# Properties

 Label 507.2.x.b Level $507$ Weight $2$ Character orbit 507.x Analytic conductor $4.048$ Analytic rank $0$ Dimension $2784$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$507 = 3 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 507.x (of order $$156$$, degree $$48$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.04841538248$$ Analytic rank: $$0$$ Dimension: $$2784$$ Relative dimension: $$58$$ over $$\Q(\zeta_{156})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{156}]$

## $q$-expansion

The dimension is sufficiently large that we do not compute an algebraic $$q$$-expansion, but we have computed the trace expansion.

 $$\operatorname{Tr}(f)(q) =$$ $$2784q - 50q^{3} - 92q^{4} - 50q^{6} - 100q^{7} - 56q^{9} + O(q^{10})$$ $$\operatorname{Tr}(f)(q) =$$ $$2784q - 50q^{3} - 92q^{4} - 50q^{6} - 100q^{7} - 56q^{9} - 116q^{10} - 52q^{12} - 112q^{13} - 38q^{15} - 204q^{16} - 56q^{18} - 88q^{19} - 56q^{21} - 48q^{22} + 86q^{24} - 104q^{25} - 32q^{27} - 124q^{28} - 174q^{30} - 112q^{31} - 68q^{33} - 68q^{34} - 16q^{36} - 76q^{37} - 142q^{39} - 96q^{40} - 44q^{42} - 140q^{43} + 98q^{45} - 58q^{48} - 104q^{49} - 52q^{51} - 152q^{52} - 98q^{54} - 324q^{55} - 68q^{57} - 132q^{58} - 96q^{60} - 124q^{61} - 174q^{63} - 104q^{64} + 58q^{66} + 144q^{67} + 26q^{69} + 136q^{70} - 64q^{72} - 76q^{73} - 194q^{75} - 96q^{76} + 28q^{78} - 120q^{79} - 56q^{81} - 340q^{82} - 56q^{84} - 116q^{85} - 34q^{87} + 116q^{88} - 52q^{90} - 112q^{91} + 74q^{93} + 36q^{94} - 406q^{96} - 124q^{97} - 92q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2.1 −0.0548695 + 2.72425i 0.0796955 + 1.73022i −5.42016 0.218425i 0.698419 3.81115i −4.71792 + 0.122175i 1.76691 2.67341i 0.563407 9.31422i −2.98730 + 0.275781i 10.3442 + 2.11179i
2.2 −0.0547878 + 2.72020i 1.34843 + 1.08707i −5.39809 0.217536i −0.502675 + 2.74301i −3.03093 + 3.60845i −0.957757 + 1.44913i 0.558940 9.24037i 0.636546 + 2.93169i −7.43399 1.51766i
2.3 −0.0543226 + 2.69710i −0.327883 1.70073i −5.27300 0.212495i 0.410508 2.24007i 4.60485 0.791944i −1.50010 + 2.26971i 0.533803 8.82481i −2.78499 + 1.11528i 6.01938 + 1.22887i
2.4 −0.0509749 + 2.53089i −0.290269 1.70755i −4.40440 0.177491i −0.457167 + 2.49468i 4.33642 0.647595i 2.49693 3.77795i 0.368040 6.08443i −2.83149 + 0.991300i −6.29045 1.28420i
2.5 −0.0502666 + 2.49572i −1.68648 0.394699i −4.22771 0.170371i 0.127318 0.694751i 1.06983 4.18914i 1.03440 1.56510i 0.336274 5.55927i 2.68843 + 1.33130i 1.72750 + 0.352672i
2.6 −0.0492501 + 2.44525i 1.65916 0.497167i −3.97844 0.160326i −0.00106230 + 0.00579679i 1.13398 + 4.08155i 2.10203 3.18046i 0.292634 4.83781i 2.50565 1.64976i −0.0141223 0.00288308i
2.7 −0.0488004 + 2.42292i −1.18779 + 1.26061i −3.86978 0.155947i −0.0407216 + 0.222211i −2.99640 2.93944i −1.35846 + 2.05540i 0.274050 4.53059i −0.178298 2.99470i −0.536411 0.109509i
2.8 −0.0447349 + 2.22107i 1.12900 1.31353i −2.93279 0.118187i −0.425593 + 2.32239i 2.86694 + 2.56635i −1.87109 + 2.83104i 0.125436 2.07370i −0.450722 2.96595i −5.13915 1.04916i
2.9 −0.0419920 + 2.08489i −1.62925 0.587818i −2.34662 0.0945657i 0.137218 0.748772i 1.29395 3.37213i −1.58590 + 2.39953i 0.0438824 0.725462i 2.30894 + 1.91541i 1.55534 + 0.317526i
2.10 −0.0409543 + 2.03336i 0.256039 + 1.71302i −2.13452 0.0860180i −0.267381 + 1.45905i −3.49368 + 0.450464i 0.531912 0.804804i 0.0167307 0.276592i −2.86889 + 0.877200i −2.95583 0.603437i
2.11 −0.0408434 + 2.02786i 0.845552 1.51164i −2.11217 0.0851176i 0.624365 3.40705i 3.03085 + 1.77640i −0.0807157 + 0.122126i 0.0139470 0.230572i −1.57008 2.55633i 6.88352 + 1.40528i
2.12 −0.0377660 + 1.87507i 1.72833 + 0.113543i −1.51607 0.0610955i 0.388121 2.11791i −0.278173 + 3.23644i 0.693572 1.04940i −0.0546594 + 0.903628i 2.97422 + 0.392479i 3.95656 + 0.807737i
2.13 −0.0374341 + 1.85859i 1.06249 + 1.36789i −1.45458 0.0586174i 0.440958 2.40623i −2.58212 + 1.92352i −2.25911 + 3.41812i −0.0610868 + 1.00988i −0.742237 + 2.90673i 4.45569 + 0.909636i
2.14 −0.0362418 + 1.79939i −0.541421 + 1.64525i −1.23812 0.0498947i −0.615732 + 3.35994i −2.94084 1.03386i 0.961160 1.45427i −0.0826814 + 1.36689i −2.41373 1.78155i −6.02354 1.22971i
