Properties

Label 507.2.x.b
Level $507$
Weight $2$
Character orbit 507.x
Analytic conductor $4.048$
Analytic rank $0$
Dimension $2784$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.x (of order \(156\), degree \(48\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(2784\)
Relative dimension: \(58\) over \(\Q(\zeta_{156})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{156}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2784q - 50q^{3} - 92q^{4} - 50q^{6} - 100q^{7} - 56q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 2784q - 50q^{3} - 92q^{4} - 50q^{6} - 100q^{7} - 56q^{9} - 116q^{10} - 52q^{12} - 112q^{13} - 38q^{15} - 204q^{16} - 56q^{18} - 88q^{19} - 56q^{21} - 48q^{22} + 86q^{24} - 104q^{25} - 32q^{27} - 124q^{28} - 174q^{30} - 112q^{31} - 68q^{33} - 68q^{34} - 16q^{36} - 76q^{37} - 142q^{39} - 96q^{40} - 44q^{42} - 140q^{43} + 98q^{45} - 58q^{48} - 104q^{49} - 52q^{51} - 152q^{52} - 98q^{54} - 324q^{55} - 68q^{57} - 132q^{58} - 96q^{60} - 124q^{61} - 174q^{63} - 104q^{64} + 58q^{66} + 144q^{67} + 26q^{69} + 136q^{70} - 64q^{72} - 76q^{73} - 194q^{75} - 96q^{76} + 28q^{78} - 120q^{79} - 56q^{81} - 340q^{82} - 56q^{84} - 116q^{85} - 34q^{87} + 116q^{88} - 52q^{90} - 112q^{91} + 74q^{93} + 36q^{94} - 406q^{96} - 124q^{97} - 92q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1 −0.0548695 + 2.72425i 0.0796955 + 1.73022i −5.42016 0.218425i 0.698419 3.81115i −4.71792 + 0.122175i 1.76691 2.67341i 0.563407 9.31422i −2.98730 + 0.275781i 10.3442 + 2.11179i
2.2 −0.0547878 + 2.72020i 1.34843 + 1.08707i −5.39809 0.217536i −0.502675 + 2.74301i −3.03093 + 3.60845i −0.957757 + 1.44913i 0.558940 9.24037i 0.636546 + 2.93169i −7.43399 1.51766i
2.3 −0.0543226 + 2.69710i −0.327883 1.70073i −5.27300 0.212495i 0.410508 2.24007i 4.60485 0.791944i −1.50010 + 2.26971i 0.533803 8.82481i −2.78499 + 1.11528i 6.01938 + 1.22887i
2.4 −0.0509749 + 2.53089i −0.290269 1.70755i −4.40440 0.177491i −0.457167 + 2.49468i 4.33642 0.647595i 2.49693 3.77795i 0.368040 6.08443i −2.83149 + 0.991300i −6.29045 1.28420i
2.5 −0.0502666 + 2.49572i −1.68648 0.394699i −4.22771 0.170371i 0.127318 0.694751i 1.06983 4.18914i 1.03440 1.56510i 0.336274 5.55927i 2.68843 + 1.33130i 1.72750 + 0.352672i
2.6 −0.0492501 + 2.44525i 1.65916 0.497167i −3.97844 0.160326i −0.00106230 + 0.00579679i 1.13398 + 4.08155i 2.10203 3.18046i 0.292634 4.83781i 2.50565 1.64976i −0.0141223 0.00288308i
2.7 −0.0488004 + 2.42292i −1.18779 + 1.26061i −3.86978 0.155947i −0.0407216 + 0.222211i −2.99640 2.93944i −1.35846 + 2.05540i 0.274050 4.53059i −0.178298 2.99470i −0.536411 0.109509i
2.8 −0.0447349 + 2.22107i 1.12900 1.31353i −2.93279 0.118187i −0.425593 + 2.32239i 2.86694 + 2.56635i −1.87109 + 2.83104i 0.125436 2.07370i −0.450722 2.96595i −5.13915 1.04916i
2.9 −0.0419920 + 2.08489i −1.62925 0.587818i −2.34662 0.0945657i 0.137218 0.748772i 1.29395 3.37213i −1.58590 + 2.39953i 0.0438824 0.725462i 2.30894 + 1.91541i 1.55534 + 0.317526i
2.10 −0.0409543 + 2.03336i 0.256039 + 1.71302i −2.13452 0.0860180i −0.267381 + 1.45905i −3.49368 + 0.450464i 0.531912 0.804804i 0.0167307 0.276592i −2.86889 + 0.877200i −2.95583 0.603437i
2.11 −0.0408434 + 2.02786i 0.845552 1.51164i −2.11217 0.0851176i 0.624365 3.40705i 3.03085 + 1.77640i −0.0807157 + 0.122126i 0.0139470 0.230572i −1.57008 2.55633i 6.88352 + 1.40528i
2.12 −0.0377660 + 1.87507i 1.72833 + 0.113543i −1.51607 0.0610955i 0.388121 2.11791i −0.278173 + 3.23644i 0.693572 1.04940i −0.0546594 + 0.903628i 2.97422 + 0.392479i 3.95656 + 0.807737i
2.13 −0.0374341 + 1.85859i 1.06249 + 1.36789i −1.45458 0.0586174i 0.440958 2.40623i −2.58212 + 1.92352i −2.25911 + 3.41812i −0.0610868 + 1.00988i −0.742237 + 2.90673i 4.45569 + 0.909636i
2.14 −0.0362418 + 1.79939i −0.541421 + 1.64525i −1.23812 0.0498947i −0.615732 + 3.35994i −2.94084 1.03386i 0.961160 1.45427i −0.0826814 + 1.36689i −2.41373 1.78155i −6.02354 1.22971i
2.15 −0.0337489 + 1.67562i −1.44454 + 0.955666i −0.808183 0.0325687i 0.693384 3.78367i −1.55258 2.45276i −0.672208 + 1.01708i −0.120536 + 1.99269i 1.17340 2.76100i 6.31660 + 1.28954i
2.16 −0.0292596 + 1.45273i 1.72672 0.135794i −0.111191 0.00448085i −0.589576 + 3.21721i 0.146749 + 2.51243i −0.0810588 + 0.122645i −0.165700 + 2.73935i 2.96312 0.468956i −4.65649 0.950629i
2.17 −0.0287183 + 1.42585i −0.617987 1.61805i −0.0338548 0.00136430i −0.204323 + 1.11496i 2.32485 0.834692i 0.633950 0.959192i −0.169299 + 2.79885i −2.23618 + 1.99987i −1.58390 0.323354i
2.18 −0.0282490 + 1.40255i −1.72318 0.175026i 0.0320220 + 0.00129044i −0.476786 + 2.60174i 0.294162 2.41191i 1.45655 2.20382i −0.172117 + 2.84543i 2.93873 + 0.603205i −3.63560 0.742214i
2.19 −0.0230681 + 1.14532i −0.546057 1.64372i 0.687151 + 0.0276912i −0.0695333 + 0.379431i 1.89518 0.587493i −1.90590 + 2.88371i −0.185900 + 3.07330i −2.40364 + 1.79513i −0.432966 0.0883907i
2.20 −0.0219978 + 1.09218i 1.01159 + 1.40595i 0.805998 + 0.0324806i 0.345605 1.88591i −1.55781 + 1.07391i 2.55979 3.87306i −0.185120 + 3.06041i −0.953385 + 2.84448i 2.05215 + 0.418950i
See next 80 embeddings (of 2784 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 500.58
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
169.l odd 156 1 inner
507.x even 156 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 507.2.x.b 2784
3.b odd 2 1 inner 507.2.x.b 2784
169.l odd 156 1 inner 507.2.x.b 2784
507.x even 156 1 inner 507.2.x.b 2784
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
507.2.x.b 2784 1.a even 1 1 trivial
507.2.x.b 2784 3.b odd 2 1 inner
507.2.x.b 2784 169.l odd 156 1 inner
507.2.x.b 2784 507.x even 156 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(50\!\cdots\!05\)\( T_{2}^{2764} + \)\(49\!\cdots\!60\)\( T_{2}^{2762} + \)\(43\!\cdots\!05\)\( T_{2}^{2760} + \)\(33\!\cdots\!74\)\( T_{2}^{2758} + \)\(22\!\cdots\!82\)\( T_{2}^{2756} + \)\(96\!\cdots\!50\)\( T_{2}^{2754} - \)\(11\!\cdots\!36\)\( T_{2}^{2752} - \)\(89\!\cdots\!34\)\( T_{2}^{2750} - \)\(13\!\cdots\!43\)\( T_{2}^{2748} - \)\(13\!\cdots\!34\)\( T_{2}^{2746} - \)\(11\!\cdots\!99\)\( T_{2}^{2744} - \)\(79\!\cdots\!88\)\( T_{2}^{2742} - \)\(38\!\cdots\!82\)\( T_{2}^{2740} - \)\(16\!\cdots\!16\)\( T_{2}^{2738} + \)\(23\!\cdots\!09\)\( T_{2}^{2736} + \)\(36\!\cdots\!30\)\( T_{2}^{2734} + \)\(37\!\cdots\!93\)\( T_{2}^{2732} + \)\(29\!\cdots\!04\)\( T_{2}^{2730} + \)\(18\!\cdots\!45\)\( T_{2}^{2728} + \)\(70\!\cdots\!16\)\( T_{2}^{2726} - \)\(20\!\cdots\!85\)\( T_{2}^{2724} - \)\(76\!\cdots\!12\)\( T_{2}^{2722} - \)\(95\!\cdots\!47\)\( T_{2}^{2720} - \)\(87\!\cdots\!06\)\( T_{2}^{2718} - \)\(62\!\cdots\!20\)\( T_{2}^{2716} - \)\(33\!\cdots\!60\)\( T_{2}^{2714} - \)\(85\!\cdots\!21\)\( T_{2}^{2712} + \)\(86\!\cdots\!72\)\( T_{2}^{2710} + \)\(16\!\cdots\!58\)\( T_{2}^{2708} + \)\(17\!\cdots\!82\)\( T_{2}^{2706} + \)\(13\!\cdots\!62\)\( T_{2}^{2704} + \)\(82\!\cdots\!82\)\( T_{2}^{2702} + \)\(29\!\cdots\!20\)\( T_{2}^{2700} - \)\(86\!\cdots\!42\)\( T_{2}^{2698} - \)\(28\!\cdots\!94\)\( T_{2}^{2696} - \)\(31\!\cdots\!80\)\( T_{2}^{2694} - \)\(25\!\cdots\!39\)\( T_{2}^{2692} - \)\(15\!\cdots\!90\)\( T_{2}^{2690} - \)\(51\!\cdots\!42\)\( T_{2}^{2688} + \)\(18\!\cdots\!46\)\( T_{2}^{2686} + \)\(52\!\cdots\!20\)\( T_{2}^{2684} + \)\(56\!\cdots\!20\)\( T_{2}^{2682} + \)\(42\!