450\) −4439.67 −0.465084
\(451\) −279.183 −0.0291490
\(452\) −12045.3 −1.25346
\(453\) 621.623 0.0644733
\(454\) 5381.88 0.556352
\(455\) 0 0
\(456\) −13392.8 −1.37538
\(457\) 11687.0 1.19627 0.598133 0.801397i \(-0.295909\pi\)
0.598133 + 0.801397i \(0.295909\pi\)
\(458\) 6335.36 0.646358
\(459\) 2835.99 0.288393
\(460\) −11041.5 −1.11915
\(461\) 1057.53 0.106842 0.0534211 0.998572i \(-0.482987\pi\)
0.0534211 + 0.998572i \(0.482987\pi\)
\(462\) −2298.01 −0.231413
\(463\) 8554.74 0.858688 0.429344 0.903141i \(-0.358745\pi\)
0.429344 + 0.903141i \(0.358745\pi\)
\(464\) 4398.33 0.440059
\(465\) 428.782 0.0427619
\(466\) −4472.70 −0.444622
\(467\) −7705.26 −0.763506 −0.381753 0.924264i \(-0.624679\pi\)
−0.381753 + 0.924264i \(0.624679\pi\)
\(468\) 0 0
\(469\) 5759.40 0.567046
\(470\) −5581.24 −0.547752
\(471\) 3289.81 0.321839
\(472\) −3925.10 −0.382770
\(473\) 1038.34 0.100936
\(474\) −14341.4 −1.38971
\(475\) 16428.0 1.58688
\(476\) 40220.9 3.87295
\(477\) 1556.21 0.149379
\(478\) −14419.3 −1.37976
\(479\) −4508.59 −0.430069 −0.215034 0.976606i \(-0.568986\pi\)
−0.215034 + 0.976606i \(0.568986\pi\)
\(480\) −1709.44 −0.162551
\(481\) 0 0
\(482\) 11783.9 1.11357
\(483\) −14319.6 −1.34899
\(484\) −18226.0 −1.71168
\(485\) −1282.45 −0.120068
\(486\) 1141.66 0.106557
\(487\) 6725.73 0.625815 0.312908 0.949784i \(-0.398697\pi\)
0.312908 + 0.949784i \(0.398697\pi\)
\(488\) −1681.67 −0.155995
\(489\) −9462.76 −0.875094
\(490\) 8349.61 0.769790
\(491\) 11517.5 1.05861 0.529303 0.848433i \(-0.322454\pi\)
0.529303 + 0.848433i \(0.322454\pi\)
\(492\) 1967.08 0.180250
\(493\) 21520.5 1.96600
\(494\) 0 0
\(495\) −241.195 −0.0219008
\(496\) 686.026 0.0621038
\(497\) −11872.0 −1.07149
\(498\) −2117.72 −0.190557
\(499\) 19907.9 1.78598 0.892988 0.450080i \(-0.148605\pi\)
0.892988 + 0.450080i \(0.148605\pi\)
\(500\) −14476.4 −1.29481
\(501\) 11038.9 0.984398
\(502\) 16001.6 1.42269
\(503\) −5735.48 −0.508415 −0.254207 0.967150i \(-0.581815\pi\)
−0.254207 + 0.967150i \(0.581815\pi\)
\(504\) 6987.24 0.617533
\(505\) −5450.04 −0.480244
\(506\) 4938.51 0.433881
\(507\) 0 0
\(508\) 10218.5 0.892469
\(509\) 9253.84 0.805834 0.402917 0.915237i \(-0.367996\pi\)
0.402917 + 0.915237i \(0.367996\pi\)
\(510\) 6621.29 0.574894
\(511\) 31538.8 2.73032
\(512\) −7635.12 −0.659039
\(513\) −4224.46 −0.363576
\(514\) −22241.1 −1.90858
\(515\) 332.076 0.0284136
\(516\) −7315.99 −0.624164
\(517\) 1591.57 0.135391
\(518\) 43993.5 3.73159
\(519\) −11001.0 −0.930421
\(520\) 0 0
\(521\) 3887.42 0.326892 0.163446 0.986552i \(-0.447739\pi\)