2.15 −0.0337489 + 1.67562i −1.44454 + 0.955666i −0.808183 0.0325687i 0.693384 3.78367i −1.55258 2.45276i −0.672208 + 1.01708i −0.120536 + 1.99269i 1.17340 2.76100i 6.31660 + 1.28954i
2.16 −0.0292596 + 1.45273i 1.72672 0.135794i −0.111191 0.00448085i −0.589576 + 3.21721i 0.146749 + 2.51243i −0.0810588 + 0.122645i −0.165700 + 2.73935i 2.96312 0.468956i −4.65649 0.950629i
2.17 −0.0287183 + 1.42585i −0.617987 1.61805i −0.0338548 0.00136430i −0.204323 + 1.11496i 2.32485 0.834692i 0.633950 0.959192i −0.169299 + 2.79885i −2.23618 + 1.99987i −1.58390 0.323354i
2.18 −0.0282490 + 1.40255i −1.72318 0.175026i 0.0320220 + 0.00129044i −0.476786 + 2.60174i 0.294162 2.41191i 1.45655 2.20382i −0.172117 + 2.84543i 2.93873 + 0.603205i −3.63560 0.742214i
2.19 −0.0230681 + 1.14532i −0.546057 1.64372i 0.687151 + 0.0276912i −0.0695333 + 0.379431i 1.89518 0.587493i −1.90590 + 2.88371i −0.185900 + 3.07330i −2.40364 + 1.79513i −0.432966 0.0883907i
2.20 −0.0219978 + 1.09218i 1.01159 + 1.40595i 0.805998 + 0.0324806i 0.345605 1.88591i −1.55781 + 1.07391i 2.55979 3.87306i −0.185120 + 3.06041i −0.953385 + 2.84448i 2.05215 + 0.418950i
See next 80 embeddings (of 2784 total)
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 500.58 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
169.l odd 156 1 inner
507.x even 156 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 507.2.x.b 2784
3.b odd 2 1 inner 507.2.x.b 2784
169.l odd 156 1 inner 507.2.x.b 2784
507.x even 156 1 inner 507.2.x.b 2784

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
507.2.x.b 2784 1.a even 1 1 trivial
507.2.x.b 2784 3.b odd 2 1 inner
507.2.x.b 2784 169.l odd 156 1 inner
507.2.x.b 2784 507.x even 156 1 inner

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$50\!\cdots\!05$$$$T_{2}^{2764} +$$$$49\!\cdots\!60$$$$T_{2}^{2762} +$$$$43\!\cdots\!05$$$$T_{2}^{2760} +$$$$33\!\cdots\!74$$$$T_{2}^{2758} +$$$$22\!\cdots\!82$$$$T_{2}^{2756} +$$$$96\!\cdots\!50$$$$T_{2}^{2754} -$$$$11\!\cdots\!36$$$$T_{2}^{2752} -$$$$89\!\cdots\!34$$$$T_{2}^{2750} -$$$$13\!\cdots\!43$$$$T_{2}^{2748} -$$$$13\!\cdots\!34$$$$T_{2}^{2746} -$$$$11\!\cdots\!99$$$$T_{2}^{2744} -$$$$79\!\cdots\!88$$$$T_{2}^{2742} -$$$$38\!\cdots\!82$$$$T_{2}^{2740} -$$$$16\!\cdots\!16$$$$T_{2}^{2738} +$$$$23\!\cdots\!09$$$$T_{2}^{2736} +$$$$36\!\cdots\!30$$$$T_{2}^{2734} +$$$$37\!\cdots\!93$$$$T_{2}^{2732} +$$$$29\!\cdots\!04$$$$T_{2}^{2730} +$$$$18\!\cdots\!45$$$$T_{2}^{2728} +$$$$70\!\cdots\!16$$$$T_{2}^{2726} -$$$$20\!\cdots\!85$$$$T_{2}^{2724} -$$$$76\!\cdots\!12$$$$T_{2}^{2722} -$$$$95\!\cdots\!47$$$$T_{2}^{2720} -$$$$87\!\cdots\!06$$$$T_{2}^{2718} -$$$$62\!\cdots\!20$$$$T_{2}^{2716} -$$$$33\!\cdots\!60$$$$T_{2}^{2714} -$$$$85\!\cdots\!21$$$$T_{2}^{2712} +$$$$86\!\cdots\!72$$$$T_{2}^{2710} +$$$$16\!\cdots\!58$$$$T_{2}^{2708} +$$$$17\!\cdots\!82$$$$T_{2}^{2706} +$$$$13\!\cdots\!62$$$$T_{2}^{2704} +$$$$82\!\cdots\!82$$$$T_{2}^{2702} +$$$$29\!\cdots\!20$$$$T_{2}^{2700} -$$$$86\!\cdots\!42$$$$T_{2}^{2698} -$$$$28\!\cdots\!94$$$$T_{2}^{2696} -$$$$31\!\cdots\!80$$$$T_{2}^{2694} -$$$$25\!\cdots\!39$$$$T_{2}^{2692} -$$$$15\!\cdots\!90$$$$T_{2}^{2690} -$$$$51\!\cdots\!42$$$$T_{2}^{2688} +$$$$18\!\cdots\!46$$$$T_{2}^{2686} +$$$$52\!\cdots\!20$$$$T_{2}^{2684} +$$$$56\!\cdots\!20$$$$T_{2}^{2682} +$$$$42\!\cdots\!13$$$$T_{2}^{2680} +$$$$22\!\cdots\!50$$$$T_{2}^{2678} +$$$$40\!\cdots\!80$$$$T_{2}^{2676} -$$$$76\!\cdots\!36$$$$T_{2}^{2674} -$$$$12\!\cdots\!14$$$$T_{2}^{2672} -$$$$11\!\cdots\!66$$$$T_{2}^{2670} -$$$$72\!\cdots\!08$$$$T_{2}^{2668} -$$$$26\!\cdots\!32$$$$T_{2}^{2666} +$$$$85\!\cdots\!91$$$$T_{2}^{2664} +$$$$28\!\cdots\!96$$$$T_{2}^{2662} +$$$$32\!\cdots\!68$$$$T_{2}^{2660} +$$$$26\!\cdots\!30$$$$T_{2}^{2658} +$$$$15\!\cdots\!61$$$$T_{2}^{2656} +$$$$47\!\cdots\!02$$$$T_{2}^{2654} -$$$$28\!\cdots\!21$$$$T_{2}^{2652} -$$$$66\!\cdots\!30$$$$T_{2}^{2650} -$$$$71\!\cdots\!40$$$$T_{2}^{2648} -$$$$55\!\cdots\!90$$$$T_{2}^{2646} -$$$$32\!\cdots\!58$$$$T_{2}^{2644} -$$$$10\!\cdots\!60$$$$T_{2}^{2642} +$$$$50\!\cdots\!79$$$$T_{2}^{2640} +$$$$12\!