\cdots\!13\)\( T_{2}^{2680} + \)\(22\!\cdots\!50\)\( T_{2}^{2678} + \)\(40\!\cdots\!80\)\( T_{2}^{2676} - \)\(76\!\cdots\!36\)\( T_{2}^{2674} - \)\(12\!\cdots\!14\)\( T_{2}^{2672} - \)\(11\!\cdots\!66\)\( T_{2}^{2670} - \)\(72\!\cdots\!08\)\( T_{2}^{2668} - \)\(26\!\cdots\!32\)\( T_{2}^{2666} + \)\(85\!\cdots\!91\)\( T_{2}^{2664} + \)\(28\!\cdots\!96\)\( T_{2}^{2662} + \)\(32\!\cdots\!68\)\( T_{2}^{2660} + \)\(26\!\cdots\!30\)\( T_{2}^{2658} + \)\(15\!\cdots\!61\)\( T_{2}^{2656} + \)\(47\!\cdots\!02\)\( T_{2}^{2654} - \)\(28\!\cdots\!21\)\( T_{2}^{2652} - \)\(66\!\cdots\!30\)\( T_{2}^{2650} - \)\(71\!\cdots\!40\)\( T_{2}^{2648} - \)\(55\!\cdots\!90\)\( T_{2}^{2646} - \)\(32\!\cdots\!58\)\( T_{2}^{2644} - \)\(10\!\cdots\!60\)\( T_{2}^{2642} + \)\(50\!\cdots\!79\)\( T_{2}^{2640} + \)\(12\!\cdots\!50\)\( T_{2}^{2638} + \)\(13\!\cdots\!83\)\( T_{2}^{2636} + \)\(10\!\cdots\!88\)\( T_{2}^{2634} + \)\(62\!\cdots\!44\)\( T_{2}^{2632} + \)\(21\!\cdots\!44\)\( T_{2}^{2630} - \)\(62\!\cdots\!20\)\( T_{2}^{2628} - \)\(19\!\cdots\!46\)\( T_{2}^{2626} - \)\(21\!\cdots\!46\)\( T_{2}^{2624} - \)\(17\!\cdots\!86\)\( T_{2}^{2622} - \)\(10\!\cdots\!85\)\( T_{2}^{2620} - \)\(36\!\cdots\!80\)\( T_{2}^{2618} + \)\(75\!\cdots\!39\)\( T_{2}^{2616} + \)\(28\!\cdots\!16\)\( T_{2}^{2614} + \)\(31\!\cdots\!47\)\( T_{2}^{2612} + \)\(24\!\cdots\!28\)\( T_{2}^{2610} + \)\(13\!\cdots\!14\)\( T_{2}^{2608} + \)\(42\!\cdots\!88\)\( T_{2}^{2606} - \)\(18\!\cdots\!39\)\( T_{2}^{2604} - \)\(44\!\cdots\!54\)\( T_{2}^{2602} - \)\(45\!\cdots\!48\)\( T_{2}^{2600} - \)\(32\!\cdots\!46\)\( T_{2}^{2598} - \)\(16\!\cdots\!74\)\( T_{2}^{2596} - \)\(27\!\cdots\!82\)\( T_{2}^{2594} + \)\(50\!\cdots\!84\)\( T_{2}^{2592} + \)\(76\!\cdots\!14\)\( T_{2}^{2590} + \)\(68\!\cdots\!44\)\( T_{2}^{2588} + \)\(43\!\cdots\!96\)\( T_{2}^{2586} + \)\(17\!\cdots\!15\)\( T_{2}^{2584} - \)\(12\!\cdots\!46\)\( T_{2}^{2582} - \)\(11\!\cdots\!39\)\( T_{2}^{2580} - \)\(13\!\cdots\!76\)\( T_{2}^{2578} - \)\(10\!\cdots\!67\)\( T_{2}^{2576} - \)\(63\!\cdots\!92\)\( T_{2}^{2574} - \)\(22\!\cdots\!45\)\( T_{2}^{2572} + \)\(57\!\cdots\!30\)\( T_{2}^{2570} + \)\(19\!\cdots\!20\)\( T_{2}^{2568} + \)\(21\!\cdots\!94\)\( T_{2}^{2566} + \)\(16\!\cdots\!06\)\( T_{2}^{2564} + \)\(98\!\cdots\!28\)\( T_{2}^{2562} + \)\(36\!\cdots\!01\)\( T_{2}^{2560} - \)\(60\!\cdots\!94\)\( T_{2}^{2558} - \)\(26\!\cdots\!02\)\( T_{2}^{2556} - \)\(29\!\cdots\!82\)\( T_{2}^{2554} - \)\(23\!\cdots\!20\)\( T_{2}^{2552} - \)\(14\!\cdots\!00\)\( T_{2}^{2550} - \)\(57\!\cdots\!82\)\( T_{2}^{2548} - \)\(32\!\cdots\!94\)\( T_{2}^{2546} + \)\(28\!\cdots\!80\)\( T_{2}^{2544} + \)\(35\!\cdots\!46\)\( T_{2}^{2542} + \)\(29\!\cdots\!53\)\( T_{2}^{2540} + \)\(18\!\cdots\!32\)\( T_{2}^{2538} + \)\(83\!\cdots\!67\)\( T_{2}^{2536} + \)\(13\!\cdots\!82\)\( T_{2}^{2534} - \)\(24\!\cdots\!08\)\( T_{2}^{2532} - \)\(35\!\cdots\!06\)\( T_{2}^{2530} - \)\(30\!\cdots\!87\)\( T_{2}^{2528} - \)\(20\!\cdots\!22\)\( T_{2}^{2526} - \)\(10\!\cdots\!72\)\( T_{2}^{2524} - \)\(25\!\cdots\!80\)\( T_{2}^{2522} + \)\(15\!\cdots\!87\)\( T_{2}^{2520} + \)\(30\!\cdots\!52\)\( T_{2}^{2518} + \)\(28\!\cdots\!70\)\( T_{2}^{2516} + \)\(19\!\cdots\!06\)\( T_{2}^{2514} + \)\(10\!\cdots\!42\)\( T_{2}^{2512} + \)\(30\!\cdots\!58\)\( T_{2}^{2510} - \)\(91\!\cdots\!81\)\( T_{2}^{2508} - \)\(23\!\cdots\!58\)\( T_{2}^{2506} - \)\(23\!\cdots\!91\)\( T_{2}^{2504} - \)\(16\!\cdots\!26\)\( T_{2}^{2502} - \)\(83\!\cdots\!34\)\( T_{2}^{2500} - \)\(25\!\cdots\!22\)\( T_{2}^{2498} + \)\(69\!\cdots\!32\)\( T_{2}^{2496} + \)\(18\!\cdots\!84\)\( T_{2}^{2494} + \)\(17\!\cdots\!88\)\( T_{2}^{2492} + \)\(11\!\cdots\!44\)\( T_{2}^{2490} + \)\(57\!\cdots\!01\)\( T_{2}^{2488} + \)\(13\!\cdots\!72\)\( T_{2}^{2486} - \)\(97\!\cdots\!14\)\( T_{2}^{2484} - \)\(16\!\cdots\!48\)\( T_{2}^{2482} - \)\(13\!\cdots\!52\)\( T_{2}^{2480} - \)\(83\!\cdots\!42\)\( T_{2}^{2478} - \)\(33\!\cdots\!53\)\( T_{2}^{2476} - \)\(81\!\cdots\!50\)\( T_{2}^{2474} + \)\(13\!\cdots\!21\)\( T_{2}^{2472} + \)\(15\!\cdots\!88\)\( T_{2}^{2470} + \)\(11\!\cdots\!40\)\( T_{2}^{2468} + \)\(63\!\cdots\!46\)\( T_{2}^{2466} + \)\(20\!\cdots\!27\)\( T_{2}^{2464} - \)\(49\!\cdots\!18\)\( T_{2}^{2462} - \)\(14\!\cdots\!19\)\( T_{2}^{2460} - \)\(14\!\cdots\!60\)\( T_{2}^{2458} - \)\(96\!\cdots\!85\)\( T_{2}^{2456} - \)\(48\!\cdots\!18\)\( T_{2}^{2454} - \)\(12\!\cdots\!25\)\( T_{2}^{2452} + \)\(61\!\cdots\!28\)\( T_{2}^{2450} + \)\(12\!\cdots\!18\)\( T_{2}^{2448} + \)\(11\!\cdots\!54\)\( T_{2}^{2446} + \)\(72\!\cdots\!60\)\( T_{2}^{2444} + \)\(34\!\cdots\!26\)\( T_{2}^{2442} + \)\(79\!\cdots\!35\)\( T_{2}^{2440} - \)\(52\!\cdots\!20\)\( T_{2}^{2438} - \)\(89\!\cdots\!92\)\( T_{2}^{2436} - \)\(76\!\cdots\!56\)\( T_{2}^{2434} - \)\(47\!\cdots\!73\)\( T_{2}^{2432} - \)\(20\!\cdots\!62\)\( T_{2}^{2430} - \)\(34\!\cdots\!82\)\( T_{2}^{2428} + \)\(44\!\cdots\!44\)\( T_{2}^{2426} + \)\(60\!\cdots\!19\)\( T_{2}^{2424} + \)\(47\!\cdots\!72\)\( T_{2}^{2422} + \)\(26\!\cdots\!56\)\( T_{2}^{2420} + \)\(95\!\cdots\!06\)\( T_{2}^{2418} - \)\(33\!\cdots\!27\)\( T_{2}^{2416} - \)\(41\!\cdots\!52\)\( T_{2}^{2414} - \)\(42\!\cdots\!23\)\( T_{2}^{2412} - \)\(29\!\cdots\!98\)\( T_{2}^{2410} - \)\(14\!\cdots\!19\)\( T_{2}^{2408} - \)\(35\!\cdots\!58\)\( T_{2}^{2406} + \)\(18\!\cdots\!95\)\( T_{2}^{2404} + \)\(33\!\cdots\!38\)\( T_{2}^{2402} + \)\(28\!\cdots\!76\)\( T_{2}^{2400} + \)\(17\!\cdots\!78\)\( T_{2}^{2398} + \)\(69\!\cdots\!44\)\( T_{2}^{2396} + \)\(54\!\cdots\!70\)\( T_{2}^{2394} - \)\(21\!\cdots\!41\)\( T_{2}^{2392} - \)\(25\!\cdots\!60\)\( T_{2}^{2390} - \)\(18\!\cdots\!81\)\( T_{2}^{2388} - \)\(98\!\cdots\!64\)\( T_{2}^{2386} - \)\(32\!\cdots\!24\)\( T_{2}^{2384} + \)\(45\!\cdots\!06\)\( T_{2}^{2382} + \)\(17\!\cdots\!48\)\( T_{2}^{2380} + \)\(17\!\cdots\!02\)\( T_{2}^{2378} + \)\(11\!\cdots\!75\)\( T_{2}^{2376} + \)\(57\!\cdots\!80\)\( T_{2}^{2374} + \)\(16\!\cdots\!74\)\( T_{2}^{2372} - \)\(33\!\cdots\!84\)\( T_{2}^{2370} - \)\(98\!\cdots\!76\)\( T_{2}^{2368} - \)\(89\!\cdots\!20\)\( T_{2}^{2366} - \)\(56\!\cdots\!37\)\( T_{2}^{2364} - \)\(25\!\cdots\!02\)\( T_{2}^{2362} - \)\(55\!\cdots\!45\)\( T_{2}^{2360} + \)\(34\!\cdots\!84\)\( T_{2}^{2358} + \)\(55\!\cdots\!06\)\( T_{2}^{2356} + \)\(44\!\cdots\!74\)\( T_{2}^{2354} + \)\(25\!\cdots\!07\)\( T_{2}^{2352} + \)\(93\!\cdots\!04\)\( T_{2}^{2350} + \)\(38\!\cdots\!55\)\( T_{2}^{2348} - \)\(30\!\cdots\!92\)\( T_{2}^{2346} - \)\(32\!\cdots\!16\)\( T_{2}^{2344} - \)\(22\!\cdots\!72\)\( T_{2}^{2342} - \)\(11\!\cdots\!66\)\( T_{2}^{2340} - \)\(32\!\cdots\!46\)\( T_{2}^{2338} + \)\(74\!\cdots\!35\)\( T_{2}^{2336} + \)\(19\!\cdots\!62\)\( T_{2}^{2334} + \)\(16\!\cdots\!64\)\( T_{2}^{2332} + \)\(10\!\cdots\!78\)\( T_{2}^{2330} + \)\(43\!\cdots\!30\)\( T_{2}^{2328} + \)\(72\!\cdots\!32\)\( T_{2}^{2326} - \)\(86\!\cdots\!45\)\( T_{2}^{2324} - \)\(11\!\cdots\!66\)\( T_{2}^{2322} - \)\(87\!\cdots\!38\)\( T_{2}^{2320} - \)\(48\!\cdots\!08\)\( T_{2}^{2318} - \)\(18\!\cdots\!50\)\( T_{2}^{2316} - \)\(12\!\cdots\!80\)\( T_{2}^{2314} + \)\(52\!\cdots\!79\)\( T_{2}^{2312} + \)\(58\!\cdots\!14\)\( T_{2}^{2310} + \)\(41\!\cdots\!32\)\( T_{2}^{2308} + \)\(21\!\cdots\!86\)\( T_{2}^{2306} + \)\(77\!\cdots\!96\)\( T_{2}^{2304} + \)\(34\!\cdots\!98\)\( T_{2}^{2302} - \)\(22\!