0.163446 + 0.986552i \(0.447739\pi\)
\(522\) 8663.37 0.726409
\(523\) 4782.27 0.399836 0.199918 0.979813i \(-0.435932\pi\)
0.199918 + 0.979813i \(0.435932\pi\)
\(524\) −20503.2 −1.70933
\(525\) −8570.76 −0.712492
\(526\) −8767.37 −0.726759
\(527\) 3356.65 0.277453
\(528\) −385.898 −0.0318070
\(529\) 18606.4 1.52925
\(530\) 3633.34 0.297777
\(531\) −1238.09 −0.101184
\(532\) −59912.7 −4.88261
\(533\) 0 0
\(534\) 7977.32 0.646465
\(535\) −5606.09 −0.453033
\(536\) 6039.44 0.486687
\(537\) 12520.5 1.00615
\(538\) 7424.06 0.594933
\(539\) −2381.01 −0.190274
\(540\) 1699.43 0.135429
\(541\) −14872.6 −1.18192 −0.590962 0.806699i \(-0.701252\pi\)
−0.590962 + 0.806699i \(0.701252\pi\)
\(542\) 23125.0 1.83266
\(543\) −1497.59 −0.118357
\(544\) −13382.0 −1.05469
\(545\) 3232.01 0.254026
\(546\) 0 0
\(547\) 16965.3 1.32611 0.663055 0.748570i \(-0.269259\pi\)
0.663055 + 0.748570i \(0.269259\pi\)
\(548\) 25427.3 1.98212
\(549\) −530.446 −0.0412366
\(550\) 2955.86 0.229161
\(551\) −32056.8 −2.47852
\(552\) −15015.9 −1.15782
\(553\) −27686.0 −2.12898
\(554\) 12624.5 0.968162
\(555\) 4617.49 0.353156
\(556\) 17299.8 1.31956
\(557\) 1934.05 0.147125 0.0735623 0.997291i \(-0.476563\pi\)
0.0735623 + 0.997291i \(0.476563\pi\)
\(558\) 1351.26 0.102515
\(559\) 0 0
\(560\) 2612.44 0.197135
\(561\) −1888.16 −0.142100
\(562\) 4152.05 0.311643
\(563\) 6592.13 0.493473 0.246736 0.969083i \(-0.420642\pi\)
0.246736 + 0.969083i \(0.420642\pi\)
\(564\) −11214.0 −0.837225
\(565\) −3828.06 −0.285040
\(566\) −2207.10 −0.163907
\(567\) 2203.98 0.163242
\(568\) −12449.3 −0.919646
\(569\) −14477.7 −1.06667 −0.533336 0.845903i \(-0.679062\pi\)
−0.533336 + 0.845903i \(0.679062\pi\)
\(570\) −9863.03 −0.724766
\(571\) −4998.21 −0.366320 −0.183160 0.983083i \(-0.558633\pi\)
−0.183160 + 0.983083i \(0.558633\pi\)
\(572\) 0 0
\(573\) −9260.04 −0.675120
\(574\) 5956.15 0.433109
\(575\) 18418.9 1.33586
\(576\) −6932.75 −0.501501
\(577\) 9291.73 0.670398 0.335199 0.942147i \(-0.391196\pi\)
0.335199 + 0.942147i \(0.391196\pi\)
\(578\) 28751.5 2.06904
\(579\) 4932.42 0.354032
\(580\) 12895.9 0.923230
\(581\) −4088.26 −0.291927
\(582\) −4041.50 −0.287844
\(583\) −1036.10 −0.0736034
\(584\) 33072.3 2.34339
\(585\) 0 0
\(586\) −15991.5 −1.12731
\(587\) −5602.64 −0.393945 −0.196972 0.980409i \(-0.563111\pi\)
−0.196972 + 0.980409i \(0.563111\pi\)
\(588\) 16776.3 1.17660
\(589\) −5000.04 −0.349784
\(590\) −2890.62 −0.201703
\(591\) −4113.62 −0.286314
\(592\) 7387.73 0.512895