\cdots\!50$$$$T_{2}^{2638} +$$$$13\!\cdots\!83$$$$T_{2}^{2636} +$$$$10\!\cdots\!88$$$$T_{2}^{2634} +$$$$62\!\cdots\!44$$$$T_{2}^{2632} +$$$$21\!\cdots\!44$$$$T_{2}^{2630} -$$$$62\!\cdots\!20$$$$T_{2}^{2628} -$$$$19\!\cdots\!46$$$$T_{2}^{2626} -$$$$21\!\cdots\!46$$$$T_{2}^{2624} -$$$$17\!\cdots\!86$$$$T_{2}^{2622} -$$$$10\!\cdots\!85$$$$T_{2}^{2620} -$$$$36\!\cdots\!80$$$$T_{2}^{2618} +$$$$75\!\cdots\!39$$$$T_{2}^{2616} +$$$$28\!\cdots\!16$$$$T_{2}^{2614} +$$$$31\!\cdots\!47$$$$T_{2}^{2612} +$$$$24\!\cdots\!28$$$$T_{2}^{2610} +$$$$13\!\cdots\!14$$$$T_{2}^{2608} +$$$$42\!\cdots\!88$$$$T_{2}^{2606} -$$$$18\!\cdots\!39$$$$T_{2}^{2604} -$$$$44\!\cdots\!54$$$$T_{2}^{2602} -$$$$45\!\cdots\!48$$$$T_{2}^{2600} -$$$$32\!\cdots\!46$$$$T_{2}^{2598} -$$$$16\!\cdots\!74$$$$T_{2}^{2596} -$$$$27\!\cdots\!82$$$$T_{2}^{2594} +$$$$50\!\cdots\!84$$$$T_{2}^{2592} +$$$$76\!\cdots\!14$$$$T_{2}^{2590} +$$$$68\!\cdots\!44$$$$T_{2}^{2588} +$$$$43\!\cdots\!96$$$$T_{2}^{2586} +$$$$17\!\cdots\!15$$$$T_{2}^{2584} -$$$$12\!\cdots\!46$$$$T_{2}^{2582} -$$$$11\!\cdots\!39$$$$T_{2}^{2580} -$$$$13\!\cdots\!76$$$$T_{2}^{2578} -$$$$10\!\cdots\!67$$$$T_{2}^{2576} -$$$$63\!\cdots\!92$$$$T_{2}^{2574} -$$$$22\!\cdots\!45$$$$T_{2}^{2572} +$$$$57\!\cdots\!30$$$$T_{2}^{2570} +$$$$19\!\cdots\!20$$$$T_{2}^{2568} +$$$$21\!\cdots\!94$$$$T_{2}^{2566} +$$$$16\!\cdots\!06$$$$T_{2}^{2564} +$$$$98\!\cdots\!28$$$$T_{2}^{2562} +$$$$36\!\cdots\!01$$$$T_{2}^{2560} -$$$$60\!\cdots\!94$$$$T_{2}^{2558} -$$$$26\!\cdots\!02$$$$T_{2}^{2556} -$$$$29\!\cdots\!82$$$$T_{2}^{2554} -$$$$23\!\cdots\!20$$$$T_{2}^{2552} -$$$$14\!\cdots\!00$$$$T_{2}^{2550} -$$$$57\!\cdots\!82$$$$T_{2}^{2548} -$$$$32\!\cdots\!94$$$$T_{2}^{2546} +$$$$28\!\cdots\!80$$$$T_{2}^{2544} +$$$$35\!\cdots\!46$$$$T_{2}^{2542} +$$$$29\!\cdots\!53$$$$T_{2}^{2540} +$$$$18\!\cdots\!32$$$$T_{2}^{2538} +$$$$83\!\cdots\!67$$$$T_{2}^{2536} +$$$$13\!\cdots\!82$$$$T_{2}^{2534} -$$$$24\!\cdots\!08$$$$T_{2}^{2532} -$$$$35\!\cdots\!06$$$$T_{2}^{2530} -$$$$30\!\cdots\!87$$$$T_{2}^{2528} -$$$$20\!\cdots\!22$$$$T_{2}^{2526} -$$$$10\!\cdots\!72$$$$T_{2}^{2524} -$$$$25\!\cdots\!80$$$$T_{2}^{2522} +$$$$15\!\cdots\!87$$$$T_{2}^{2520} +$$$$30\!\cdots\!52$$$$T_{2}^{2518} +$$$$28\!\cdots\!70$$$$T_{2}^{2516} +$$$$19\!\cdots\!06$$$$T_{2}^{2514} +$$$$10\!\cdots\!42$$$$T_{2}^{2512} +$$$$30\!\cdots\!58$$$$T_{2}^{2510} -$$$$91\!\cdots\!81$$$$T_{2}^{2508} -$$$$23\!\cdots\!58$$$$T_{2}^{2506} -$$$$23\!\cdots\!91$$$$T_{2}^{2504} -$$$$16\!\cdots\!26$$$$T_{2}^{2502} -$$$$83\!\cdots\!34$$$$T_{2}^{2500} -$$$$25\!\cdots\!22$$$$T_{2}^{2498} +$$$$69\!\cdots\!32$$$$T_{2}^{2496} +$$$$18\!\cdots\!84$$$$T_{2}^{2494} +$$$$17\!\cdots\!88$$$$T_{2}^{2492} +$$$$11\!\cdots\!44$$$$T_{2}^{2490} +$$$$57\!\cdots\!01$$$$T_{2}^{2488} +$$$$13\!\cdots\!72$$$$T_{2}^{2486} -$$$$97\!\cdots\!14$$$$T_{2}^{2484} -$$$$16\!\cdots\!48$$$$T_{2}^{2482} -$$$$13\!\cdots\!52$$$$T_{2}^{2480} -$$$$83\!\cdots\!42$$$$T_{2}^{2478} -$$$$33\!\cdots\!53$$$$T_{2}^{2476} -$$$$81\!\cdots\!50$$$$T_{2}^{2474} +$$$$13\!\cdots\!21$$$$T_{2}^{2472} +$$$$15\!\cdots\!88$$$$T_{2}^{2470} +$$$$11\!\cdots\!40$$$$T_{2}^{2468} +$$$$63\!\cdots\!46$$$$T_{2}^{2466} +$$$$20\!\cdots\!27$$$$T_{2}^{2464} -$$$$49\!\cdots\!18$$$$T_{2}^{2462} -$$$$14\!\cdots\!19$$$$T_{2}^{2460} -$$$$14\!\cdots\!60$$$$T_{2}^{2458} -$$$$96\!\cdots\!85$$$$T_{2}^{2456} -$$$$48\!\cdots\!18$$$$T_{2}^{2454} -$$$$12\!\cdots\!25$$$$T_{2}^{2452} +$$$$61\!\cdots\!28$$$$T_{2}^{2450} +$$$$12\!\cdots\!18$$$$T_{2}^{2448} +$$$$11\!\cdots\!54$$$$T_{2}^{2446} +$$$$72\!\cdots\!60$$$$T_{2}^{2444} +$$$$34\!\cdots\!26$$$$T_{2}^{2442} +$$$$79\!\cdots\!35$$$$T_{2}^{2440} -$$$$52\!\cdots\!20$$$$T_{2}^{2438} -$$$$89\!\cdots\!92$$$$T_{2}^{2436} -$$$$76\!\cdots\!56$$$$T_{2}^{2434} -$$$$47\!\cdots\!73$$$$T_{2}^{2432} -$$$$20\!\cdots\!62$$$$T_{2}^{2430} -$$$$34\!\cdots\!82$$$$T_{2}^{2428} +$$$$44\!\cdots\!44$$$$T_{2}^{2426} +$$$$60\!\cdots\!19$$$$T_{2}^{2424} +$$$$47\!\cdots\!72$$$$T_{2}^{2422} +$$$$26\!\cdots\!56$$$$T_{2}^{2420} +$$$$95\!\cdots\!06$$$$T_{2}^{2418} -$$$$33\!\cdots\!27$$$$T_{2}^{2416} -$$$$41\!