\cdots\!65\)\( T_{2}^{2300} - \)\(24\!\cdots\!48\)\( T_{2}^{2298} - \)\(16\!\cdots\!77\)\( T_{2}^{2296} - \)\(82\!\cdots\!76\)\( T_{2}^{2294} - \)\(27\!\cdots\!56\)\( T_{2}^{2292} + \)\(61\!\cdots\!42\)\( T_{2}^{2290} + \)\(96\!\cdots\!16\)\( T_{2}^{2288} + \)\(92\!\cdots\!94\)\( T_{2}^{2286} + \)\(59\!\cdots\!67\)\( T_{2}^{2284} + \)\(28\!\cdots\!68\)\( T_{2}^{2282} + \)\(81\!\cdots\!50\)\( T_{2}^{2280} - \)\(11\!\cdots\!88\)\( T_{2}^{2278} - \)\(37\!\cdots\!41\)\( T_{2}^{2276} - \)\(32\!\cdots\!32\)\( T_{2}^{2274} - \)\(19\!\cdots\!66\)\( T_{2}^{2272} - \)\(82\!\cdots\!46\)\( T_{2}^{2270} - \)\(17\!\cdots\!84\)\( T_{2}^{2268} + \)\(96\!\cdots\!00\)\( T_{2}^{2266} + \)\(14\!\cdots\!40\)\( T_{2}^{2264} + \)\(11\!\cdots\!40\)\( T_{2}^{2262} + \)\(59\!\cdots\!87\)\( T_{2}^{2260} + \)\(21\!\cdots\!08\)\( T_{2}^{2258} + \)\(16\!\cdots\!97\)\( T_{2}^{2256} - \)\(53\!\cdots\!42\)\( T_{2}^{2254} - \)\(57\!\cdots\!24\)\( T_{2}^{2252} - \)\(37\!\cdots\!38\)\( T_{2}^{2250} - \)\(18\!\cdots\!72\)\( T_{2}^{2248} - \)\(55\!\cdots\!80\)\( T_{2}^{2246} + \)\(52\!\cdots\!37\)\( T_{2}^{2244} + \)\(22\!\cdots\!84\)\( T_{2}^{2242} + \)\(20\!\cdots\!25\)\( T_{2}^{2240} + \)\(12\!\cdots\!54\)\( T_{2}^{2238} + \)\(53\!\cdots\!88\)\( T_{2}^{2236} + \)\(13\!\cdots\!10\)\( T_{2}^{2234} - \)\(39\!\cdots\!68\)\( T_{2}^{2232} - \)\(79\!\cdots\!66\)\( T_{2}^{2230} - \)\(64\!\cdots\!52\)\( T_{2}^{2228} - \)\(36\!\cdots\!56\)\( T_{2}^{2226} - \)\(15\!\cdots\!81\)\( T_{2}^{2224} - \)\(34\!\cdots\!60\)\( T_{2}^{2222} + \)\(14\!\cdots\!39\)\( T_{2}^{2220} + \)\(23\!\cdots\!72\)\( T_{2}^{2218} + \)\(18\!\cdots\!90\)\( T_{2}^{2216} + \)\(10\!\cdots\!02\)\( T_{2}^{2214} + \)\(40\!\cdots\!41\)\( T_{2}^{2212} + \)\(82\!\cdots\!40\)\( T_{2}^{2210} - \)\(42\!\cdots\!08\)\( T_{2}^{2208} - \)\(63\!\cdots\!72\)\( T_{2}^{2206} - \)\(46\!\cdots\!02\)\( T_{2}^{2204} - \)\(24\!\cdots\!48\)\( T_{2}^{2202} - \)\(96\!\cdots\!27\)\( T_{2}^{2200} - \)\(17\!\cdots\!44\)\( T_{2}^{2198} + \)\(11\!\cdots\!51\)\( T_{2}^{2196} + \)\(15\!\cdots\!80\)\( T_{2}^{2194} + \)\(10\!\cdots\!84\)\( T_{2}^{2192} + \)\(55\!\cdots\!70\)\( T_{2}^{2190} + \)\(20\!\cdots\!85\)\( T_{2}^{2188} + \)\(27\!\cdots\!50\)\( T_{2}^{2186} - \)\(31\!\cdots\!64\)\( T_{2}^{2184} - \)\(35\!\cdots\!34\)\( T_{2}^{2182} - \)\(23\!\cdots\!96\)\( T_{2}^{2180} - \)\(11\!\cdots\!28\)\( T_{2}^{2178} - \)\(35\!\cdots\!75\)\( T_{2}^{2176} - \)\(14\!\cdots\!10\)\( T_{2}^{2174} + \)\(84\!\cdots\!04\)\( T_{2}^{2172} + \)\(78\!\cdots\!54\)\( T_{2}^{2170} + \)\(46\!\cdots\!60\)\( T_{2}^{2168} + \)\(20\!\cdots\!54\)\( T_{2}^{2166} + \)\(51\!\cdots\!86\)\( T_{2}^{2164} - \)\(85\!\cdots\!70\)\( T_{2}^{2162} - \)\(22\!\cdots\!10\)\( T_{2}^{2160} - \)\(16\!\cdots\!00\)\( T_{2}^{2158} - \)\(90\!\cdots\!85\)\( T_{2}^{2156} - \)\(34\!\cdots\!28\)\( T_{2}^{2154} - \)\(55\!\cdots\!09\)\( T_{2}^{2152} + \)\(41\!\cdots\!32\)\( T_{2}^{2150} + \)\(52\!\cdots\!72\)\( T_{2}^{2148} + \)\(34\!\cdots\!72\)\( T_{2}^{2146} + \)\(16\!\cdots\!64\)\( T_{2}^{2144} + \)\(54\!\cdots\!74\)\( T_{2}^{2142} + \)\(24\!\cdots\!55\)\( T_{2}^{2140} - \)\(11\!\cdots\!78\)\( T_{2}^{2138} - \)\(11\!\cdots\!84\)\( T_{2}^{2136} - \)\(67\!\cdots\!38\)\( T_{2}^{2134} - \)\(29\!\cdots\!96\)\( T_{2}^{2132} - \)\(80\!\cdots\!56\)\( T_{2}^{2130} + \)\(79\!\cdots\!83\)\( T_{2}^{2128} + \)\(27\!\cdots\!04\)\( T_{2}^{2126} + \)\(22\!\cdots\!41\)\( T_{2}^{2124} + \)\(11\!\cdots\!42\)\( T_{2}^{2122} + \)\(47\!\cdots\!22\)\( T_{2}^{2120} + \)\(10\!\cdots\!08\)\( T_{2}^{2118} - \)\(32\!\cdots\!34\)\( T_{2}^{2116} - \)\(53\!\cdots\!34\)\( T_{2}^{2114} - \)\(38\!\cdots\!27\)\( T_{2}^{2112} - \)\(19\!\cdots\!64\)\( T_{2}^{2110} - \)\(68\!\cdots\!79\)\( T_{2}^{2108} - \)\(10\!\cdots\!86\)\( T_{2}^{2106} + \)\(86\!\cdots\!11\)\( T_{2}^{2104} + \)\(95\!\cdots\!68\)\( T_{2}^{2102} + \)\(61\!\cdots\!61\)\( T_{2}^{2100} + \)\(27\!\cdots\!76\)\( T_{2}^{2098} + \)\(83\!\cdots\!68\)\( T_{2}^{2096} + \)\(17\!\cdots\!96\)\( T_{2}^{2094} - \)\(19\!\cdots\!84\)\( T_{2}^{2092} - \)\(16\!\cdots\!76\)\( T_{2}^{2090} - \)\(93\!\cdots\!26\)\( T_{2}^{2088} - \)\(36\!\cdots\!36\)\( T_{2}^{2086} - \)\(81\!\cdots\!87\)\( T_{2}^{2084} + \)\(21\!\cdots\!86\)\( T_{2}^{2082} + \)\(39\!\cdots\!29\)\( T_{2}^{2080} + \)\(26\!\cdots\!54\)\( T_{2}^{2078} + \)\(13\!\cdots\!15\)\( T_{2}^{2076} + \)\(45\!\cdots\!20\)\( T_{2}^{2074} + \)\(58\!\cdots\!16\)\( T_{2}^{2072} - \)\(64\!\cdots\!82\)\( T_{2}^{2070} - \)\(71\!\cdots\!60\)\( T_{2}^{2068} - \)\(41\!\cdots\!86\)\( T_{2}^{2066} - \)\(19\!\cdots\!00\)\( T_{2}^{2064} - \)\(55\!\cdots\!56\)\( T_{2}^{2062} - \)\(17\!\cdots\!82\)\( T_{2}^{2060} + \)\(12\!\cdots\!54\)\( T_{2}^{2058} + \)\(11\!\cdots\!08\)\( T_{2}^{2056} + \)\(60\!\cdots\!88\)\( T_{2}^{2054} + \)\(26\!\cdots\!63\)\( T_{2}^{2052} + \)\(66\!\cdots\!10\)\( T_{2}^{2050} - \)\(29\!\cdots\!37\)\( T_{2}^{2048} - \)\(18\!\cdots\!68\)\( T_{2}^{2046} - \)\(15\!\cdots\!76\)\( T_{2}^{2044} - \)\(77\!\cdots\!14\)\( T_{2}^{2042} - \)\(33\!\cdots\!00\)\( T_{2}^{2040} - \)\(69\!\cdots\!66\)\( T_{2}^{2038} + \)\(97\!\cdots\!40\)\( T_{2}^{2036} + \)\(25\!\cdots\!16\)\( T_{2}^{2034} + \)\(19\!\cdots\!60\)\( T_{2}^{2032} + \)\(89\!\cdots\!42\)\( T_{2}^{2030} + \)\(35\!\cdots\!11\)\( T_{2}^{2028} + \)\(51\!\cdots\!90\)\( T_{2}^{2026} - \)\(24\!\cdots\!84\)\( T_{2}^{2024} - \)\(34\!\cdots\!54\)\( T_{2}^{2022} - \)\(23\!\cdots\!74\)\( T_{2}^{2020} - \)\(94\!\cdots\!74\)\( T_{2}^{2018} - \)\(34\!\cdots\!54\)\( T_{2}^{2016} - \)\(52\!\cdots\!54\)\( T_{2}^{2014} + \)\(50\!\cdots\!12\)\( T_{2}^{2012} + \)\(49\!\cdots\!72\)\( T_{2}^{2010} + \)\(28\!\cdots\!00\)\( T_{2}^{2008} + \)\(10\!\cdots\!02\)\( T_{2}^{2006} + \)\(31\!\cdots\!74\)\( T_{2}^{2004} - \)\(52\!\cdots\!14\)\( T_{2}^{2002} - \)\(84\!\cdots\!81\)\( T_{2}^{2000} - \)\(67\!\cdots\!80\)\( T_{2}^{1998} - \)\(35\!\cdots\!72\)\( T_{2}^{1996} - \)\(12\!\cdots\!08\)\( T_{2}^{1994} - \)\(33\!\cdots\!36\)\( T_{2}^{1992} + \)\(84\!\cdots\!50\)\( T_{2}^{1990} + \)\(10\!\cdots\!52\)\( T_{2}^{1988} + \)\(83\!\cdots\!08\)\( T_{2}^{1986} + \)\(41\!\cdots\!78\)\( T_{2}^{1984} + \)\(14\!\cdots\!90\)\( T_{2}^{1982} + \)\(41\!\cdots\!42\)\( T_{2}^{1980} - \)\(66\!\cdots\!92\)\( T_{2}^{1978} - \)\(10\!\cdots\!60\)\( T_{2}^{1976} - \)\(85\!\cdots\!76\)\( T_{2}^{1974} - \)\(44\!\cdots\!69\)\( T_{2}^{1972} - \)\(16\!\cdots\!00\)\( T_{2}^{1970} - \)\(50\!\cdots\!86\)\( T_{2}^{1968} + \)\(20\!\cdots\!58\)\( T_{2}^{1966} + \)\(84\!\cdots\!45\)\( T_{2}^{1964} + \)\(73\!\cdots\!98\)\( T_{2}^{1962} + \)\(39\!\cdots\!02\)\( T_{2}^{1960} + \)\(14\!\cdots\!04\)\( T_{2}^{1958} + \)\(49\!\cdots\!06\)\( T_{2}^{1956} + \)\(48\!\cdots\!62\)\( T_{2}^{1954} - \)\(58\!\cdots\!24\)\( T_{2}^{1952} - \)\(55\!\cdots\!46\)\( T_{2}^{1950} - \)\(31\!\cdots\!80\)\( T_{2}^{1948} - \)\(10\!\cdots\!54\)\( T_{2}^{1946} - \)\(38\!\cdots\!88\)\( T_{2}^{1944} + \)\(18\!\cdots\!96\)\( T_{2}^{1942} + \)\(48\!\cdots\!57\)\( T_{2}^{1940} + \)\(43\!\cdots\!04\)\( T_{2}^{1938} + \)\(23\!\cdots\!96\)\( T_{2}^{1936} + \)\(64\!\cdots\!78\)\( T_{2}^{1934} + \)\(23\!\cdots\!61\)\( T_{2}^{1932} - \)\(68\!\cdots\!96\)\( T_{2}^{1930} - \)\(53\!\cdots\!97\)\( T_{2}^{1928} - \)\(40\!\cdots\!00\)\( T_{2}^{1926} - \)\(20\!\cdots\!55\)\( T_{2}^{1924} - \)\(44\!\cdots\!30\)\( T_{2}^{1922} - \)\(15\!