\(593\) −10885.8 −0.753839 −0.376919 0.926246i \(-0.623017\pi\)
−0.376919 + 0.926246i \(0.623017\pi\)
\(594\) −760.102 −0.0525040
\(595\) 12782.4 0.880717
\(596\) 6278.38 0.431498
\(597\) −13882.0 −0.951678
\(598\) 0 0
\(599\) 20403.2 1.39174 0.695872 0.718166i \(-0.255018\pi\)
0.695872 + 0.718166i \(0.255018\pi\)
\(600\) −8987.50 −0.611522
\(601\) −6312.19 −0.428419 −0.214209 0.976788i \(-0.568717\pi\)
−0.214209 + 0.976788i \(0.568717\pi\)
\(602\) −22152.2 −1.49976
\(603\) 1905.01 0.128654
\(604\) 2916.05 0.196445
\(605\) −5792.30 −0.389241
\(606\) −17175.2 −1.15131
\(607\) −21848.6 −1.46097 −0.730484 0.682930i \(-0.760705\pi\)
−0.730484 + 0.682930i \(0.760705\pi\)
\(608\) 19933.8 1.32964
\(609\) 16724.6 1.11283
\(610\) −1238.45 −0.0822025
\(611\) 0 0
\(612\) 13303.7 0.878710
\(613\) −1335.14 −0.0879704 −0.0439852 0.999032i \(-0.514005\pi\)
−0.0439852 + 0.999032i \(0.514005\pi\)
\(614\) −4176.05 −0.274482
\(615\) 625.148 0.0409893
\(616\) −4652.00 −0.304277
\(617\) 18908.3 1.23374 0.616871 0.787064i \(-0.288400\pi\)
0.616871 + 0.787064i \(0.288400\pi\)
\(618\) 1046.50 0.0681173
\(619\) 6722.49 0.436510 0.218255 0.975892i \(-0.429964\pi\)
0.218255 + 0.975892i \(0.429964\pi\)
\(620\) 2011.43 0.130292
\(621\) −4736.43 −0.306065
\(622\) −5724.11 −0.368997
\(623\) 15400.2 0.990362
\(624\) 0 0
\(625\) 8523.93 0.545532
\(626\) −22882.2 −1.46095
\(627\) 2812.59 0.179145
\(628\) 15432.6 0.980617
\(629\) 36147.3 2.29140
\(630\) 5145.71 0.325413
\(631\) −8098.44 −0.510925 −0.255463 0.966819i \(-0.582228\pi\)
−0.255463 + 0.966819i \(0.582228\pi\)
\(632\) −29032.2 −1.82727
\(633\) 15264.9 0.958494
\(634\) 20394.6 1.27756
\(635\) 3247.50 0.202950
\(636\) 7300.21 0.455145
\(637\) 0 0
\(638\) −5767.94 −0.357923
\(639\) −3926.85 −0.243105
\(640\) −11627.7 −0.718163
\(641\) −10955.9 −0.675090 −0.337545 0.941309i \(-0.609597\pi\)
−0.337545 + 0.941309i \(0.609597\pi\)
\(642\) −17667.0 −1.08608
\(643\) −28125.0 −1.72495 −0.862473 0.506104i \(-0.831085\pi\)
−0.862473 + 0.506104i \(0.831085\pi\)
\(644\) −67173.7 −4.11027
\(645\) −2325.06 −0.141936
\(646\) −77211.1 −4.70253
\(647\) −29001.4 −1.76223 −0.881115 0.472901i \(-0.843207\pi\)
−0.881115 + 0.472901i \(0.843207\pi\)
\(648\) 2311.14 0.140108
\(649\) 824.302 0.0498562
\(650\) 0 0
\(651\) 2608.61 0.157050
\(652\) −44390.1 −2.66634
\(653\) 19506.3 1.16898 0.584488 0.811402i \(-0.301295\pi\)
0.584488 + 0.811402i \(0.301295\pi\)
\(654\) 10185.4 0.608989
\(655\) −6516.01 −0.388705
\(656\) 1000.20 0.0595294
\(657\) 10432.0 0.619466
\(658\) −33955.0 −2.01171