\cdots\!52$$$$T_{2}^{2414} -$$$$42\!\cdots\!23$$$$T_{2}^{2412} -$$$$29\!\cdots\!98$$$$T_{2}^{2410} -$$$$14\!\cdots\!19$$$$T_{2}^{2408} -$$$$35\!\cdots\!58$$$$T_{2}^{2406} +$$$$18\!\cdots\!95$$$$T_{2}^{2404} +$$$$33\!\cdots\!38$$$$T_{2}^{2402} +$$$$28\!\cdots\!76$$$$T_{2}^{2400} +$$$$17\!\cdots\!78$$$$T_{2}^{2398} +$$$$69\!\cdots\!44$$$$T_{2}^{2396} +$$$$54\!\cdots\!70$$$$T_{2}^{2394} -$$$$21\!\cdots\!41$$$$T_{2}^{2392} -$$$$25\!\cdots\!60$$$$T_{2}^{2390} -$$$$18\!\cdots\!81$$$$T_{2}^{2388} -$$$$98\!\cdots\!64$$$$T_{2}^{2386} -$$$$32\!\cdots\!24$$$$T_{2}^{2384} +$$$$45\!\cdots\!06$$$$T_{2}^{2382} +$$$$17\!\cdots\!48$$$$T_{2}^{2380} +$$$$17\!\cdots\!02$$$$T_{2}^{2378} +$$$$11\!\cdots\!75$$$$T_{2}^{2376} +$$$$57\!\cdots\!80$$$$T_{2}^{2374} +$$$$16\!\cdots\!74$$$$T_{2}^{2372} -$$$$33\!\cdots\!84$$$$T_{2}^{2370} -$$$$98\!\cdots\!76$$$$T_{2}^{2368} -$$$$89\!\cdots\!20$$$$T_{2}^{2366} -$$$$56\!\cdots\!37$$$$T_{2}^{2364} -$$$$25\!\cdots\!02$$$$T_{2}^{2362} -$$$$55\!\cdots\!45$$$$T_{2}^{2360} +$$$$34\!\cdots\!84$$$$T_{2}^{2358} +$$$$55\!\cdots\!06$$$$T_{2}^{2356} +$$$$44\!\cdots\!74$$$$T_{2}^{2354} +$$$$25\!\cdots\!07$$$$T_{2}^{2352} +$$$$93\!\cdots\!04$$$$T_{2}^{2350} +$$$$38\!\cdots\!55$$$$T_{2}^{2348} -$$$$30\!\cdots\!92$$$$T_{2}^{2346} -$$$$32\!\cdots\!16$$$$T_{2}^{2344} -$$$$22\!\cdots\!72$$$$T_{2}^{2342} -$$$$11\!\cdots\!66$$$$T_{2}^{2340} -$$$$32\!\cdots\!46$$$$T_{2}^{2338} +$$$$74\!\cdots\!35$$$$T_{2}^{2336} +$$$$19\!\cdots\!62$$$$T_{2}^{2334} +$$$$16\!\cdots\!64$$$$T_{2}^{2332} +$$$$10\!\cdots\!78$$$$T_{2}^{2330} +$$$$43\!\cdots\!30$$$$T_{2}^{2328} +$$$$72\!\cdots\!32$$$$T_{2}^{2326} -$$$$86\!\cdots\!45$$$$T_{2}^{2324} -$$$$11\!\cdots\!66$$$$T_{2}^{2322} -$$$$87\!\cdots\!38$$$$T_{2}^{2320} -$$$$48\!\cdots\!08$$$$T_{2}^{2318} -$$$$18\!\cdots\!50$$$$T_{2}^{2316} -$$$$12\!\cdots\!80$$$$T_{2}^{2314} +$$$$52\!\cdots\!79$$$$T_{2}^{2312} +$$$$58\!\cdots\!14$$$$T_{2}^{2310} +$$$$41\!\cdots\!32$$$$T_{2}^{2308} +$$$$21\!\cdots\!86$$$$T_{2}^{2306} +$$$$77\!\cdots\!96$$$$T_{2}^{2304} +$$$$34\!\cdots\!98$$$$T_{2}^{2302} -$$$$22\!\cdots\!65$$$$T_{2}^{2300} -$$$$24\!\cdots\!48$$$$T_{2}^{2298} -$$$$16\!\cdots\!77$$$$T_{2}^{2296} -$$$$82\!\cdots\!76$$$$T_{2}^{2294} -$$$$27\!\cdots\!56$$$$T_{2}^{2292} +$$$$61\!\cdots\!42$$$$T_{2}^{2290} +$$$$96\!\cdots\!16$$$$T_{2}^{2288} +$$$$92\!\cdots\!94$$$$T_{2}^{2286} +$$$$59\!\cdots\!67$$$$T_{2}^{2284} +$$$$28\!\cdots\!68$$$$T_{2}^{2282} +$$$$81\!\cdots\!50$$$$T_{2}^{2280} -$$$$11\!\cdots\!88$$$$T_{2}^{2278} -$$$$37\!\cdots\!41$$$$T_{2}^{2276} -$$$$32\!\cdots\!32$$$$T_{2}^{2274} -$$$$19\!\cdots\!66$$$$T_{2}^{2272} -$$$$82\!\cdots\!46$$$$T_{2}^{2270} -$$$$17\!\cdots\!84$$$$T_{2}^{2268} +$$$$96\!\cdots\!00$$$$T_{2}^{2266} +$$$$14\!\cdots\!40$$$$T_{2}^{2264} +$$$$11\!\cdots\!40$$$$T_{2}^{2262} +$$$$59\!\cdots\!87$$$$T_{2}^{2260} +$$$$21\!\cdots\!08$$$$T_{2}^{2258} +$$$$16\!\cdots\!97$$$$T_{2}^{2256} -$$$$53\!\cdots\!42$$$$T_{2}^{2254} -$$$$57\!\cdots\!24$$$$T_{2}^{2252} -$$$$37\!\cdots\!38$$$$T_{2}^{2250} -$$$$18\!\cdots\!72$$$$T_{2}^{2248} -$$$$55\!\cdots\!80$$$$T_{2}^{2246} +$$$$52\!\cdots\!37$$$$T_{2}^{2244} +$$$$22\!\cdots\!84$$$$T_{2}^{2242} +$$$$20\!\cdots\!25$$$$T_{2}^{2240} +$$$$12\!\cdots\!54$$$$T_{2}^{2238} +$$$$53\!\cdots\!88$$$$T_{2}^{2236} +$$$$13\!\cdots\!10$$$$T_{2}^{2234} -$$$$39\!\cdots\!68$$$$T_{2}^{2232} -$$$$79\!\cdots\!66$$$$T_{2}^{2230} -$$$$64\!\cdots\!52$$$$T_{2}^{2228} -$$$$36\!\cdots\!56$$$$T_{2}^{2226} -$$$$15\!\cdots\!81$$$$T_{2}^{2224} -$$$$34\!\cdots\!60$$$$T_{2}^{2222} +$$$$14\!\cdots\!39$$$$T_{2}^{2220} +$$$$23\!\cdots\!72$$$$T_{2}^{2218} +$$$$18\!\cdots\!90$$$$T_{2}^{2216} +$$$$10\!\cdots\!02$$$$T_{2}^{2214} +$$$$40\!\cdots\!41$$$$T_{2}^{2212} +$$$$82\!\cdots\!40$$$$T_{2}^{2210} -$$$$42\!\cdots\!08$$$$T_{2}^{2208} -$$$$63\!\cdots\!72$$$$T_{2}^{2206} -$$$$46\!\cdots\!02$$$$T_{2}^{2204} -$$$$24\!\cdots\!48$$$$T_{2}^{2202} -$$$$96\!\cdots\!27$$$$T_{2}^{2200} -$$$$17\!\cdots\!44$$$$T_{2}^{2198} +$$$$11\!\cdots\!51$$$$T_{2}^{2196} +$$$$15\!\cdots\!80$$$$T_{2}^{2194} +$$$$10\!\cdots\!84$$$$T_{2}^{2192} +$$$$55\!\cdots\!70$$$$T_{2}^{2190} +$$$$20\!