\cdots\!59\)\( T_{2}^{1920} + \)\(10\!\cdots\!76\)\( T_{2}^{1918} + \)\(57\!\cdots\!76\)\( T_{2}^{1916} + \)\(41\!\cdots\!88\)\( T_{2}^{1914} + \)\(18\!\cdots\!18\)\( T_{2}^{1912} + \)\(43\!\cdots\!94\)\( T_{2}^{1910} + \)\(14\!\cdots\!25\)\( T_{2}^{1908} - \)\(90\!\cdots\!54\)\( T_{2}^{1906} - \)\(50\!\cdots\!05\)\( T_{2}^{1904} - \)\(39\!\cdots\!24\)\( T_{2}^{1902} - \)\(17\!\cdots\!14\)\( T_{2}^{1900} - \)\(48\!\cdots\!22\)\( T_{2}^{1898} - \)\(16\!\cdots\!52\)\( T_{2}^{1896} + \)\(52\!\cdots\!66\)\( T_{2}^{1894} + \)\(33\!\cdots\!43\)\( T_{2}^{1892} + \)\(31\!\cdots\!18\)\( T_{2}^{1890} + \)\(13\!\cdots\!83\)\( T_{2}^{1888} + \)\(49\!\cdots\!18\)\( T_{2}^{1886} + \)\(17\!\cdots\!11\)\( T_{2}^{1884} - \)\(11\!\cdots\!52\)\( T_{2}^{1882} - \)\(15\!\cdots\!25\)\( T_{2}^{1880} - \)\(20\!\cdots\!60\)\( T_{2}^{1878} - \)\(96\!\cdots\!69\)\( T_{2}^{1876} - \)\(41\!\cdots\!60\)\( T_{2}^{1874} - \)\(15\!\cdots\!37\)\( T_{2}^{1872} - \)\(14\!\cdots\!00\)\( T_{2}^{1870} + \)\(21\!\cdots\!73\)\( T_{2}^{1868} + \)\(10\!\cdots\!50\)\( T_{2}^{1866} + \)\(56\!\cdots\!27\)\( T_{2}^{1864} + \)\(28\!\cdots\!04\)\( T_{2}^{1862} + \)\(11\!\cdots\!66\)\( T_{2}^{1860} + \)\(23\!\cdots\!18\)\( T_{2}^{1858} + \)\(40\!\cdots\!79\)\( T_{2}^{1856} - \)\(43\!\cdots\!66\)\( T_{2}^{1854} - \)\(27\!\cdots\!85\)\( T_{2}^{1852} - \)\(16\!\cdots\!32\)\( T_{2}^{1850} - \)\(69\!\cdots\!71\)\( T_{2}^{1848} - \)\(19\!\cdots\!98\)\( T_{2}^{1846} - \)\(51\!\cdots\!75\)\( T_{2}^{1844} + \)\(96\!\cdots\!54\)\( T_{2}^{1842} + \)\(10\!\cdots\!20\)\( T_{2}^{1840} + \)\(78\!\cdots\!46\)\( T_{2}^{1838} + \)\(36\!\cdots\!77\)\( T_{2}^{1836} + \)\(12\!\cdots\!00\)\( T_{2}^{1834} + \)\(39\!\cdots\!72\)\( T_{2}^{1832} + \)\(24\!\cdots\!62\)\( T_{2}^{1830} - \)\(29\!\cdots\!80\)\( T_{2}^{1828} - \)\(30\!\cdots\!98\)\( T_{2}^{1826} - \)\(16\!\cdots\!01\)\( T_{2}^{1824} - \)\(66\!\cdots\!84\)\( T_{2}^{1822} - \)\(23\!\cdots\!20\)\( T_{2}^{1820} - \)\(41\!\cdots\!32\)\( T_{2}^{1818} + \)\(15\!\cdots\!72\)\( T_{2}^{1816} + \)\(97\!\cdots\!94\)\( T_{2}^{1814} + \)\(64\!\cdots\!09\)\( T_{2}^{1812} + \)\(29\!\cdots\!92\)\( T_{2}^{1810} + \)\(11\!\cdots\!60\)\( T_{2}^{1808} + \)\(28\!\cdots\!76\)\( T_{2}^{1806} + \)\(40\!\cdots\!30\)\( T_{2}^{1804} - \)\(21\!\cdots\!46\)\( T_{2}^{1802} - \)\(21\!\cdots\!62\)\( T_{2}^{1800} - \)\(10\!\cdots\!54\)\( T_{2}^{1798} - \)\(46\!\cdots\!43\)\( T_{2}^{1796} - \)\(13\!\cdots\!08\)\( T_{2}^{1794} - \)\(30\!\cdots\!44\)\( T_{2}^{1792} + \)\(11\!\cdots\!36\)\( T_{2}^{1790} + \)\(56\!\cdots\!80\)\( T_{2}^{1788} + \)\(34\!\cdots\!52\)\( T_{2}^{1786} + \)\(16\!\cdots\!38\)\( T_{2}^{1784} + \)\(55\!\cdots\!84\)\( T_{2}^{1782} + \)\(14\!\cdots\!73\)\( T_{2}^{1780} + \)\(16\!\cdots\!76\)\( T_{2}^{1778} - \)\(11\!\cdots\!43\)\( T_{2}^{1776} - \)\(92\!\cdots\!26\)\( T_{2}^{1774} - \)\(50\!\cdots\!76\)\( T_{2}^{1772} - \)\(18\!\cdots\!86\)\( T_{2}^{1770} - \)\(55\!\cdots\!62\)\( T_{2}^{1768} - \)\(99\!\cdots\!98\)\( T_{2}^{1766} + \)\(18\!\cdots\!65\)\( T_{2}^{1764} + \)\(22\!\cdots\!26\)\( T_{2}^{1762} + \)\(13\!\cdots\!79\)\( T_{2}^{1760} + \)\(53\!\cdots\!84\)\( T_{2}^{1758} + \)\(16\!\cdots\!16\)\( T_{2}^{1756} + \)\(35\!\cdots\!50\)\( T_{2}^{1754} - \)\(19\!\cdots\!62\)\( T_{2}^{1752} - \)\(50\!\cdots\!76\)\( T_{2}^{1750} - \)\(34\!\cdots\!19\)\( T_{2}^{1748} - \)\(13\!\cdots\!00\)\( T_{2}^{1746} - \)\(44\!\cdots\!35\)\( T_{2}^{1744} - \)\(97\!\cdots\!12\)\( T_{2}^{1742} + \)\(36\!\cdots\!17\)\( T_{2}^{1740} + \)\(12\!\cdots\!10\)\( T_{2}^{1738} + \)\(85\!\cdots\!00\)\( T_{2}^{1736} + \)\(33\!\cdots\!28\)\( T_{2}^{1734} + \)\(10\!\cdots\!26\)\( T_{2}^{1732} + \)\(20\!\cdots\!74\)\( T_{2}^{1730} - \)\(24\!\cdots\!05\)\( T_{2}^{1728} - \)\(36\!\cdots\!58\)\( T_{2}^{1726} - \)\(21\!\cdots\!58\)\( T_{2}^{1724} - \)\(84\!\cdots\!22\)\( T_{2}^{1722} - \)\(22\!\cdots\!12\)\( T_{2}^{1720} - \)\(37\!\cdots\!72\)\( T_{2}^{1718} + \)\(13\!\cdots\!62\)\( T_{2}^{1716} + \)\(11\!\cdots\!44\)\( T_{2}^{1714} + \)\(60\!\cdots\!75\)\( T_{2}^{1712} + \)\(22\!\cdots\!62\)\( T_{2}^{1710} + \)\(54\!\cdots\!79\)\( T_{2}^{1708} + \)\(68\!\cdots\!72\)\( T_{2}^{1706} - \)\(45\!\cdots\!20\)\( T_{2}^{1704} - \)\(34\!\cdots\!02\)\( T_{2}^{1702} - \)\(16\!\cdots\!55\)\( T_{2}^{1700} - \)\(59\!\cdots\!28\)\( T_{2}^{1698} - \)\(14\!\cdots\!54\)\( T_{2}^{1696} - \)\(17\!\cdots\!00\)\( T_{2}^{1694} + \)\(11\!\cdots\!40\)\( T_{2}^{1692} + \)\(87\!\cdots\!52\)\( T_{2}^{1690} + \)\(41\!\cdots\!30\)\( T_{2}^{1688} + \)\(15\!\cdots\!50\)\( T_{2}^{1686} + \)\(37\!\cdots\!06\)\( T_{2}^{1684} + \)\(53\!\cdots\!02\)\( T_{2}^{1682} - \)\(21\!\cdots\!73\)\( T_{2}^{1680} - \)\(18\!\cdots\!18\)\( T_{2}^{1678} - \)\(92\!\cdots\!50\)\( T_{2}^{1676} - \)\(34\!\cdots\!28\)\( T_{2}^{1674} - \)\(90\!\cdots\!33\)\( T_{2}^{1672} - \)\(16\!\cdots\!20\)\( T_{2}^{1670} + \)\(25\!\cdots\!21\)\( T_{2}^{1668} + \)\(33\!\cdots\!60\)\( T_{2}^{1666} + \)\(17\!\cdots\!25\)\( T_{2}^{1664} + \)\(68\!\cdots\!38\)\( T_{2}^{1662} + \)\(18\!\cdots\!46\)\( T_{2}^{1660} + \)\(38\!\cdots\!66\)\( T_{2}^{1658} - \)\(80\!\cdots\!49\)\( T_{2}^{1656} - \)\(48\!\cdots\!18\)\( T_{2}^{1654} - \)\(27\!\cdots\!89\)\( T_{2}^{1652} - \)\(11\!\cdots\!36\)\( T_{2}^{1650} - \)\(32\!\cdots\!22\)\( T_{2}^{1648} - \)\(73\!\cdots\!84\)\( T_{2}^{1646} - \)\(38\!\cdots\!10\)\( T_{2}^{1644} + \)\(59\!\cdots\!64\)\( T_{2}^{1642} + \)\(36\!\cdots\!23\)\( T_{2}^{1640} + \)\(15\!\cdots\!74\)\( T_{2}^{1638} + \)\(45\!\cdots\!70\)\( T_{2}^{1636} + \)\(10\!\cdots\!92\)\( T_{2}^{1634} + \)\(74\!\cdots\!98\)\( T_{2}^{1632} - \)\(70\!\cdots\!78\)\( T_{2}^{1630} - \)\(41\!\cdots\!82\)\( T_{2}^{1628} - \)\(18\!\cdots\!36\)\( T_{2}^{1626} - \)\(47\!\cdots\!80\)\( T_{2}^{1624} - \)\(94\!\cdots\!88\)\( T_{2}^{1622} + \)\(25\!\cdots\!37\)\( T_{2}^{1620} + \)\(10\!\cdots\!36\)\( T_{2}^{1618} + \)\(47\!\cdots\!07\)\( T_{2}^{1616} + \)\(18\!\cdots\!90\)\( T_{2}^{1614} + \)\(36\!\cdots\!42\)\( T_{2}^{1612} + \)\(31\!\cdots\!22\)\( T_{2}^{1610} - \)\(23\!\cdots\!46\)\( T_{2}^{1608} - \)\(17\!\cdots\!70\)\( T_{2}^{1606} - \)\(58\!\cdots\!95\)\( T_{2}^{1604} - \)\(17\!\cdots\!86\)\( T_{2}^{1602} - \)\(19\!\cdots\!42\)\( T_{2}^{1600} + \)\(57\!\cdots\!96\)\( T_{2}^{1598} + \)\(53\!\cdots\!44\)\( T_{2}^{1596} + \)\(26\!\cdots\!22\)\( T_{2}^{1594} + \)\(74\!\cdots\!33\)\( T_{2}^{1592} + \)\(18\!\cdots\!50\)\( T_{2}^{1590} + \)\(11\!\cdots\!38\)\( T_{2}^{1588} - \)\(12\!\cdots\!00\)\( T_{2}^{1586} - \)\(70\!\cdots\!85\)\( T_{2}^{1584} - \)\(31\!\cdots\!46\)\( T_{2}^{1582} - \)\(80\!\cdots\!60\)\( T_{2}^{1580} - \)\(18\!\cdots\!84\)\( T_{2}^{1578} - \)\(10\!\cdots\!80\)\( T_{2}^{1576} + \)\(13\!\cdots\!42\)\( T_{2}^{1574} + \)\(60\!\cdots\!66\)\( T_{2}^{1572} + \)\(28\!\cdots\!10\)\( T_{2}^{1570} + \)\(59\!\cdots\!65\)\( T_{2}^{1568} + \)\(12\!\cdots\!40\)\( T_{2}^{1566} + \)\(28\!\cdots\!60\)\( T_{2}^{1564} - \)\(14\!\cdots\!10\)\( T_{2}^{1562} - \)\(43\!\cdots\!75\)\( T_{2}^{1560} - \)\(21\!\cdots\!50\)\( T_{2}^{1558} - \)\(26\!\cdots\!65\)\( T_{2}^{1556} - \)\(38\!\cdots\!66\)\( T_{2}^{1554} + \)\(19\!\cdots\!85\)\( T_{2}^{1552} + \)\(15\!\cdots\!14\)\( T_{2}^{1550} + \)\(36\!\cdots\!94\)\( T_{2}^{1548} + \)\(14\!\cdots\!46\)\( T_{2}^{1546} + \)\(57\!\cdots\!28\)\( T_{2}^{1544} - \)\(32\!