\(659\) 5985.86 0.353833 0.176917 0.984226i \(-0.443388\pi\)
0.176917 + 0.984226i \(0.443388\pi\)
\(660\) −1131.45 −0.0667300
\(661\) −280.836 −0.0165254 −0.00826268 0.999966i \(-0.502630\pi\)
−0.00826268 + 0.999966i \(0.502630\pi\)
\(662\) 4262.63 0.250259
\(663\) 0 0
\(664\) −4287.04 −0.250557
\(665\) −19040.5 −1.11032
\(666\) 14551.6 0.846639
\(667\) −35941.8 −2.08647
\(668\) 51784.0 2.99938
\(669\) 14234.5 0.822626
\(670\) 4447.71 0.256463
\(671\) 353.163 0.0203185
\(672\) −10399.8 −0.596996
\(673\) −14868.9 −0.851640 −0.425820 0.904808i \(-0.640014\pi\)
−0.425820 + 0.904808i \(0.640014\pi\)
\(674\) 40690.6 2.32543
\(675\) −2834.91 −0.161653
\(676\) 0 0
\(677\) −20769.5 −1.17908 −0.589540 0.807739i \(-0.700691\pi\)
−0.589540 + 0.807739i \(0.700691\pi\)
\(678\) −12063.7 −0.683341
\(679\) −7802.09 −0.440967
\(680\) 13403.9 0.755907
\(681\) 3436.56 0.193376
\(682\) −899.650 −0.0505123
\(683\) 14980.8 0.839275 0.419638 0.907692i \(-0.362157\pi\)
0.419638 + 0.907692i \(0.362157\pi\)
\(684\) −19817.1 −1.10779
\(685\) 8080.90 0.450738
\(686\) 6949.30 0.386772
\(687\) 4045.40 0.224660
\(688\) −3719.96 −0.206137
\(689\) 0 0
\(690\) −11058.3 −0.610122
\(691\) 9472.45 0.521489 0.260745 0.965408i \(-0.416032\pi\)
0.260745 + 0.965408i \(0.416032\pi\)
\(692\) −51605.8 −2.83491
\(693\) −1467.37 −0.0804342
\(694\) −1633.12 −0.0893260
\(695\) 5497.95 0.300071
\(696\) 17537.8 0.955128
\(697\) 4893.87 0.265952
\(698\) 51540.3 2.79488
\(699\) −2856.01 −0.154541
\(700\) −40205.7 −2.17090
\(701\) 1035.34 0.0557834 0.0278917 0.999611i \(-0.491121\pi\)
0.0278917 + 0.999611i \(0.491121\pi\)
\(702\) 0 0
\(703\) −53844.8 −2.88875
\(704\) 4615.72 0.247105
\(705\) −3563.86 −0.190387
\(706\) −48790.0 −2.60090
\(707\) −33156.7 −1.76377
\(708\) −5807.92 −0.308298
\(709\) 16800.4 0.889917 0.444958 0.895551i \(-0.353219\pi\)
0.444958 + 0.895551i \(0.353219\pi\)
\(710\) −9168.18 −0.484614
\(711\) −9157.57 −0.483032
\(712\) 16149.0 0.850013
\(713\) −5606.00 −0.294455
\(714\) 40282.4 2.11139
\(715\) 0 0
\(716\) 58734.1 3.06564
\(717\) −9207.35 −0.479574
\(718\) −40713.7 −2.11618
\(719\) 14873.1 0.771449 0.385724 0.922614i \(-0.373952\pi\)
0.385724 + 0.922614i \(0.373952\pi\)
\(720\) 864.107 0.0447269
\(721\) 2020.27 0.104353
\(722\) 82788.1 4.26739
\(723\) 7524.51 0.387053
\(724\) −7025.24 −0.360623
\(725\) −21512.4 −1.10200
\(726\) −18253.9 −0.933146
\(727\) −2318.92 −0.118300 −0.0591500 0.998249i \(-0.518839\pi\)
−0.0591500 + 0.998249i \(0.518839\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 24355.9 1.23487