\cdots\!85$$$$T_{2}^{2188} +$$$$27\!\cdots\!50$$$$T_{2}^{2186} -$$$$31\!\cdots\!64$$$$T_{2}^{2184} -$$$$35\!\cdots\!34$$$$T_{2}^{2182} -$$$$23\!\cdots\!96$$$$T_{2}^{2180} -$$$$11\!\cdots\!28$$$$T_{2}^{2178} -$$$$35\!\cdots\!75$$$$T_{2}^{2176} -$$$$14\!\cdots\!10$$$$T_{2}^{2174} +$$$$84\!\cdots\!04$$$$T_{2}^{2172} +$$$$78\!\cdots\!54$$$$T_{2}^{2170} +$$$$46\!\cdots\!60$$$$T_{2}^{2168} +$$$$20\!\cdots\!54$$$$T_{2}^{2166} +$$$$51\!\cdots\!86$$$$T_{2}^{2164} -$$$$85\!\cdots\!70$$$$T_{2}^{2162} -$$$$22\!\cdots\!10$$$$T_{2}^{2160} -$$$$16\!\cdots\!00$$$$T_{2}^{2158} -$$$$90\!\cdots\!85$$$$T_{2}^{2156} -$$$$34\!\cdots\!28$$$$T_{2}^{2154} -$$$$55\!\cdots\!09$$$$T_{2}^{2152} +$$$$41\!\cdots\!32$$$$T_{2}^{2150} +$$$$52\!\cdots\!72$$$$T_{2}^{2148} +$$$$34\!\cdots\!72$$$$T_{2}^{2146} +$$$$16\!\cdots\!64$$$$T_{2}^{2144} +$$$$54\!\cdots\!74$$$$T_{2}^{2142} +$$$$24\!\cdots\!55$$$$T_{2}^{2140} -$$$$11\!\cdots\!78$$$$T_{2}^{2138} -$$$$11\!\cdots\!84$$$$T_{2}^{2136} -$$$$67\!\cdots\!38$$$$T_{2}^{2134} -$$$$29\!\cdots\!96$$$$T_{2}^{2132} -$$$$80\!\cdots\!56$$$$T_{2}^{2130} +$$$$79\!\cdots\!83$$$$T_{2}^{2128} +$$$$27\!\cdots\!04$$$$T_{2}^{2126} +$$$$22\!\cdots\!41$$$$T_{2}^{2124} +$$$$11\!\cdots\!42$$$$T_{2}^{2122} +$$$$47\!\cdots\!22$$$$T_{2}^{2120} +$$$$10\!\cdots\!08$$$$T_{2}^{2118} -$$$$32\!\cdots\!34$$$$T_{2}^{2116} -$$$$53\!\cdots\!34$$$$T_{2}^{2114} -$$$$38\!\cdots\!27$$$$T_{2}^{2112} -$$$$19\!\cdots\!64$$$$T_{2}^{2110} -$$$$68\!\cdots\!79$$$$T_{2}^{2108} -$$$$10\!\cdots\!86$$$$T_{2}^{2106} +$$$$86\!\cdots\!11$$$$T_{2}^{2104} +$$$$95\!\cdots\!68$$$$T_{2}^{2102} +$$$$61\!\cdots\!61$$$$T_{2}^{2100} +$$$$27\!\cdots\!76$$$$T_{2}^{2098} +$$$$83\!\cdots\!68$$$$T_{2}^{2096} +$$$$17\!\cdots\!96$$$$T_{2}^{2094} -$$$$19\!\cdots\!84$$$$T_{2}^{2092} -$$$$16\!\cdots\!76$$$$T_{2}^{2090} -$$$$93\!\cdots\!26$$$$T_{2}^{2088} -$$$$36\!\cdots\!36$$$$T_{2}^{2086} -$$$$81\!\cdots\!87$$$$T_{2}^{2084} +$$$$21\!\cdots\!86$$$$T_{2}^{2082} +$$$$39\!\cdots\!29$$$$T_{2}^{2080} +$$$$26\!\cdots\!54$$$$T_{2}^{2078} +$$$$13\!\cdots\!15$$$$T_{2}^{2076} +$$$$45\!\cdots\!20$$$$T_{2}^{2074} +$$$$58\!\cdots\!16$$$$T_{2}^{2072} -$$$$64\!\cdots\!82$$$$T_{2}^{2070} -$$$$71\!\cdots\!60$$$$T_{2}^{2068} -$$$$41\!\cdots\!86$$$$T_{2}^{2066} -$$$$19\!\cdots\!00$$$$T_{2}^{2064} -$$$$55\!\cdots\!56$$$$T_{2}^{2062} -$$$$17\!\cdots\!82$$$$T_{2}^{2060} +$$$$12\!\cdots\!54$$$$T_{2}^{2058} +$$$$11\!\cdots\!08$$$$T_{2}^{2056} +$$$$60\!\cdots\!88$$$$T_{2}^{2054} +$$$$26\!\cdots\!63$$$$T_{2}^{2052} +$$$$66\!\cdots\!10$$$$T_{2}^{2050} -$$$$29\!\cdots\!37$$$$T_{2}^{2048} -$$$$18\!\cdots\!68$$$$T_{2}^{2046} -$$$$15\!\cdots\!76$$$$T_{2}^{2044} -$$$$77\!\cdots\!14$$$$T_{2}^{2042} -$$$$33\!\cdots\!00$$$$T_{2}^{2040} -$$$$69\!\cdots\!66$$$$T_{2}^{2038} +$$$$97\!\cdots\!40$$$$T_{2}^{2036} +$$$$25\!\cdots\!16$$$$T_{2}^{2034} +$$$$19\!\cdots\!60$$$$T_{2}^{2032} +$$$$89\!\cdots\!42$$$$T_{2}^{2030} +$$$$35\!\cdots\!11$$$$T_{2}^{2028} +$$$$51\!\cdots\!90$$$$T_{2}^{2026} -$$$$24\!\cdots\!84$$$$T_{2}^{2024} -$$$$34\!\cdots\!54$$$$T_{2}^{2022} -$$$$23\!\cdots\!74$$$$T_{2}^{2020} -$$$$94\!\cdots\!74$$$$T_{2}^{2018} -$$$$34\!\cdots\!54$$$$T_{2}^{2016} -$$$$52\!\cdots\!54$$$$T_{2}^{2014} +$$$$50\!\cdots\!12$$$$T_{2}^{2012} +$$$$49\!\cdots\!72$$$$T_{2}^{2010} +$$$$28\!\cdots\!00$$$$T_{2}^{2008} +$$$$10\!\cdots\!02$$$$T_{2}^{2006} +$$$$31\!\cdots\!74$$$$T_{2}^{2004} -$$$$52\!\cdots\!14$$$$T_{2}^{2002} -$$$$84\!\cdots\!81$$$$T_{2}^{2000} -$$$$67\!\cdots\!80$$$$T_{2}^{1998} -$$$$35\!\cdots\!72$$$$T_{2}^{1996} -$$$$12\!\cdots\!08$$$$T_{2}^{1994} -$$$$33\!\cdots\!36$$$$T_{2}^{1992} +$$$$84\!\cdots\!50$$$$T_{2}^{1990} +$$$$10\!\cdots\!52$$$$T_{2}^{1988} +$$$$83\!\cdots\!08$$$$T_{2}^{1986} +$$$$41\!\cdots\!78$$$$T_{2}^{1984} +$$$$14\!\cdots\!90$$$$T_{2}^{1982} +$$$$41\!\cdots\!42$$$$T_{2}^{1980} -$$$$66\!\cdots\!92$$$$T_{2}^{1978} -$$$$10\!\cdots\!60$$$$T_{2}^{1976} -$$$$85\!\cdots\!76$$$$T_{2}^{1974} -$$$$44\!\cdots\!69$$$$T_{2}^{1972} -$$$$16\!\cdots\!00$$$$T_{2}^{1970} -$$$$50\!\cdots\!86$$$$T_{2}^{1968} +$$$$20\!\cdots\!58$$$$T_{2}^{1966} +$$$$84\!\cdots\!45$$$$T_{2}^{1964} +$$$$73\!