\cdots\!62\)\( T_{2}^{1542} - \)\(33\!\cdots\!91\)\( T_{2}^{1540} - \)\(16\!\cdots\!90\)\( T_{2}^{1538} - \)\(34\!\cdots\!02\)\( T_{2}^{1536} - \)\(10\!\cdots\!62\)\( T_{2}^{1534} + \)\(44\!\cdots\!08\)\( T_{2}^{1532} + \)\(69\!\cdots\!76\)\( T_{2}^{1530} + \)\(33\!\cdots\!37\)\( T_{2}^{1528} + \)\(15\!\cdots\!86\)\( T_{2}^{1526} + \)\(33\!\cdots\!88\)\( T_{2}^{1524} + \)\(85\!\cdots\!60\)\( T_{2}^{1522} + \)\(51\!\cdots\!26\)\( T_{2}^{1520} - \)\(50\!\cdots\!64\)\( T_{2}^{1518} - \)\(18\!\cdots\!47\)\( T_{2}^{1516} - \)\(10\!\cdots\!36\)\( T_{2}^{1514} - \)\(17\!\cdots\!63\)\( T_{2}^{1512} - \)\(42\!\cdots\!34\)\( T_{2}^{1510} - \)\(23\!\cdots\!61\)\( T_{2}^{1508} + \)\(48\!\cdots\!02\)\( T_{2}^{1506} + \)\(12\!\cdots\!72\)\( T_{2}^{1504} + \)\(71\!\cdots\!28\)\( T_{2}^{1502} + \)\(88\!\cdots\!45\)\( T_{2}^{1500} + \)\(19\!\cdots\!52\)\( T_{2}^{1498} - \)\(26\!\cdots\!68\)\( T_{2}^{1496} - \)\(38\!\cdots\!94\)\( T_{2}^{1494} - \)\(91\!\cdots\!26\)\( T_{2}^{1492} - \)\(47\!\cdots\!16\)\( T_{2}^{1490} - \)\(63\!\cdots\!46\)\( T_{2}^{1488} - \)\(15\!\cdots\!82\)\( T_{2}^{1486} - \)\(68\!\cdots\!12\)\( T_{2}^{1484} + \)\(10\!\cdots\!58\)\( T_{2}^{1482} + \)\(37\!\cdots\!01\)\( T_{2}^{1480} + \)\(52\!\cdots\!04\)\( T_{2}^{1478} - \)\(33\!\cdots\!29\)\( T_{2}^{1476} - \)\(17\!\cdots\!36\)\( T_{2}^{1474} - \)\(66\!\cdots\!72\)\( T_{2}^{1472} - \)\(28\!\cdots\!20\)\( T_{2}^{1470} - \)\(53\!\cdots\!79\)\( T_{2}^{1468} - \)\(15\!\cdots\!18\)\( T_{2}^{1466} - \)\(60\!\cdots\!31\)\( T_{2}^{1464} + \)\(67\!\cdots\!14\)\( T_{2}^{1462} + \)\(36\!\cdots\!01\)\( T_{2}^{1460} + \)\(18\!\cdots\!52\)\( T_{2}^{1458} + \)\(47\!\cdots\!01\)\( T_{2}^{1456} + \)\(15\!\cdots\!52\)\( T_{2}^{1454} + \)\(32\!\cdots\!34\)\( T_{2}^{1452} + \)\(50\!\cdots\!78\)\( T_{2}^{1450} + \)\(13\!\cdots\!02\)\( T_{2}^{1448} - \)\(17\!\cdots\!44\)\( T_{2}^{1446} + \)\(68\!\cdots\!61\)\( T_{2}^{1444} + \)\(18\!\cdots\!88\)\( T_{2}^{1442} + \)\(10\!\cdots\!14\)\( T_{2}^{1440} + \)\(59\!\cdots\!78\)\( T_{2}^{1438} + \)\(16\!\cdots\!77\)\( T_{2}^{1436} + \)\(72\!\cdots\!94\)\( T_{2}^{1434} + \)\(16\!\cdots\!71\)\( T_{2}^{1432} + \)\(51\!\cdots\!60\)\( T_{2}^{1430} + \)\(11\!\cdots\!46\)\( T_{2}^{1428} + \)\(22\!\cdots\!40\)\( T_{2}^{1426} + \)\(62\!\cdots\!75\)\( T_{2}^{1424} + \)\(66\!\cdots\!04\)\( T_{2}^{1422} + \)\(34\!\cdots\!27\)\( T_{2}^{1420} + \)\(61\!\cdots\!58\)\( T_{2}^{1418} + \)\(25\!\cdots\!42\)\( T_{2}^{1416} + \)\(92\!\cdots\!86\)\( T_{2}^{1414} + \)\(19\!\cdots\!18\)\( T_{2}^{1412} + \)\(77\!\cdots\!66\)\( T_{2}^{1410} + \)\(98\!\cdots\!44\)\( T_{2}^{1408} + \)\(26\!\cdots\!50\)\( T_{2}^{1406} + \)\(72\!\cdots\!99\)\( T_{2}^{1404} - \)\(12\!\cdots\!08\)\( T_{2}^{1402} - \)\(26\!\cdots\!61\)\( T_{2}^{1400} - \)\(17\!\cdots\!44\)\( T_{2}^{1398} - \)\(53\!\cdots\!70\)\( T_{2}^{1396} - \)\(95\!\cdots\!66\)\( T_{2}^{1394} + \)\(26\!\cdots\!80\)\( T_{2}^{1392} + \)\(12\!\cdots\!74\)\( T_{2}^{1390} + \)\(36\!\cdots\!26\)\( T_{2}^{1388} + \)\(11\!\cdots\!46\)\( T_{2}^{1386} + \)\(21\!\cdots\!17\)\( T_{2}^{1384} + \)\(37\!\cdots\!38\)\( T_{2}^{1382} + \)\(51\!\cdots\!43\)\( T_{2}^{1380} - \)\(27\!\cdots\!98\)\( T_{2}^{1378} - \)\(10\!\cdots\!65\)\( T_{2}^{1376} - \)\(39\!\cdots\!40\)\( T_{2}^{1374} - \)\(93\!\cdots\!45\)\( T_{2}^{1372} - \)\(19\!\cdots\!62\)\( T_{2}^{1370} - \)\(30\!\cdots\!34\)\( T_{2}^{1368} + \)\(15\!\cdots\!14\)\( T_{2}^{1366} + \)\(15\!\cdots\!92\)\( T_{2}^{1364} + \)\(84\!\cdots\!76\)\( T_{2}^{1362} + \)\(23\!\cdots\!82\)\( T_{2}^{1360} + \)\(51\!\cdots\!56\)\( T_{2}^{1358} + \)\(10\!\cdots\!76\)\( T_{2}^{1356} + \)\(21\!\cdots\!32\)\( T_{2}^{1354} - \)\(19\!\cdots\!12\)\( T_{2}^{1352} - \)\(19\!\cdots\!14\)\( T_{2}^{1350} - \)\(56\!\cdots\!79\)\( T_{2}^{1348} - \)\(14\!\cdots\!10\)\( T_{2}^{1346} - \)\(34\!\cdots\!33\)\( T_{2}^{1344} - \)\(40\!\cdots\!74\)\( T_{2}^{1342} - \)\(54\!\cdots\!17\)\( T_{2}^{1340} + \)\(19\!\cdots\!84\)\( T_{2}^{1338} + \)\(73\!\cdots\!88\)\( T_{2}^{1336} + \)\(25\!\cdots\!12\)\( T_{2}^{1334} + \)\(66\!\cdots\!42\)\( T_{2}^{1332} + \)\(10\!\cdots\!84\)\( T_{2}^{1330} + \)\(22\!\cdots\!02\)\( T_{2}^{1328} + \)\(20\!\cdots\!26\)\( T_{2}^{1326} - \)\(27\!\cdots\!94\)\( T_{2}^{1324} - \)\(21\!\cdots\!86\)\( T_{2}^{1322} - \)\(61\!\cdots\!54\)\( T_{2}^{1320} - \)\(92\!\cdots\!82\)\( T_{2}^{1318} - \)\(22\!\cdots\!99\)\( T_{2}^{1316} + \)\(75\!\cdots\!80\)\( T_{2}^{1314} + \)\(15\!\cdots\!13\)\( T_{2}^{1312} + \)\(18\!\cdots\!34\)\( T_{2}^{1310} + \)\(31\!\cdots\!35\)\( T_{2}^{1308} - \)\(15\!\cdots\!68\)\( T_{2}^{1306} - \)\(86\!\cdots\!09\)\( T_{2}^{1304} - \)\(92\!\cdots\!54\)\( T_{2}^{1302} - \)\(16\!\cdots\!28\)\( T_{2}^{1300} - \)\(40\!\cdots\!40\)\( T_{2}^{1298} - \)\(15\!\cdots\!17\)\( T_{2}^{1296} + \)\(19\!\cdots\!32\)\( T_{2}^{1294} + \)\(82\!\cdots\!83\)\( T_{2}^{1292} + \)\(31\!\cdots\!26\)\( T_{2}^{1290} + \)\(70\!\cdots\!41\)\( T_{2}^{1288} + \)\(15\!\cdots\!30\)\( T_{2}^{1286} + \)\(19\!\cdots\!51\)\( T_{2}^{1284} + \)\(10\!\cdots\!68\)\( T_{2}^{1282} - \)\(98\!\cdots\!15\)\( T_{2}^{1280} - \)\(46\!\cdots\!84\)\( T_{2}^{1278} - \)\(12\!\cdots\!57\)\( T_{2}^{1276} - \)\(30\!\cdots\!80\)\( T_{2}^{1274} - \)\(51\!\cdots\!24\)\( T_{2}^{1272} - \)\(61\!\cdots\!62\)\( T_{2}^{1270} + \)\(99\!\cdots\!48\)\( T_{2}^{1268} + \)\(36\!\cdots\!66\)\( T_{2}^{1266} + \)\(12\!\cdots\!11\)\( T_{2}^{1264} + \)\(34\!\cdots\!16\)\( T_{2}^{1262} + \)\(66\!\cdots\!99\)\( T_{2}^{1260} + \)\(99\!\cdots\!56\)\( T_{2}^{1258} + \)\(70\!\cdots\!33\)\( T_{2}^{1256} - \)\(19\!\cdots\!04\)\( T_{2}^{1254} - \)\(98\!\cdots\!32\)\( T_{2}^{1252} - \)\(28\!\cdots\!18\)\( T_{2}^{1250} - \)\(58\!\cdots\!39\)\( T_{2}^{1248} - \)\(90\!\cdots\!70\)\( T_{2}^{1246} - \)\(77\!\cdots\!95\)\( T_{2}^{1244} + \)\(11\!\cdots\!12\)\( T_{2}^{1242} + \)\(70\!\cdots\!53\)\( T_{2}^{1240} + \)\(20\!\cdots\!46\)\( T_{2}^{1238} + \)\(39\!\cdots\!83\)\( T_{2}^{1236} + \)\(53\!\cdots\!66\)\( T_{2}^{1234} + \)\(23\!\cdots\!26\)\( T_{2}^{1232} - \)\(15\!\cdots\!06\)\( T_{2}^{1230} - \)\(58\!\cdots\!84\)\( T_{2}^{1228} - \)\(13\!\cdots\!42\)\( T_{2}^{1226} - \)\(21\!\cdots\!11\)\( T_{2}^{1224} - \)\(15\!\cdots\!10\)\( T_{2}^{1222} + \)\(41\!\cdots\!45\)\( T_{2}^{1220} + \)\(22\!\cdots\!36\)\( T_{2}^{1218} + \)\(58\!\cdots\!94\)\( T_{2}^{1216} + \)\(10\!\cdots\!52\)\( T_{2}^{1214} + \)\(12\!\cdots\!66\)\( T_{2}^{1212} - \)\(36\!\cdots\!16\)\( T_{2}^{1210} - \)\(68\!\cdots\!04\)\( T_{2}^{1208} - \)\(23\!\cdots\!64\)\( T_{2}^{1206} - \)\(53\!\cdots\!39\)\( T_{2}^{1204} - \)\(89\!\cdots\!40\)\( T_{2}^{1202} - \)\(88\!\cdots\!31\)\( T_{2}^{1200} + \)\(70\!\cdots\!06\)\( T_{2}^{1198} + \)\(61\!\cdots\!57\)\( T_{2}^{1196} + \)\(19\!\cdots\!58\)\( T_{2}^{1194} + \)\(41\!\cdots\!46\)\( T_{2}^{1192} + \)\(67\!\cdots\!16\)\( T_{2}^{1190} + \)\(68\!\cdots\!12\)\( T_{2}^{1188} - \)\(34\!\cdots\!82\)\( T_{2}^{1186} - \)\(38\!\cdots\!23\)\( T_{2}^{1184} - \)\(12\!\cdots\!26\)\( T_{2}^{1182} - \)\(26\!\cdots\!39\)\( T_{2}^{1180} - \)\(43\!\cdots\!08\)\( T_{2}^{1178} - \)\(49\!\cdots\!19\)\( T_{2}^{1176} - \)\(43\!\cdots\!64\)\( T_{2}^{1174} + \)\(16\!\cdots\!50\)\( T_{2}^{1172} + \)\(58\!\cdots\!68\)\( T_{2}^{1170} + \)\(13\!\cdots\!76\)\( T_{2}^{1168} + \)\(23\!\cdots\!76\)\( T_{2}^{1166} + \)\(30\!\cdots\!42\)\( T_{2}^{1164} + \)\(17\!