\(731\) −18201.3 −0.920931
\(732\) −2488.34 −0.125644
\(733\) −3350.95 −0.168854 −0.0844270 0.996430i \(-0.526906\pi\)
−0.0844270 + 0.996430i \(0.526906\pi\)
\(734\) 5798.61 0.291595
\(735\) 5331.58 0.267562
\(736\) 22349.6 1.11932
\(737\) −1268.33 −0.0633915
\(738\) 1970.09 0.0982656
\(739\) −29348.1 −1.46088 −0.730438 0.682979i \(-0.760684\pi\)
−0.730438 + 0.682979i \(0.760684\pi\)
\(740\) 21660.8 1.07604
\(741\) 0 0
\(742\) 22104.3 1.09363
\(743\) 23622.2 1.16637 0.583187 0.812338i \(-0.301805\pi\)
0.583187 + 0.812338i \(0.301805\pi\)
\(744\) 2735.45 0.134793
\(745\) 1995.30 0.0981236
\(746\) −2008.40 −0.0985693
\(747\) −1352.26 −0.0662336
\(748\) −8857.41 −0.432966
\(749\) −34106.1 −1.66383
\(750\) −14498.5 −0.705882
\(751\) 29751.4 1.44560 0.722798 0.691059i \(-0.242856\pi\)
0.722798 + 0.691059i \(0.242856\pi\)
\(752\) −5701.97 −0.276502
\(753\) 10217.7 0.494495
\(754\) 0 0
\(755\) 926.735 0.0446720
\(756\) 10338.9 0.497385
\(757\) −36907.2 −1.77201 −0.886006 0.463673i \(-0.846531\pi\)
−0.886006 + 0.463673i \(0.846531\pi\)
\(758\) 583.709 0.0279700
\(759\) 3153.45 0.150807
\(760\) −19966.4 −0.952968
\(761\) −20208.2 −0.962613 −0.481306 0.876552i \(-0.659838\pi\)
−0.481306 + 0.876552i \(0.659838\pi\)
\(762\) 10234.2 0.486541
\(763\) 19662.8 0.932950
\(764\) −43439.1 −2.05703
\(765\) 4227.98 0.199821
\(766\) 43886.9 2.07010
\(767\) 0 0
\(768\) −18156.1 −0.853063
\(769\) 24751.0 1.16066 0.580329 0.814382i \(-0.302924\pi\)
0.580329 + 0.814382i \(0.302924\pi\)
\(770\) −3425.94 −0.160341
\(771\) −14201.9 −0.663382
\(772\) 23138.2 1.07871
\(773\) −30673.4 −1.42722 −0.713612 0.700541i \(-0.752942\pi\)
−0.713612 + 0.700541i \(0.752942\pi\)
\(774\) −7327.18 −0.340271
\(775\) −3355.38 −0.155521
\(776\) −8181.46 −0.378476
\(777\) 28091.7 1.29702
\(778\) 53413.4 2.46139
\(779\) −7289.87 −0.335285
\(780\) 0 0
\(781\) 2614.44 0.119785
\(782\) −86568.5 −3.95867
\(783\) 5531.93 0.252484
\(784\) 8530.23 0.388585
\(785\) 4904.55 0.222995
\(786\) −20534.6 −0.931862
\(787\) 29009.9 1.31397 0.656983 0.753905i \(-0.271832\pi\)
0.656983 + 0.753905i \(0.271832\pi\)
\(788\) −19297.1 −0.872375
\(789\) −5598.33 −0.252606
\(790\) −21380.6 −0.962894
\(791\) −23289.0 −1.04685
\(792\) −1538.72 −0.0690355
\(793\) 0 0
\(794\) −56744.0 −2.53623
\(795\) 2320.04 0.103501
\(796\) −65120.8 −2.89968
\(797\) 6778.24 0.301252 0.150626 0.988591i \(-0.451871\pi\)
0.150626 + 0.988591i \(0.451871\pi\)
\(798\) −60004.3 −2.66182
\(799\) −27899.1 −1.23529
\(800\) 13377.0 0.591185