\cdots\!98$$$$T_{2}^{1962} +$$$$39\!\cdots\!02$$$$T_{2}^{1960} +$$$$14\!\cdots\!04$$$$T_{2}^{1958} +$$$$49\!\cdots\!06$$$$T_{2}^{1956} +$$$$48\!\cdots\!62$$$$T_{2}^{1954} -$$$$58\!\cdots\!24$$$$T_{2}^{1952} -$$$$55\!\cdots\!46$$$$T_{2}^{1950} -$$$$31\!\cdots\!80$$$$T_{2}^{1948} -$$$$10\!\cdots\!54$$$$T_{2}^{1946} -$$$$38\!\cdots\!88$$$$T_{2}^{1944} +$$$$18\!\cdots\!96$$$$T_{2}^{1942} +$$$$48\!\cdots\!57$$$$T_{2}^{1940} +$$$$43\!\cdots\!04$$$$T_{2}^{1938} +$$$$23\!\cdots\!96$$$$T_{2}^{1936} +$$$$64\!\cdots\!78$$$$T_{2}^{1934} +$$$$23\!\cdots\!61$$$$T_{2}^{1932} -$$$$68\!\cdots\!96$$$$T_{2}^{1930} -$$$$53\!\cdots\!97$$$$T_{2}^{1928} -$$$$40\!\cdots\!00$$$$T_{2}^{1926} -$$$$20\!\cdots\!55$$$$T_{2}^{1924} -$$$$44\!\cdots\!30$$$$T_{2}^{1922} -$$$$15\!\cdots\!59$$$$T_{2}^{1920} +$$$$10\!\cdots\!76$$$$T_{2}^{1918} +$$$$57\!\cdots\!76$$$$T_{2}^{1916} +$$$$41\!\cdots\!88$$$$T_{2}^{1914} +$$$$18\!\cdots\!18$$$$T_{2}^{1912} +$$$$43\!\cdots\!94$$$$T_{2}^{1910} +$$$$14\!\cdots\!25$$$$T_{2}^{1908} -$$$$90\!\cdots\!54$$$$T_{2}^{1906} -$$$$50\!\cdots\!05$$$$T_{2}^{1904} -$$$$39\!\cdots\!24$$$$T_{2}^{1902} -$$$$17\!\cdots\!14$$$$T_{2}^{1900} -$$$$48\!\cdots\!22$$$$T_{2}^{1898} -$$$$16\!\cdots\!52$$$$T_{2}^{1896} +$$$$52\!\cdots\!66$$$$T_{2}^{1894} +$$$$33\!\cdots\!43$$$$T_{2}^{1892} +$$$$31\!\cdots\!18$$$$T_{2}^{1890} +$$$$13\!\cdots\!83$$$$T_{2}^{1888} +$$$$49\!\cdots\!18$$$$T_{2}^{1886} +$$$$17\!\cdots\!11$$$$T_{2}^{1884} -$$$$11\!\cdots\!52$$$$T_{2}^{1882} -$$$$15\!\cdots\!25$$$$T_{2}^{1880} -$$$$20\!\cdots\!60$$$$T_{2}^{1878} -$$$$96\!\cdots\!69$$$$T_{2}^{1876} -$$$$41\!\cdots\!60$$$$T_{2}^{1874} -$$$$15\!\cdots\!37$$$$T_{2}^{1872} -$$$$14\!\cdots\!00$$$$T_{2}^{1870} +$$$$21\!\cdots\!73$$$$T_{2}^{1868} +$$$$10\!\cdots\!50$$$$T_{2}^{1866} +$$$$56\!\cdots\!27$$$$T_{2}^{1864} +$$$$28\!\cdots\!04$$$$T_{2}^{1862} +$$$$11\!\cdots\!66$$$$T_{2}^{1860} +$$$$23\!\cdots\!18$$$$T_{2}^{1858} +$$$$40\!\cdots\!79$$$$T_{2}^{1856} -$$$$43\!\cdots\!66$$$$T_{2}^{1854} -$$$$27\!\cdots\!85$$$$T_{2}^{1852} -$$$$16\!\cdots\!32$$$$T_{2}^{1850} -$$$$69\!\cdots\!71$$$$T_{2}^{1848} -$$$$19\!\cdots\!98$$$$T_{2}^{1846} -$$$$51\!\cdots\!75$$$$T_{2}^{1844} +$$$$96\!\cdots\!54$$$$T_{2}^{1842} +$$$$10\!\cdots\!20$$$$T_{2}^{1840} +$$$$78\!\cdots\!46$$$$T_{2}^{1838} +$$$$36\!\cdots\!77$$$$T_{2}^{1836} +$$$$12\!\cdots\!00$$$$T_{2}^{1834} +$$$$39\!\cdots\!72$$$$T_{2}^{1832} +$$$$24\!\cdots\!62$$$$T_{2}^{1830} -$$$$29\!\cdots\!80$$$$T_{2}^{1828} -$$$$30\!\cdots\!98$$$$T_{2}^{1826} -$$$$16\!\cdots\!01$$$$T_{2}^{1824} -$$$$66\!\cdots\!84$$$$T_{2}^{1822} -$$$$23\!\cdots\!20$$$$T_{2}^{1820} -$$$$41\!\cdots\!32$$$$T_{2}^{1818} +$$$$15\!\cdots\!72$$$$T_{2}^{1816} +$$$$97\!\cdots\!94$$$$T_{2}^{1814} +$$$$64\!\cdots\!09$$$$T_{2}^{1812} +$$$$29\!\cdots\!92$$$$T_{2}^{1810} +$$$$11\!\cdots\!60$$$$T_{2}^{1808} +$$$$28\!\cdots\!76$$$$T_{2}^{1806} +$$$$40\!\cdots\!30$$$$T_{2}^{1804} -$$$$21\!\cdots\!46$$$$T_{2}^{1802} -$$$$21\!\cdots\!62$$$$T_{2}^{1800} -$$$$10\!\cdots\!54$$$$T_{2}^{1798} -$$$$46\!\cdots\!43$$$$T_{2}^{1796} -$$$$13\!\cdots\!08$$$$T_{2}^{1794} -$$$$30\!\cdots\!44$$$$T_{2}^{1792} +$$$$11\!\cdots\!36$$$$T_{2}^{1790} +$$$$56\!\cdots\!80$$$$T_{2}^{1788} +$$$$34\!\cdots\!52$$$$T_{2}^{1786} +$$$$16\!\cdots\!38$$$$T_{2}^{1784} +$$$$55\!\cdots\!84$$$$T_{2}^{1782} +$$$$14\!\cdots\!73$$$$T_{2}^{1780} +$$$$16\!\cdots\!76$$$$T_{2}^{1778} -$$$$11\!\cdots\!43$$$$T_{2}^{1776} -$$$$92\!\cdots\!26$$$$T_{2}^{1774} -$$$$50\!\cdots\!76$$$$T_{2}^{1772} -$$$$18\!\cdots\!86$$$$T_{2}^{1770} -$$$$55\!\cdots\!62$$$$T_{2}^{1768} -$$$$99\!\cdots\!98$$$$T_{2}^{1766} +$$$$18\!\cdots\!65$$$$T_{2}^{1764} +$$$$22\!\cdots\!26$$$$T_{2}^{1762} +$$$$13\!\cdots\!79$$$$T_{2}^{1760} +$$$$53\!\cdots\!84$$$$T_{2}^{1758} +$$$$16\!\cdots\!16$$$$T_{2}^{1756} +$$$$35\!\cdots\!50$$$$T_{2}^{1754} -$$$$19\!\cdots\!62$$$$T_{2}^{1752} -$$$$50\!\cdots\!76$$$$T_{2}^{1750} -$$$$34\!\cdots\!19$$$$T_{2}^{1748} -$$$$13\!\cdots\!00$$$$T_{2}^{1746} -$$$$44\!\cdots\!35$$$$T_{2}^{1744} -$$$$97\!\cdots\!12$$$$T_{2}^{1742} +$$$$36\!\cdots\!17$$$$T_{2}^{1740} +$$$$12\!\cdots\!10$$$$T_{2}^{1738} +$$$$85\!