\cdots\!98\)\( T_{2}^{1162} - \)\(46\!\cdots\!44\)\( T_{2}^{1160} - \)\(21\!\cdots\!90\)\( T_{2}^{1158} - \)\(53\!\cdots\!81\)\( T_{2}^{1156} - \)\(10\!\cdots\!70\)\( T_{2}^{1154} - \)\(14\!\cdots\!81\)\( T_{2}^{1152} - \)\(13\!\cdots\!06\)\( T_{2}^{1150} + \)\(30\!\cdots\!06\)\( T_{2}^{1148} + \)\(55\!\cdots\!72\)\( T_{2}^{1146} + \)\(16\!\cdots\!86\)\( T_{2}^{1144} + \)\(34\!\cdots\!62\)\( T_{2}^{1142} + \)\(57\!\cdots\!21\)\( T_{2}^{1140} + \)\(70\!\cdots\!96\)\( T_{2}^{1138} + \)\(45\!\cdots\!64\)\( T_{2}^{1136} - \)\(76\!\cdots\!64\)\( T_{2}^{1134} - \)\(37\!\cdots\!59\)\( T_{2}^{1132} - \)\(91\!\cdots\!80\)\( T_{2}^{1130} - \)\(17\!\cdots\!87\)\( T_{2}^{1128} - \)\(25\!\cdots\!00\)\( T_{2}^{1126} - \)\(26\!\cdots\!98\)\( T_{2}^{1124} - \)\(72\!\cdots\!44\)\( T_{2}^{1122} + \)\(54\!\cdots\!22\)\( T_{2}^{1120} + \)\(18\!\cdots\!98\)\( T_{2}^{1118} + \)\(40\!\cdots\!44\)\( T_{2}^{1116} + \)\(69\!\cdots\!78\)\( T_{2}^{1114} + \)\(94\!\cdots\!61\)\( T_{2}^{1112} + \)\(88\!\cdots\!56\)\( T_{2}^{1110} + \)\(47\!\cdots\!75\)\( T_{2}^{1108} - \)\(22\!\cdots\!60\)\( T_{2}^{1106} - \)\(68\!\cdots\!33\)\( T_{2}^{1104} - \)\(13\!\cdots\!48\)\( T_{2}^{1102} - \)\(23\!\cdots\!76\)\( T_{2}^{1100} - \)\(30\!\cdots\!02\)\( T_{2}^{1098} - \)\(31\!\cdots\!92\)\( T_{2}^{1096} - \)\(11\!\cdots\!46\)\( T_{2}^{1094} + \)\(41\!\cdots\!48\)\( T_{2}^{1092} + \)\(14\!\cdots\!48\)\( T_{2}^{1090} + \)\(30\!\cdots\!86\)\( T_{2}^{1088} + \)\(49\!\cdots\!70\)\( T_{2}^{1086} + \)\(67\!\cdots\!86\)\( T_{2}^{1084} + \)\(71\!\cdots\!24\)\( T_{2}^{1082} + \)\(46\!\cdots\!33\)\( T_{2}^{1080} - \)\(24\!\cdots\!12\)\( T_{2}^{1078} - \)\(15\!\cdots\!20\)\( T_{2}^{1076} - \)\(33\!\cdots\!54\)\( T_{2}^{1074} - \)\(50\!\cdots\!89\)\( T_{2}^{1072} - \)\(57\!\cdots\!42\)\( T_{2}^{1070} - \)\(37\!\cdots\!75\)\( T_{2}^{1068} + \)\(27\!\cdots\!02\)\( T_{2}^{1066} + \)\(15\!\cdots\!95\)\( T_{2}^{1064} + \)\(34\!\cdots\!54\)\( T_{2}^{1062} + \)\(57\!\cdots\!49\)\( T_{2}^{1060} + \)\(73\!\cdots\!96\)\( T_{2}^{1058} + \)\(73\!\cdots\!50\)\( T_{2}^{1056} + \)\(37\!\cdots\!94\)\( T_{2}^{1054} - \)\(53\!\cdots\!87\)\( T_{2}^{1052} - \)\(19\!\cdots\!78\)\( T_{2}^{1050} - \)\(40\!\cdots\!45\)\( T_{2}^{1048} - \)\(63\!\cdots\!14\)\( T_{2}^{1046} - \)\(83\!\cdots\!68\)\( T_{2}^{1044} - \)\(95\!\cdots\!14\)\( T_{2}^{1042} - \)\(88\!\cdots\!85\)\( T_{2}^{1040} - \)\(82\!\cdots\!38\)\( T_{2}^{1038} - \)\(60\!\cdots\!89\)\( T_{2}^{1036} - \)\(88\!\cdots\!38\)\( T_{2}^{1034} - \)\(15\!\cdots\!39\)\( T_{2}^{1032} - \)\(29\!\cdots\!08\)\( T_{2}^{1030} - \)\(51\!\cdots\!23\)\( T_{2}^{1028} - \)\(61\!\cdots\!20\)\( T_{2}^{1026} - \)\(61\!\cdots\!48\)\( T_{2}^{1024} + \)\(15\!\cdots\!52\)\( T_{2}^{1022} + \)\(15\!\cdots\!23\)\( T_{2}^{1020} + \)\(42\!\cdots\!00\)\( T_{2}^{1018} + \)\(80\!\cdots\!83\)\( T_{2}^{1016} + \)\(11\!\cdots\!82\)\( T_{2}^{1014} + \)\(15\!\cdots\!14\)\( T_{2}^{1012} + \)\(14\!\cdots\!26\)\( T_{2}^{1010} + \)\(11\!\cdots\!25\)\( T_{2}^{1008} - \)\(26\!\cdots\!36\)\( T_{2}^{1006} - \)\(15\!\cdots\!38\)\( T_{2}^{1004} - \)\(29\!\cdots\!32\)\( T_{2}^{1002} - \)\(37\!\cdots\!14\)\( T_{2}^{1000} - \)\(11\!\cdots\!90\)\( T_{2}^{998} + \)\(42\!\cdots\!40\)\( T_{2}^{996} + \)\(16\!\cdots\!42\)\( T_{2}^{994} + \)\(32\!\cdots\!34\)\( T_{2}^{992} + \)\(50\!\cdots\!54\)\( T_{2}^{990} + \)\(67\!\cdots\!07\)\( T_{2}^{988} + \)\(66\!\cdots\!74\)\( T_{2}^{986} + \)\(47\!\cdots\!45\)\( T_{2}^{984} - \)\(12\!\cdots\!02\)\( T_{2}^{982} - \)\(10\!\cdots\!78\)\( T_{2}^{980} - \)\(23\!\cdots\!74\)\( T_{2}^{978} - \)\(39\!\cdots\!33\)\( T_{2}^{976} - \)\(51\!\cdots\!80\)\( T_{2}^{974} - \)\(61\!\cdots\!89\)\( T_{2}^{972} - \)\(59\!\cdots\!14\)\( T_{2}^{970} - \)\(48\!\cdots\!34\)\( T_{2}^{968} - \)\(25\!\cdots\!92\)\( T_{2}^{966} + \)\(34\!\cdots\!85\)\( T_{2}^{964} + \)\(25\!\cdots\!38\)\( T_{2}^{962} + \)\(44\!\cdots\!21\)\( T_{2}^{960} + \)\(26\!\cdots\!98\)\( T_{2}^{958} - \)\(59\!\cdots\!73\)\( T_{2}^{956} - \)\(65\!\cdots\!26\)\( T_{2}^{954} - \)\(15\!\cdots\!11\)\( T_{2}^{952} - \)\(20\!\cdots\!52\)\( T_{2}^{950} - \)\(25\!\cdots\!46\)\( T_{2}^{948} - \)\(21\!\cdots\!98\)\( T_{2}^{946} - \)\(70\!\cdots\!07\)\( T_{2}^{944} + \)\(83\!\cdots\!10\)\( T_{2}^{942} + \)\(40\!\cdots\!58\)\( T_{2}^{940} + \)\(57\!\cdots\!96\)\( T_{2}^{938} + \)\(80\!\cdots\!24\)\( T_{2}^{936} + \)\(91\!\cdots\!96\)\( T_{2}^{934} + \)\(96\!\cdots\!10\)\( T_{2}^{932} + \)\(13\!\cdots\!48\)\( T_{2}^{930} + \)\(17\!\cdots\!70\)\( T_{2}^{928} + \)\(32\!\cdots\!20\)\( T_{2}^{926} + \)\(52\!\cdots\!61\)\( T_{2}^{924} + \)\(86\!\cdots\!98\)\( T_{2}^{922} + \)\(12\!\cdots\!08\)\( T_{2}^{920} + \)\(16\!\cdots\!50\)\( T_{2}^{918} + \)\(22\!\cdots\!94\)\( T_{2}^{916} + \)\(25\!\cdots\!28\)\( T_{2}^{914} + \)\(29\!\cdots\!38\)\( T_{2}^{912} + \)\(33\!\cdots\!94\)\( T_{2}^{910} + \)\(36\!\cdots\!98\)\( T_{2}^{908} + \)\(45\!\cdots\!44\)\( T_{2}^{906} + \)\(50\!\cdots\!92\)\( T_{2}^{904} + \)\(64\!\cdots\!58\)\( T_{2}^{902} + \)\(80\!\cdots\!41\)\( T_{2}^{900} + \)\(10\!\cdots\!50\)\( T_{2}^{898} + \)\(14\!\cdots\!09\)\( T_{2}^{896} + \)\(17\!\cdots\!82\)\( T_{2}^{894} + \)\(21\!\cdots\!07\)\( T_{2}^{892} + \)\(23\!\cdots\!38\)\( T_{2}^{890} + \)\(24\!\cdots\!92\)\( T_{2}^{888} + \)\(26\!\cdots\!32\)\( T_{2}^{886} + \)\(26\!\cdots\!66\)\( T_{2}^{884} + \)\(31\!\cdots\!06\)\( T_{2}^{882} + \)\(32\!\cdots\!22\)\( T_{2}^{880} + \)\(35\!\cdots\!68\)\( T_{2}^{878} + \)\(37\!\cdots\!13\)\( T_{2}^{876} + \)\(35\!\cdots\!28\)\( T_{2}^{874} + \)\(46\!\cdots\!79\)\( T_{2}^{872} + \)\(47\!\cdots\!10\)\( T_{2}^{870} + \)\(54\!\cdots\!73\)\( T_{2}^{868} + \)\(54\!\cdots\!32\)\( T_{2}^{866} + \)\(37\!\cdots\!23\)\( T_{2}^{864} + \)\(38\!\cdots\!66\)\( T_{2}^{862} + \)\(24\!\cdots\!34\)\( T_{2}^{860} + \)\(31\!\cdots\!60\)\( T_{2}^{858} + \)\(46\!\cdots\!57\)\( T_{2}^{856} + \)\(34\!\cdots\!46\)\( T_{2}^{854} + \)\(58\!\cdots\!51\)\( T_{2}^{852} + \)\(44\!\cdots\!24\)\( T_{2}^{850} + \)\(68\!\cdots\!03\)\( T_{2}^{848} + \)\(83\!\cdots\!32\)\( T_{2}^{846} + \)\(67\!\cdots\!27\)\( T_{2}^{844} + \)\(65\!\cdots\!26\)\( T_{2}^{842} - \)\(14\!\cdots\!65\)\( T_{2}^{840} - \)\(21\!\cdots\!72\)\( T_{2}^{838} - \)\(41\!\cdots\!89\)\( T_{2}^{836} - \)\(66\!\cdots\!96\)\( T_{2}^{834} - \)\(45\!\cdots\!21\)\( T_{2}^{832} - \)\(77\!\cdots\!34\)\( T_{2}^{830} - \)\(27\!\cdots\!78\)\( T_{2}^{828} + \)\(44\!\cdots\!30\)\( T_{2}^{826} + \)\(63\!\cdots\!41\)\( T_{2}^{824} + \)\(18\!\cdots\!22\)\( T_{2}^{822} + \)\(96\!\cdots\!44\)\( T_{2}^{820} + \)\(13\!\cdots\!18\)\( T_{2}^{818} + \)\(60\!\cdots\!94\)\( T_{2}^{816} + \)\(11\!\cdots\!62\)\( T_{2}^{814} + \)\(22\!\cdots\!68\)\( T_{2}^{812} - \)\(15\!\cdots\!50\)\( T_{2}^{810} - \)\(14\!\cdots\!66\)\( T_{2}^{808} - \)\(20\!\cdots\!40\)\( T_{2}^{806} - \)\(14\!\cdots\!72\)\( T_{2}^{804} - \)\(54\!\cdots\!64\)\( T_{2}^{802} - \)\(47\!\cdots\!58\)\( T_{2}^{800} + \)\(52\!\cdots\!30\)\( T_{2}^{798} + \)\(85\!\cdots\!99\)\( T_{2}^{796} + \)\(95\!\cdots\!14\)\( T_{2}^{794} + \)\(18\!\cdots\!67\)\( T_{2}^{792} + \)\(44\!\cdots\!84\)\( T_{2}^{790} + \)\(84\!\cdots\!90\)\( T_{2}^{788} - \)\(52\!\cdots\!34\)\( T_{2}^{786} - \)\(54\!\cdots\!84\)\( T_{2}^{784} - \)\(45\!\cdots\!24\)\( T_{2}^{782} - \)\(12\!\cdots\!54\)\( T_{2}^{780} - \)\(18\!