\(801\) 5093.86 0.224697
\(802\) −22817.9 −1.00465
\(803\) −6945.44 −0.305229
\(804\) 8936.48 0.391997
\(805\) −21348.1 −0.934685
\(806\) 0 0
\(807\) 4740.58 0.206786
\(808\) −34768.9 −1.51382
\(809\) −34862.9 −1.51510 −0.757549 0.652778i \(-0.773603\pi\)
−0.757549 + 0.652778i \(0.773603\pi\)
\(810\) 1702.03 0.0738310
\(811\) 22665.4 0.981370 0.490685 0.871337i \(-0.336747\pi\)
0.490685 + 0.871337i \(0.336747\pi\)
\(812\) 78455.6 3.39070
\(813\) 14766.3 0.636993
\(814\) −9688.21 −0.417164
\(815\) −14107.4 −0.606331
\(816\) 6764.52 0.290203
\(817\) 27112.6 1.16101
\(818\) 14009.1 0.598797
\(819\) 0 0
\(820\) 2932.59 0.124891
\(821\) 20748.7 0.882016 0.441008 0.897503i \(-0.354621\pi\)
0.441008 + 0.897503i \(0.354621\pi\)
\(822\) 25466.1 1.08058
\(823\) 6141.41 0.260117 0.130058 0.991506i \(-0.458484\pi\)
0.130058 + 0.991506i \(0.458484\pi\)
\(824\) 2118.50 0.0895650
\(825\) 1887.44 0.0796513
\(826\) −17585.8 −0.740786
\(827\) −28383.5 −1.19346 −0.596730 0.802442i \(-0.703533\pi\)
−0.596730 + 0.802442i \(0.703533\pi\)
\(828\) −22218.8 −0.932555
\(829\) −908.734 −0.0380720 −0.0190360 0.999819i \(-0.506060\pi\)
−0.0190360 + 0.999819i \(0.506060\pi\)
\(830\) −3157.17 −0.132032
\(831\) 8061.25 0.336512
\(832\) 0 0
\(833\) 41737.4 1.73603
\(834\) 17326.2 0.719375
\(835\) 16457.2 0.682065
\(836\) 13193.9 0.545839
\(837\) 862.838 0.0356321
\(838\) 36523.8 1.50560
\(839\) −27820.3 −1.14477 −0.572385 0.819985i \(-0.693982\pi\)
−0.572385 + 0.819985i \(0.693982\pi\)
\(840\) 10416.8 0.427873
\(841\) 17589.3 0.721200
\(842\) 18603.5 0.761425
\(843\) 2651.26 0.108321
\(844\) 71608.3 2.92045
\(845\) 0 0
\(846\) −11231.1 −0.456424
\(847\) −35239.0 −1.42955
\(848\) 3711.93 0.150316
\(849\) −1409.33 −0.0569706
\(850\) −51814.1 −2.09084
\(851\) −60370.3 −2.43181
\(852\) −18421.0 −0.740719
\(853\) 5802.11 0.232896 0.116448 0.993197i \(-0.462849\pi\)
0.116448 + 0.993197i \(0.462849\pi\)
\(854\) −7534.45 −0.301901
\(855\) −6297.96 −0.251913
\(856\) −35764.5 −1.42804
\(857\) −43311.1 −1.72635 −0.863173 0.504909i \(-0.831526\pi\)
−0.863173 + 0.504909i \(0.831526\pi\)
\(858\) 0 0
\(859\) −16698.2 −0.663254 −0.331627 0.943411i \(-0.607598\pi\)
−0.331627 + 0.943411i \(0.607598\pi\)
\(860\) −10906.9 −0.432468
\(861\) 3803.25 0.150539
\(862\) 20555.2 0.812196
\(863\) 19429.2 0.766369 0.383185 0.923672i \(-0.374827\pi\)
0.383185 + 0.923672i \(0.374827\pi\)
\(864\) −3439.90 −0.135449
\(865\) −16400.6 −0.644666
\(866\) 42249.7 1.65786
\(867\) 18359.0 0.719153
\(868\) 12237.0 0.478517
\(869\) 6096.98 0.238004