\cdots\!00$$$$T_{2}^{1736} +$$$$33\!\cdots\!28$$$$T_{2}^{1734} +$$$$10\!\cdots\!26$$$$T_{2}^{1732} +$$$$20\!\cdots\!74$$$$T_{2}^{1730} -$$$$24\!\cdots\!05$$$$T_{2}^{1728} -$$$$36\!\cdots\!58$$$$T_{2}^{1726} -$$$$21\!\cdots\!58$$$$T_{2}^{1724} -$$$$84\!\cdots\!22$$$$T_{2}^{1722} -$$$$22\!\cdots\!12$$$$T_{2}^{1720} -$$$$37\!\cdots\!72$$$$T_{2}^{1718} +$$$$13\!\cdots\!62$$$$T_{2}^{1716} +$$$$11\!\cdots\!44$$$$T_{2}^{1714} +$$$$60\!\cdots\!75$$$$T_{2}^{1712} +$$$$22\!\cdots\!62$$$$T_{2}^{1710} +$$$$54\!\cdots\!79$$$$T_{2}^{1708} +$$$$68\!\cdots\!72$$$$T_{2}^{1706} -$$$$45\!\cdots\!20$$$$T_{2}^{1704} -$$$$34\!\cdots\!02$$$$T_{2}^{1702} -$$$$16\!\cdots\!55$$$$T_{2}^{1700} -$$$$59\!\cdots\!28$$$$T_{2}^{1698} -$$$$14\!\cdots\!54$$$$T_{2}^{1696} -$$$$17\!\cdots\!00$$$$T_{2}^{1694} +$$$$11\!\cdots\!40$$$$T_{2}^{1692} +$$$$87\!\cdots\!52$$$$T_{2}^{1690} +$$$$41\!\cdots\!30$$$$T_{2}^{1688} +$$$$15\!\cdots\!50$$$$T_{2}^{1686} +$$$$37\!\cdots\!06$$$$T_{2}^{1684} +$$$$53\!\cdots\!02$$$$T_{2}^{1682} -$$$$21\!\cdots\!73$$$$T_{2}^{1680} -$$$$18\!\cdots\!18$$$$T_{2}^{1678} -$$$$92\!\cdots\!50$$$$T_{2}^{1676} -$$$$34\!\cdots\!28$$$$T_{2}^{1674} -$$$$90\!\cdots\!33$$$$T_{2}^{1672} -$$$$16\!\cdots\!20$$$$T_{2}^{1670} +$$$$25\!\cdots\!21$$$$T_{2}^{1668} +$$$$33\!\cdots\!60$$$$T_{2}^{1666} +$$$$17\!\cdots\!25$$$$T_{2}^{1664} +$$$$68\!\cdots\!38$$$$T_{2}^{1662} +$$$$18\!\cdots\!46$$$$T_{2}^{1660} +$$$$38\!\cdots\!66$$$$T_{2}^{1658} -$$$$80\!\cdots\!49$$$$T_{2}^{1656} -$$$$48\!\cdots\!18$$$$T_{2}^{1654} -$$$$27\!\cdots\!89$$$$T_{2}^{1652} -$$$$11\!\cdots\!36$$$$T_{2}^{1650} -$$$$32\!\cdots\!22$$$$T_{2}^{1648} -$$$$73\!\cdots\!84$$$$T_{2}^{1646} -$$$$38\!\cdots\!10$$$$T_{2}^{1644} +$$$$59\!\cdots\!64$$$$T_{2}^{1642} +$$$$36\!\cdots\!23$$$$T_{2}^{1640} +$$$$15\!\cdots\!74$$$$T_{2}^{1638} +$$$$45\!\cdots\!70$$$$T_{2}^{1636} +$$$$10\!\cdots\!92$$$$T_{2}^{1634} +$$$$74\!\cdots\!98$$$$T_{2}^{1632} -$$$$70\!\cdots\!78$$$$T_{2}^{1630} -$$$$41\!\cdots\!82$$$$T_{2}^{1628} -$$$$18\!\cdots\!36$$$$T_{2}^{1626} -$$$$47\!\cdots\!80$$$$T_{2}^{1624} -$$$$94\!\cdots\!88$$$$T_{2}^{1622} +$$$$25\!\cdots\!37$$$$T_{2}^{1620} +$$$$10\!\cdots\!36$$$$T_{2}^{1618} +$$$$47\!\cdots\!07$$$$T_{2}^{1616} +$$$$18\!\cdots\!90$$$$T_{2}^{1614} +$$$$36\!\cdots\!42$$$$T_{2}^{1612} +$$$$31\!\cdots\!22$$$$T_{2}^{1610} -$$$$23\!\cdots\!46$$$$T_{2}^{1608} -$$$$17\!\cdots\!70$$$$T_{2}^{1606} -$$$$58\!\cdots\!95$$$$T_{2}^{1604} -$$$$17\!\cdots\!86$$$$T_{2}^{1602} -$$$$19\!\cdots\!42$$$$T_{2}^{1600} +$$$$57\!\cdots\!96$$$$T_{2}^{1598} +$$$$53\!\cdots\!44$$$$T_{2}^{1596} +$$$$26\!\cdots\!22$$$$T_{2}^{1594} +$$$$74\!\cdots\!33$$$$T_{2}^{1592} +$$$$18\!\cdots\!50$$$$T_{2}^{1590} +$$$$11\!\cdots\!38$$$$T_{2}^{1588} -$$$$12\!\cdots\!00$$$$T_{2}^{1586} -$$$$70\!\cdots\!85$$$$T_{2}^{1584} -$$$$31\!\cdots\!46$$$$T_{2}^{1582} -$$$$80\!\cdots\!60$$$$T_{2}^{1580} -$$$$18\!\cdots\!84$$$$T_{2}^{1578} -$$$$10\!\cdots\!80$$$$T_{2}^{1576} +$$$$13\!\cdots\!42$$$$T_{2}^{1574} +$$$$60\!\cdots\!66$$$$T_{2}^{1572} +$$$$28\!\cdots\!10$$$$T_{2}^{1570} +$$$$59\!\cdots\!65$$$$T_{2}^{1568} +$$$$12\!\cdots\!40$$$$T_{2}^{1566} +$$$$28\!\cdots\!60$$$$T_{2}^{1564} -$$$$14\!\cdots\!10$$$$T_{2}^{1562} -$$$$43\!\cdots\!75$$$$T_{2}^{1560} -$$$$21\!\cdots\!50$$$$T_{2}^{1558} -$$$$26\!\cdots\!65$$$$T_{2}^{1556} -$$$$38\!\cdots\!66$$$$T_{2}^{1554} +$$$$19\!\cdots\!85$$$$T_{2}^{1552} +$$$$15\!\cdots\!14$$$$T_{2}^{1550} +$$$$36\!\cdots\!94$$$$T_{2}^{1548} +$$$$14\!\cdots\!46$$$$T_{2}^{1546} +$$$$57\!\cdots\!28$$$$T_{2}^{1544} -$$$$32\!\cdots\!62$$$$T_{2}^{1542} -$$$$33\!\cdots\!91$$$$T_{2}^{1540} -$$$$16\!\cdots\!90$$$$T_{2}^{1538} -$$$$34\!\cdots\!02$$$$T_{2}^{1536} -$$$$10\!\cdots\!62$$$$T_{2}^{1534} +$$$$44\!\cdots\!08$$$$T_{2}^{1532} +$$$$69\!\cdots\!76$$$$T_{2}^{1530} +$$$$33\!\cdots\!37$$$$T_{2}^{1528} +$$$$15\!\cdots\!86$$$$T_{2}^{1526} +$$$$33\!\cdots\!88$$$$T_{2}^{1524} +$$$$85\!\cdots\!60$$$$T_{2}^{1522} +$$$$51\!\cdots\!26$$$$T_{2}^{1520} -$$$$50\!\cdots\!64$$$$T_{2}^{1518} -$$$$18\!\cdots\!47$$$$T_{2}^{1516} -$$$$10\!\cdots\!36$$$$T_{2}^{1514} -$$$$17\!