\cdots\!26\)\( T_{2}^{778} - \)\(87\!\cdots\!68\)\( T_{2}^{776} - \)\(35\!\cdots\!92\)\( T_{2}^{774} + \)\(28\!\cdots\!92\)\( T_{2}^{772} + \)\(49\!\cdots\!64\)\( T_{2}^{770} + \)\(88\!\cdots\!89\)\( T_{2}^{768} + \)\(22\!\cdots\!40\)\( T_{2}^{766} + \)\(57\!\cdots\!34\)\( T_{2}^{764} + \)\(14\!\cdots\!98\)\( T_{2}^{762} - \)\(29\!\cdots\!20\)\( T_{2}^{760} + \)\(41\!\cdots\!44\)\( T_{2}^{758} - \)\(83\!\cdots\!16\)\( T_{2}^{756} + \)\(48\!\cdots\!86\)\( T_{2}^{754} - \)\(69\!\cdots\!96\)\( T_{2}^{752} + \)\(30\!\cdots\!86\)\( T_{2}^{750} - \)\(14\!\cdots\!44\)\( T_{2}^{748} - \)\(44\!\cdots\!08\)\( T_{2}^{746} + \)\(33\!\cdots\!98\)\( T_{2}^{744} - \)\(32\!\cdots\!44\)\( T_{2}^{742} + \)\(46\!\cdots\!51\)\( T_{2}^{740} - \)\(35\!\cdots\!56\)\( T_{2}^{738} + \)\(32\!\cdots\!59\)\( T_{2}^{736} - \)\(22\!\cdots\!24\)\( T_{2}^{734} + \)\(10\!\cdots\!65\)\( T_{2}^{732} - \)\(48\!\cdots\!78\)\( T_{2}^{730} - \)\(35\!\cdots\!09\)\( T_{2}^{728} + \)\(58\!\cdots\!22\)\( T_{2}^{726} - \)\(71\!\cdots\!45\)\( T_{2}^{724} + \)\(74\!\cdots\!60\)\( T_{2}^{722} - \)\(51\!\cdots\!88\)\( T_{2}^{720} + \)\(41\!\cdots\!34\)\( T_{2}^{718} - \)\(22\!\cdots\!54\)\( T_{2}^{716} + \)\(79\!\cdots\!76\)\( T_{2}^{714} - \)\(26\!\cdots\!10\)\( T_{2}^{712} - \)\(63\!\cdots\!84\)\( T_{2}^{710} + \)\(46\!\cdots\!39\)\( T_{2}^{708} - \)\(63\!\cdots\!04\)\( T_{2}^{706} + \)\(43\!\cdots\!78\)\( T_{2}^{704} - \)\(27\!\cdots\!40\)\( T_{2}^{702} + \)\(18\!\cdots\!84\)\( T_{2}^{700} - \)\(47\!\cdots\!74\)\( T_{2}^{698} + \)\(10\!\cdots\!32\)\( T_{2}^{696} + \)\(22\!\cdots\!20\)\( T_{2}^{694} - \)\(41\!\cdots\!90\)\( T_{2}^{692} + \)\(20\!\cdots\!96\)\( T_{2}^{690} - \)\(34\!\cdots\!51\)\( T_{2}^{688} + \)\(11\!\cdots\!06\)\( T_{2}^{686} - \)\(15\!\cdots\!91\)\( T_{2}^{684} + \)\(10\!\cdots\!62\)\( T_{2}^{682} - \)\(33\!\cdots\!53\)\( T_{2}^{680} + \)\(67\!\cdots\!94\)\( T_{2}^{678} + \)\(55\!\cdots\!75\)\( T_{2}^{676} + \)\(17\!\cdots\!54\)\( T_{2}^{674} + \)\(71\!\cdots\!56\)\( T_{2}^{672} - \)\(89\!\cdots\!74\)\( T_{2}^{670} + \)\(13\!\cdots\!45\)\( T_{2}^{668} - \)\(12\!\cdots\!86\)\( T_{2}^{666} + \)\(14\!\cdots\!43\)\( T_{2}^{664} - \)\(70\!\cdots\!84\)\( T_{2}^{662} + \)\(86\!\cdots\!20\)\( T_{2}^{660} - \)\(26\!\cdots\!76\)\( T_{2}^{658} + \)\(32\!\cdots\!66\)\( T_{2}^{656} - \)\(27\!\cdots\!66\)\( T_{2}^{654} + \)\(57\!\cdots\!44\)\( T_{2}^{652} + \)\(36\!\cdots\!68\)\( T_{2}^{650} - \)\(11\!\cdots\!32\)\( T_{2}^{648} + \)\(25\!\cdots\!66\)\( T_{2}^{646} - \)\(84\!\cdots\!59\)\( T_{2}^{644} + \)\(70\!\cdots\!60\)\( T_{2}^{642} + \)\(19\!\cdots\!66\)\( T_{2}^{640} - \)\(11\!\cdots\!12\)\( T_{2}^{638} + \)\(42\!\cdots\!41\)\( T_{2}^{636} - \)\(85\!\cdots\!02\)\( T_{2}^{634} + \)\(19\!\cdots\!33\)\( T_{2}^{632} - \)\(33\!\cdots\!60\)\( T_{2}^{630} + \)\(33\!\cdots\!08\)\( T_{2}^{628} - \)\(93\!\cdots\!62\)\( T_{2}^{626} - \)\(46\!\cdots\!80\)\( T_{2}^{624} - \)\(46\!\cdots\!04\)\( T_{2}^{622} - \)\(29\!\cdots\!76\)\( T_{2}^{620} - \)\(39\!\cdots\!28\)\( T_{2}^{618} - \)\(95\!\cdots\!15\)\( T_{2}^{616} - \)\(29\!\cdots\!88\)\( T_{2}^{614} - \)\(18\!\cdots\!93\)\( T_{2}^{612} - \)\(15\!\cdots\!24\)\( T_{2}^{610} - \)\(39\!\cdots\!40\)\( T_{2}^{608} - \)\(47\!\cdots\!92\)\( T_{2}^{606} - \)\(20\!\cdots\!28\)\( T_{2}^{604} - \)\(18\!\cdots\!00\)\( T_{2}^{602} - \)\(55\!\cdots\!77\)\( T_{2}^{600} + \)\(61\!\cdots\!18\)\( T_{2}^{598} + \)\(36\!\cdots\!75\)\( T_{2}^{596} + \)\(34\!\cdots\!26\)\( T_{2}^{594} + \)\(42\!\cdots\!44\)\( T_{2}^{592} + \)\(13\!\cdots\!48\)\( T_{2}^{590} + \)\(19\!\cdots\!93\)\( T_{2}^{588} + \)\(59\!\cdots\!20\)\( T_{2}^{586} + \)\(46\!\cdots\!74\)\( T_{2}^{584} + \)\(28\!\cdots\!44\)\( T_{2}^{582} + \)\(34\!\cdots\!80\)\( T_{2}^{580} + \)\(10\!\cdots\!58\)\( T_{2}^{578} - \)\(92\!\cdots\!81\)\( T_{2}^{576} + \)\(19\!\cdots\!84\)\( T_{2}^{574} + \)\(28\!\cdots\!05\)\( T_{2}^{572} - \)\(18\!\cdots\!88\)\( T_{2}^{570} + \)\(42\!\cdots\!47\)\( T_{2}^{568} - \)\(23\!\cdots\!06\)\( T_{2}^{566} + \)\(16\!\cdots\!78\)\( T_{2}^{564} - \)\(65\!\cdots\!40\)\( T_{2}^{562} + \)\(28\!\cdots\!21\)\( T_{2}^{560} - \)\(44\!\cdots\!50\)\( T_{2}^{558} - \)\(56\!\cdots\!06\)\( T_{2}^{556} + \)\(21\!\cdots\!42\)\( T_{2}^{554} - \)\(11\!\cdots\!87\)\( T_{2}^{552} + \)\(58\!\cdots\!20\)\( T_{2}^{550} - \)\(96\!\cdots\!33\)\( T_{2}^{548} - \)\(36\!\cdots\!38\)\( T_{2}^{546} + \)\(88\!\cdots\!57\)\( T_{2}^{544} - \)\(64\!\cdots\!06\)\( T_{2}^{542} + \)\(46\!\cdots\!47\)\( T_{2}^{540} - \)\(26\!\cdots\!58\)\( T_{2}^{538} + \)\(15\!\cdots\!77\)\( T_{2}^{536} - \)\(81\!\cdots\!24\)\( T_{2}^{534} + \)\(44\!\cdots\!24\)\( T_{2}^{532} - \)\(23\!\cdots\!40\)\( T_{2}^{530} + \)\(11\!\cdots\!04\)\( T_{2}^{528} - \)\(60\!\cdots\!40\)\( T_{2}^{526} + \)\(29\!\cdots\!49\)\( T_{2}^{524} - \)\(13\!\cdots\!20\)\( T_{2}^{522} + \)\(62\!\cdots\!30\)\( T_{2}^{520} - \)\(26\!\cdots\!18\)\( T_{2}^{518} + \)\(10\!\cdots\!65\)\( T_{2}^{516} - \)\(41\!\cdots\!66\)\( T_{2}^{514} + \)\(14\!\cdots\!77\)\( T_{2}^{512} - \)\(48\!\cdots\!86\)\( T_{2}^{510} + \)\(14\!\cdots\!64\)\( T_{2}^{508} - \)\(38\!\cdots\!30\)\( T_{2}^{506} + \)\(98\!\cdots\!16\)\( T_{2}^{504} - \)\(31\!\cdots\!70\)\( T_{2}^{502} + \)\(17\!\cdots\!81\)\( T_{2}^{500} - \)\(11\!\cdots\!12\)\( T_{2}^{498} + \)\(72\!\cdots\!96\)\( T_{2}^{496} - \)\(41\!\cdots\!38\)\( T_{2}^{494} + \)\(21\!\cdots\!50\)\( T_{2}^{492} - \)\(10\!\cdots\!70\)\( T_{2}^{490} + \)\(43\!\cdots\!32\)\( T_{2}^{488} - \)\(17\!\cdots\!16\)\( T_{2}^{486} + \)\(63\!\cdots\!58\)\( T_{2}^{484} - \)\(21\!\cdots\!08\)\( T_{2}^{482} + \)\(63\!\cdots\!97\)\( T_{2}^{480} - \)\(17\!\cdots\!16\)\( T_{2}^{478} + \)\(36\!\cdots\!03\)\( T_{2}^{476} - \)\(49\!\cdots\!00\)\( T_{2}^{474} - \)\(50\!\cdots\!87\)\( T_{2}^{472} + \)\(67\!\cdots\!72\)\( T_{2}^{470} - \)\(23\!\cdots\!08\)\( T_{2}^{468} + \)\(45\!\cdots\!02\)\( T_{2}^{466} + \)\(15\!\cdots\!41\)\( T_{2}^{464} - \)\(16\!\cdots\!08\)\( T_{2}^{462} + \)\(97\!\cdots\!50\)\( T_{2}^{460} - \)\(42\!\cdots\!24\)\( T_{2}^{458} + \)\(14\!\cdots\!55\)\( T_{2}^{456} - \)\(43\!\cdots\!02\)\( T_{2}^{454} + \)\(83\!\cdots\!71\)\( T_{2}^{452} + \)\(47\!\cdots\!44\)\( T_{2}^{450} - \)\(11\!\cdots\!38\)\( T_{2}^{448} + \)\(74\!\cdots\!30\)\( T_{2}^{446} - \)\(34\!\cdots\!54\)\( T_{2}^{444} + \)\(13\!\cdots\!90\)\( T_{2}^{442} - \)\(42\!\cdots\!02\)\( T_{2}^{440} + \)\(12\!\cdots\!68\)\( T_{2}^{438} - \)\(27\!\cdots\!74\)\( T_{2}^{436} + \)\(42\!\cdots\!66\)\( T_{2}^{434} + \)\(21\!\cdots\!06\)\( T_{2}^{432} - \)\(53\!\cdots\!14\)\( T_{2}^{430} + \)\(27\!\cdots\!61\)\( T_{2}^{428} - \)\(10\!\cdots\!62\)\( T_{2}^{426} + \)\(33\!\cdots\!93\)\( T_{2}^{424} - \)\(92\!\cdots\!40\)\( T_{2}^{422} + \)\(21\!\cdots\!84\)\( T_{2}^{420} - \)\(40\!\cdots\!12\)\( T_{2}^{418} + \)\(49\!\cdots\!71\)\( T_{2}^{416} + \)\(36\!\cdots\!06\)\( T_{2}^{414} - \)\(45\!\cdots\!80\)\( T_{2}^{412} + \)\(18\!\cdots\!36\)\( T_{2}^{410} - \)\(52\!\cdots\!38\)\( T_{2}^{408} + \)\(12\!\cdots\!56\)\( T_{2}^{406} - \)\(30\!\cdots\!64\)\( T_{2}^{404} + \)\(82\!\cdots\!14\)\( T_{2}^{402} - \)\(28\!\cdots\!05\)\( T_{2}^{400} + \)\(10\!\cdots\!24\)\( T_{2}^{398} - \)\(37\!\cdots\!43\)\( T_{2}^{396} + \)\(11\!\cdots\!34\)\( T_{2}^{394} - \)\(30\!\cdots\!90\)\( T_{2}^{392} + \)\(62\!\cdots\!32\)\( T_{2}^{390} - \)\(62\!