\(870\) 12915.6 0.503311
\(871\) 0 0
\(872\) 20618.9 0.800738
\(873\) −2580.67 −0.100048
\(874\) 128952. 4.99068
\(875\) −27989.4 −1.08139
\(876\) 48936.6 1.88746
\(877\) 11619.7 0.447400 0.223700 0.974658i \(-0.428186\pi\)
0.223700 + 0.974658i \(0.428186\pi\)
\(878\) −918.332 −0.0352986
\(879\) −10211.3 −0.391829
\(880\) −575.309 −0.0220383
\(881\) −51102.0 −1.95422 −0.977112 0.212726i \(-0.931766\pi\)
−0.977112 + 0.212726i \(0.931766\pi\)
\(882\) 16801.9 0.641441
\(883\) −37838.5 −1.44209 −0.721046 0.692888i \(-0.756338\pi\)
−0.721046 + 0.692888i \(0.756338\pi\)
\(884\) 0 0
\(885\) −1845.78 −0.0701077
\(886\) 34625.6 1.31295
\(887\) −9626.92 −0.364420 −0.182210 0.983260i \(-0.558325\pi\)
−0.182210 + 0.983260i \(0.558325\pi\)
\(888\) 29457.7 1.11321
\(889\) 19757.0 0.745364
\(890\) 11892.8 0.447920
\(891\) −485.357 −0.0182493
\(892\) 66774.3 2.50647
\(893\) 41558.3 1.55733
\(894\) 6287.98 0.235237
\(895\) 18666.0 0.697133
\(896\) −70740.0 −2.63757
\(897\) 0 0
\(898\) −771.825 −0.0286816
\(899\) 6547.54 0.242906
\(900\) −13298.7 −0.492543
\(901\) 18162.0 0.671549
\(902\) −1311.66 −0.0484184
\(903\) −14145.1 −0.521283
\(904\) −24421.4 −0.898500
\(905\) −2232.65 −0.0820065
\(906\) 2920.51 0.107094
\(907\) 17066.0 0.624772 0.312386 0.949955i \(-0.398872\pi\)
0.312386 + 0.949955i \(0.398872\pi\)
\(908\) 16121.0 0.589200
\(909\) −10967.1 −0.400172
\(910\) 0 0
\(911\) −37423.9 −1.36104 −0.680521 0.732729i \(-0.738246\pi\)
−0.680521 + 0.732729i \(0.738246\pi\)
\(912\) −10076.4 −0.365858
\(913\) 900.312 0.0326353
\(914\) 54907.7 1.98708
\(915\) −790.805 −0.0285718
\(916\) 18977.1 0.684520
\(917\) −39641.9 −1.42758
\(918\) 13324.0 0.479040
\(919\) −2783.88 −0.0999256 −0.0499628 0.998751i \(-0.515910\pi\)
−0.0499628 + 0.998751i \(0.515910\pi\)
\(920\) −22386.1 −0.802227
\(921\) −2666.59 −0.0954039
\(922\) 4968.50 0.177472
\(923\) 0 0
\(924\) −6883.50 −0.245076
\(925\) −36133.6 −1.28440
\(926\) 40191.9 1.42634
\(927\) 668.236 0.0236761
\(928\) −26103.3 −0.923363
\(929\) 26585.2 0.938894 0.469447 0.882961i \(-0.344453\pi\)
0.469447 + 0.882961i \(0.344453\pi\)
\(930\) 2014.50 0.0710303
\(931\) −62171.8 −2.18861
\(932\) −13397.6 −0.470873
\(933\) −3655.09 −0.128255
\(934\) −36200.9 −1.26823
\(935\) −2814.92 −0.0984576
\(936\) 0 0
\(937\) 34474.0 1.20194 0.600970 0.799272i \(-0.294781\pi\)
0.600970 + 0.799272i \(0.294781\pi\)
\(938\) 27058.8 0.941900
\(939\) −14611.2 −0.507795
\(940\) −16718.2 −0.580092
\(941\) −41994.3 −1.45481 −0.727404 0.686209i \(-0.759274\pi\)