\cdots\!54\)\( T_{2}^{388} - \)\(19\!\cdots\!12\)\( T_{2}^{386} + \)\(15\!\cdots\!21\)\( T_{2}^{384} - \)\(59\!\cdots\!50\)\( T_{2}^{382} + \)\(17\!\cdots\!66\)\( T_{2}^{380} - \)\(41\!\cdots\!52\)\( T_{2}^{378} + \)\(68\!\cdots\!81\)\( T_{2}^{376} - \)\(37\!\cdots\!52\)\( T_{2}^{374} - \)\(27\!\cdots\!38\)\( T_{2}^{372} + \)\(14\!\cdots\!32\)\( T_{2}^{370} - \)\(45\!\cdots\!14\)\( T_{2}^{368} + \)\(10\!\cdots\!24\)\( T_{2}^{366} - \)\(16\!\cdots\!41\)\( T_{2}^{364} + \)\(64\!\cdots\!32\)\( T_{2}^{362} + \)\(75\!\cdots\!87\)\( T_{2}^{360} - \)\(36\!\cdots\!62\)\( T_{2}^{358} + \)\(10\!\cdots\!45\)\( T_{2}^{356} - \)\(25\!\cdots\!98\)\( T_{2}^{354} + \)\(44\!\cdots\!80\)\( T_{2}^{352} - \)\(49\!\cdots\!78\)\( T_{2}^{350} - \)\(22\!\cdots\!20\)\( T_{2}^{348} + \)\(30\!\cdots\!14\)\( T_{2}^{346} - \)\(99\!\cdots\!94\)\( T_{2}^{344} + \)\(21\!\cdots\!04\)\( T_{2}^{342} - \)\(28\!\cdots\!73\)\( T_{2}^{340} - \)\(18\!\cdots\!78\)\( T_{2}^{338} + \)\(15\!\cdots\!27\)\( T_{2}^{336} - \)\(61\!\cdots\!02\)\( T_{2}^{334} + \)\(16\!\cdots\!57\)\( T_{2}^{332} - \)\(36\!\cdots\!92\)\( T_{2}^{330} + \)\(65\!\cdots\!44\)\( T_{2}^{328} - \)\(97\!\cdots\!92\)\( T_{2}^{326} + \)\(11\!\cdots\!92\)\( T_{2}^{324} - \)\(61\!\cdots\!98\)\( T_{2}^{322} - \)\(10\!\cdots\!40\)\( T_{2}^{320} + \)\(41\!\cdots\!36\)\( T_{2}^{318} - \)\(80\!\cdots\!52\)\( T_{2}^{316} + \)\(97\!\cdots\!58\)\( T_{2}^{314} - \)\(34\!\cdots\!94\)\( T_{2}^{312} - \)\(19\!\cdots\!90\)\( T_{2}^{310} + \)\(64\!\cdots\!52\)\( T_{2}^{308} - \)\(13\!\cdots\!28\)\( T_{2}^{306} + \)\(19\!\cdots\!10\)\( T_{2}^{304} - \)\(20\!\cdots\!58\)\( T_{2}^{302} + \)\(10\!\cdots\!49\)\( T_{2}^{300} + \)\(18\!\cdots\!82\)\( T_{2}^{298} - \)\(65\!\cdots\!27\)\( T_{2}^{296} + \)\(11\!\cdots\!66\)\( T_{2}^{294} - \)\(14\!\cdots\!85\)\( T_{2}^{292} + \)\(11\!\cdots\!04\)\( T_{2}^{290} + \)\(36\!\cdots\!01\)\( T_{2}^{288} - \)\(22\!\cdots\!66\)\( T_{2}^{286} + \)\(48\!\cdots\!54\)\( T_{2}^{284} - \)\(69\!\cdots\!88\)\( T_{2}^{282} + \)\(73\!\cdots\!22\)\( T_{2}^{280} - \)\(48\!\cdots\!38\)\( T_{2}^{278} - \)\(10\!\cdots\!78\)\( T_{2}^{276} + \)\(10\!\cdots\!72\)\( T_{2}^{274} - \)\(22\!\cdots\!77\)\( T_{2}^{272} + \)\(34\!\cdots\!48\)\( T_{2}^{270} - \)\(45\!\cdots\!83\)\( T_{2}^{268} + \)\(52\!\cdots\!84\)\( T_{2}^{266} - \)\(44\!\cdots\!54\)\( T_{2}^{264} + \)\(98\!\cdots\!58\)\( T_{2}^{262} + \)\(58\!\cdots\!54\)\( T_{2}^{260} - \)\(15\!\cdots\!88\)\( T_{2}^{258} + \)\(24\!\cdots\!27\)\( T_{2}^{256} - \)\(28\!\cdots\!48\)\( T_{2}^{254} + \)\(20\!\cdots\!85\)\( T_{2}^{252} + \)\(13\!\cdots\!42\)\( T_{2}^{250} - \)\(32\!\cdots\!33\)\( T_{2}^{248} + \)\(62\!\cdots\!70\)\( T_{2}^{246} - \)\(77\!\cdots\!32\)\( T_{2}^{244} + \)\(69\!\cdots\!04\)\( T_{2}^{242} - \)\(37\!\cdots\!36\)\( T_{2}^{240} - \)\(10\!\cdots\!08\)\( T_{2}^{238} + \)\(68\!\cdots\!78\)\( T_{2}^{236} - \)\(13\!\cdots\!12\)\( T_{2}^{234} + \)\(19\!\cdots\!20\)\( T_{2}^{232} - \)\(26\!\cdots\!14\)\( T_{2}^{230} + \)\(30\!\cdots\!10\)\( T_{2}^{228} - \)\(28\!\cdots\!72\)\( T_{2}^{226} + \)\(16\!\cdots\!54\)\( T_{2}^{224} + \)\(32\!\cdots\!66\)\( T_{2}^{222} - \)\(27\!\cdots\!92\)\( T_{2}^{220} + \)\(46\!\cdots\!74\)\( T_{2}^{218} - \)\(52\!\cdots\!78\)\( T_{2}^{216} + \)\(39\!\cdots\!04\)\( T_{2}^{214} - \)\(11\!\cdots\!26\)\( T_{2}^{212} - \)\(23\!\cdots\!10\)\( T_{2}^{210} + \)\(54\!\cdots\!52\)\( T_{2}^{208} - \)\(72\!\cdots\!16\)\( T_{2}^{206} + \)\(74\!\cdots\!52\)\( T_{2}^{204} - \)\(63\!\cdots\!20\)\( T_{2}^{202} + \)\(44\!\cdots\!64\)\( T_{2}^{200} - \)\(26\!\cdots\!10\)\( T_{2}^{198} + \)\(12\!\cdots\!76\)\( T_{2}^{196} - \)\(38\!\cdots\!42\)\( T_{2}^{194} + \)\(59\!\cdots\!51\)\( T_{2}^{192} - \)\(91\!\cdots\!70\)\( T_{2}^{190} + \)\(55\!\cdots\!44\)\( T_{2}^{188} - \)\(93\!\cdots\!54\)\( T_{2}^{186} + \)\(92\!\cdots\!13\)\( T_{2}^{184} - \)\(65\!\cdots\!36\)\( T_{2}^{182} + \)\(35\!\cdots\!63\)\( T_{2}^{180} - \)\(14\!\cdots\!62\)\( T_{2}^{178} + \)\(48\!\cdots\!05\)\( T_{2}^{176} - \)\(21\!\cdots\!04\)\( T_{2}^{174} + \)\(18\!\cdots\!01\)\( T_{2}^{172} - \)\(14\!\cdots\!16\)\( T_{2}^{170} + \)\(92\!\cdots\!67\)\( T_{2}^{168} - \)\(48\!\cdots\!86\)\( T_{2}^{166} + \)\(20\!\cdots\!02\)\( T_{2}^{164} - \)\(82\!\cdots\!92\)\( T_{2}^{162} + \)\(49\!\cdots\!07\)\( T_{2}^{160} - \)\(37\!\cdots\!66\)\( T_{2}^{158} + \)\(20\!\cdots\!68\)\( T_{2}^{156} - \)\(80\!\cdots\!00\)\( T_{2}^{154} + \)\(17\!\cdots\!13\)\( T_{2}^{152} + \)\(57\!\cdots\!90\)\( T_{2}^{150} - \)\(25\!\cdots\!59\)\( T_{2}^{148} - \)\(27\!\cdots\!08\)\( T_{2}^{146} + \)\(31\!\cdots\!89\)\( T_{2}^{144} - \)\(19\!\cdots\!52\)\( T_{2}^{142} + \)\(72\!\cdots\!78\)\( T_{2}^{140} - \)\(11\!\cdots\!48\)\( T_{2}^{138} - \)\(15\!\cdots\!22\)\( T_{2}^{136} - \)\(26\!\cdots\!24\)\( T_{2}^{134} + \)\(15\!\cdots\!97\)\( T_{2}^{132} - \)\(13\!\cdots\!78\)\( T_{2}^{130} + \)\(72\!\cdots\!63\)\( T_{2}^{128} - \)\(29\!\cdots\!86\)\( T_{2}^{126} + \)\(12\!\cdots\!01\)\( T_{2}^{124} - \)\(59\!\cdots\!78\)\( T_{2}^{122} + \)\(29\!\cdots\!91\)\( T_{2}^{120} - \)\(12\!\cdots\!72\)\( T_{2}^{118} + \)\(40\!\cdots\!80\)\( T_{2}^{116} - \)\(91\!\cdots\!34\)\( T_{2}^{114} + \)\(55\!\cdots\!58\)\( T_{2}^{112} + \)\(54\!\cdots\!86\)\( T_{2}^{110} - \)\(30\!\cdots\!06\)\( T_{2}^{108} + \)\(94\!\cdots\!24\)\( T_{2}^{106} - \)\(19\!\cdots\!64\)\( T_{2}^{104} + \)\(23\!\cdots\!60\)\( T_{2}^{102} + \)\(16\!\cdots\!06\)\( T_{2}^{100} - \)\(14\!\cdots\!06\)\( T_{2}^{98} + \)\(44\!\cdots\!24\)\( T_{2}^{96} - \)\(87\!\cdots\!22\)\( T_{2}^{94} + \)\(14\!\cdots\!92\)\( T_{2}^{92} - \)\(18\!\cdots\!74\)\( T_{2}^{90} + \)\(24\!\cdots\!89\)\( T_{2}^{88} - \)\(27\!\cdots\!30\)\( T_{2}^{86} + \)\(36\!\cdots\!79\)\( T_{2}^{84} - \)\(35\!\cdots\!46\)\( T_{2}^{82} + \)\(40\!\cdots\!52\)\( T_{2}^{80} - \)\(29\!\cdots\!30\)\( T_{2}^{78} + \)\(31\!\cdots\!55\)\( T_{2}^{76} - \)\(19\!\cdots\!86\)\( T_{2}^{74} + \)\(20\!\cdots\!83\)\( T_{2}^{72} - \)\(82\!\cdots\!04\)\( T_{2}^{70} + \)\(25\!\cdots\!16\)\( T_{2}^{68} + \)\(10\!\cdots\!12\)\( T_{2}^{66} - \)\(71\!\cdots\!20\)\( T_{2}^{64} - \)\(66\!\cdots\!22\)\( T_{2}^{62} + \)\(76\!\cdots\!61\)\( T_{2}^{60} + \)\(20\!\cdots\!24\)\( T_{2}^{58} + \)\(17\!\cdots\!87\)\( T_{2}^{56} - \)\(21\!\cdots\!86\)\( T_{2}^{54} - \)\(43\!\cdots\!84\)\( T_{2}^{52} + \)\(16\!\cdots\!04\)\( T_{2}^{50} + \)\(56\!\cdots\!43\)\( T_{2}^{48} - \)\(30\!\cdots\!86\)\( T_{2}^{46} - \)\(11\!\cdots\!27\)\( T_{2}^{44} + \)\(78\!\cdots\!06\)\( T_{2}^{42} + \)\(21\!\cdots\!06\)\( T_{2}^{40} + \)\(29\!\cdots\!42\)\( T_{2}^{38} + \)\(37\!\cdots\!25\)\( T_{2}^{36} + \)\(19\!\cdots\!48\)\( T_{2}^{34} + \)\(11\!\cdots\!98\)\( T_{2}^{32} - \)\(27\!\cdots\!68\)\( T_{2}^{30} + \)\(68\!\cdots\!78\)\( T_{2}^{28} - \)\(22\!\cdots\!08\)\( T_{2}^{26} - \)\(10\!\cdots\!78\)\( T_{2}^{24} + \)\(11\!\cdots\!44\)\( T_{2}^{22} - \)\(66\!\cdots\!55\)\( T_{2}^{20} - \)\(94\!\cdots\!36\)\( T_{2}^{18} + \)\(28\!\cdots\!05\)\( T_{2}^{16} + \)\(22\!\cdots\!82\)\( T_{2}^{14} + \)\(77\!\cdots\!42\)\( T_{2}^{12} + \)\(29\!\cdots\!26\)\( T_{2}^{10} + \)\(17\!\cdots\!07\)\( T_{2}^{8} + \)\(55\!\cdots\!52\)\( T_{2}^{6} + \)\(14\!\cdots\!90\)\( T_{2}^{4} + \)\(15\!\cdots\!44\)\( T_{2}^{2} + \)\(26\!\cdots\!61\)\( \)">\(T_{2}^{2784} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\).