−0.727404 + 0.686209i \(0.759274\pi\)
\(942\) 15456.2 0.534596
\(943\) −8173.34 −0.282249
\(944\) −2953.15 −0.101819
\(945\) 3285.75 0.113106
\(946\) 4878.32 0.167662
\(947\) −49352.0 −1.69348 −0.846739 0.532008i \(-0.821438\pi\)
−0.846739 + 0.532008i \(0.821438\pi\)
\(948\) −42958.5 −1.47176
\(949\) 0 0
\(950\) 77181.9 2.63591
\(951\) 13022.8 0.444052
\(952\) 81546.2 2.77618
\(953\) −51144.5 −1.73844 −0.869220 0.494425i \(-0.835379\pi\)
−0.869220 + 0.494425i \(0.835379\pi\)
\(954\) 7311.36 0.248128
\(955\) −13805.2 −0.467774
\(956\) −43192.0 −1.46122
\(957\) −3683.07 −0.124406
\(958\) −21182.3 −0.714372
\(959\) 49162.3 1.65540
\(960\) −10335.6 −0.347478
\(961\) −28769.8 −0.965720
\(962\) 0 0
\(963\) −11281.1 −0.377497
\(964\) 35297.7 1.17932
\(965\) 7353.41 0.245300
\(966\) −67276.3 −2.24077
\(967\) −24895.1 −0.827892 −0.413946 0.910301i \(-0.635850\pi\)
−0.413946 + 0.910301i \(0.635850\pi\)
\(968\) −36952.4 −1.22696
\(969\) −49302.6 −1.63450
\(970\) −6025.19 −0.199440
\(971\) 42942.9 1.41926 0.709630 0.704574i \(-0.248862\pi\)
0.709630 + 0.704574i \(0.248862\pi\)
\(972\) 3419.76 0.112849
\(973\) 33448.2 1.10206
\(974\) 31598.8 1.03952
\(975\) 0 0
\(976\) −1265.24 −0.0414953
\(977\) 42555.7 1.39353 0.696764 0.717301i \(-0.254623\pi\)
0.696764 + 0.717301i \(0.254623\pi\)
\(978\) −44458.0 −1.45359
\(979\) −3391.41 −0.110715
\(980\) 25010.6 0.815240
\(981\) 6503.78 0.211672
\(982\) 54111.3 1.75841
\(983\) −4345.38 −0.140993 −0.0704965 0.997512i \(-0.522458\pi\)
−0.0704965 + 0.997512i \(0.522458\pi\)
\(984\) 3988.18 0.129206
\(985\) −6132.71 −0.198380
\(986\) 101108. 3.26565
\(987\) −21681.7 −0.699225
\(988\) 0 0
\(989\) 30398.4 0.977363
\(990\) −1133.18 −0.0363787
\(991\) 7934.89 0.254349 0.127175 0.991880i \(-0.459409\pi\)
0.127175 + 0.991880i \(0.459409\pi\)
\(992\) −4071.43 −0.130311
\(993\) 2721.87 0.0869848
\(994\) −55777.0 −1.77982
\(995\) −20695.7 −0.659395
\(996\) −6343.48 −0.201808
\(997\) 2725.62 0.0865810 0.0432905 0.999063i \(-0.486216\pi\)
0.0432905 + 0.999063i \(0.486216\pi\)
\(998\) 93531.5 2.96662
\(999\) 9291.79 0.294273
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.4.a.p.1.8 yes 9
3.2 odd 2 1521.4.a.bf.1.2 9
13.5 odd 4 507.4.b.k.337.3 18
13.8 odd 4 507.4.b.k.337.16 18
13.12 even 2 507.4.a.o.1.2 9
39.38 odd 2 1521.4.a.bi.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
507.4.a.o.1.2 9 13.12 even 2
507.4.a.p.1.8 yes 9 1.1 even 1 trivial
507.4.b.k.337.3 18 13.5 odd 4
507.4.b.k.337.16 18 13.8 odd 4
1521.4.a.bf.1.2 9 3.2 odd 2
1521.4.a.bi.1.8 9 39.38 odd 2