\cdots\!63$$$$T_{2}^{1512} -$$$$42\!\cdots\!34$$$$T_{2}^{1510} -$$$$23\!\cdots\!61$$$$T_{2}^{1508} +$$$$48\!\cdots\!02$$$$T_{2}^{1506} +$$$$12\!\cdots\!72$$$$T_{2}^{1504} +$$$$71\!\cdots\!28$$$$T_{2}^{1502} +$$$$88\!\cdots\!45$$$$T_{2}^{1500} +$$$$19\!\cdots\!52$$$$T_{2}^{1498} -$$$$26\!\cdots\!68$$$$T_{2}^{1496} -$$$$38\!\cdots\!94$$$$T_{2}^{1494} -$$$$91\!\cdots\!26$$$$T_{2}^{1492} -$$$$47\!\cdots\!16$$$$T_{2}^{1490} -$$$$63\!\cdots\!46$$$$T_{2}^{1488} -$$$$15\!\cdots\!82$$$$T_{2}^{1486} -$$$$68\!\cdots\!12$$$$T_{2}^{1484} +$$$$10\!\cdots\!58$$$$T_{2}^{1482} +$$$$37\!\cdots\!01$$$$T_{2}^{1480} +$$$$52\!\cdots\!04$$$$T_{2}^{1478} -$$$$33\!\cdots\!29$$$$T_{2}^{1476} -$$$$17\!\cdots\!36$$$$T_{2}^{1474} -$$$$66\!\cdots\!72$$$$T_{2}^{1472} -$$$$28\!\cdots\!20$$$$T_{2}^{1470} -$$$$53\!\cdots\!79$$$$T_{2}^{1468} -$$$$15\!\cdots\!18$$$$T_{2}^{1466} -$$$$60\!\cdots\!31$$$$T_{2}^{1464} +$$$$67\!\cdots\!14$$$$T_{2}^{1462} +$$$$36\!\cdots\!01$$$$T_{2}^{1460} +$$$$18\!\cdots\!52$$$$T_{2}^{1458} +$$$$47\!\cdots\!01$$$$T_{2}^{1456} +$$$$15\!\cdots\!52$$$$T_{2}^{1454} +$$$$32\!\cdots\!34$$$$T_{2}^{1452} +$$$$50\!\cdots\!78$$$$T_{2}^{1450} +$$$$13\!\cdots\!02$$$$T_{2}^{1448} -$$$$17\!\cdots\!44$$$$T_{2}^{1446} +$$$$68\!\cdots\!61$$$$T_{2}^{1444} +$$$$18\!\cdots\!88$$$$T_{2}^{1442} +$$$$10\!\cdots\!14$$$$T_{2}^{1440} +$$$$59\!\cdots\!78$$$$T_{2}^{1438} +$$$$16\!\cdots\!77$$$$T_{2}^{1436} +$$$$72\!\cdots\!94$$$$T_{2}^{1434} +$$$$16\!\cdots\!71$$$$T_{2}^{1432} +$$$$51\!\cdots\!60$$$$T_{2}^{1430} +$$$$11\!\cdots\!46$$$$T_{2}^{1428} +$$$$22\!\cdots\!40$$$$T_{2}^{1426} +$$$$62\!\cdots\!75$$$$T_{2}^{1424} +$$$$66\!\cdots\!04$$$$T_{2}^{1422} +$$$$34\!\cdots\!27$$$$T_{2}^{1420} +$$$$61\!\cdots\!58$$$$T_{2}^{1418} +$$$$25\!\cdots\!42$$$$T_{2}^{1416} +$$$$92\!\cdots\!86$$$$T_{2}^{1414} +$$$$19\!\cdots\!18$$$$T_{2}^{1412} +$$$$77\!\cdots\!66$$$$T_{2}^{1410} +$$$$98\!\cdots\!44$$$$T_{2}^{1408} +$$$$26\!\cdots\!50$$$$T_{2}^{1406} +$$$$72\!\cdots\!99$$$$T_{2}^{1404} -$$$$12\!\cdots\!08$$$$T_{2}^{1402} -$$$$26\!\cdots\!61$$$$T_{2}^{1400} -$$$$17\!\cdots\!44$$$$T_{2}^{1398} -$$$$53\!\cdots\!70$$$$T_{2}^{1396} -$$$$95\!\cdots\!66$$$$T_{2}^{1394} +$$$$26\!\cdots\!80$$$$T_{2}^{1392} +$$$$12\!\cdots\!74$$$$T_{2}^{1390} +$$$$36\!\cdots\!26$$$$T_{2}^{1388} +$$$$11\!\cdots\!46$$$$T_{2}^{1386} +$$$$21\!\cdots\!17$$$$T_{2}^{1384} +$$$$37\!\cdots\!38$$$$T_{2}^{1382} +$$$$51\!\cdots\!43$$$$T_{2}^{1380} -$$$$27\!\cdots\!98$$$$T_{2}^{1378} -$$$$10\!\cdots\!65$$$$T_{2}^{1376} -$$$$39\!\cdots\!40$$$$T_{2}^{1374} -$$$$93\!\cdots\!45$$$$T_{2}^{1372} -$$$$19\!\cdots\!62$$$$T_{2}^{1370} -$$$$30\!\cdots\!34$$$$T_{2}^{1368} +$$$$15\!\cdots\!14$$$$T_{2}^{1366} +$$$$15\!\cdots\!92$$$$T_{2}^{1364} +$$$$84\!\cdots\!76$$$$T_{2}^{1362} +$$$$23\!\cdots\!82$$$$T_{2}^{1360} +$$$$51\!\cdots\!56$$$$T_{2}^{1358} +$$$$10\!\cdots\!76$$$$T_{2}^{1356} +$$$$21\!\cdots\!32$$$$T_{2}^{1354} -$$$$19\!\cdots\!12$$$$T_{2}^{1352} -$$$$19\!\cdots\!14$$$$T_{2}^{1350} -$$$$56\!\cdots\!79$$$$T_{2}^{1348} -$$$$14\!\cdots\!10$$$$T_{2}^{1346} -$$$$34\!\cdots\!33$$$$T_{2}^{1344} -$$$$40\!\cdots\!74$$$$T_{2}^{1342} -$$$$54\!\cdots\!17$$$$T_{2}^{1340} +$$$$19\!\cdots\!84$$$$T_{2}^{1338} +$$$$73\!\cdots\!88$$$$T_{2}^{1336} +$$$$25\!\cdots\!12$$$$T_{2}^{1334} +$$$$66\!\cdots\!42$$$$T_{2}^{1332} +$$$$10\!\cdots\!84$$$$T_{2}^{1330} +$$$$22\!\cdots\!02$$$$T_{2}^{1328} +$$$$20\!\cdots\!26$$$$T_{2}^{1326} -$$$$27\!\cdots\!94$$$$T_{2}^{1324} -$$$$21\!\cdots\!86$$$$T_{2}^{1322} -$$$$61\!\cdots\!54$$$$T_{2}^{1320} -$$$$92\!\cdots\!82$$$$T_{2}^{1318} -$$$$22\!\cdots\!99$$$$T_{2}^{1316} +$$$$75\!\cdots\!80$$$$T_{2}^{1314} +$$$$15\!\cdots\!13$$$$T_{2}^{1312} +$$$$18\!\cdots\!34$$$$T_{2}^{1310} +$$$$31\!\cdots\!35$$$$T_{2}^{1308} -$$$$15\!\cdots\!68$$$$T_{2}^{1306} -$$$$86\!\cdots\!09$$$$T_{2}^{1304} -$$$$92\!\cdots\!54$$$$T_{2}^{1302} -$$$$16\!\cdots\!28$$$$T_{2}^{1300} -$$$$40\!\cdots\!40$$$$T_{2}^{1298} -$$$$15\!\cdots\!17$$$$T_{2}^{1296} +$$$$19\!\cdots\!32$$$$T_{2}^{1294} +$$$$82\!\cdots\!83$$$$T_{2}^{1292} +$$$$31\!\cdots\!26$$$$T_{2}^{1290} +$$$$70\!\cdots\!41$$$$T_{2}^{1288} +$$$$15\!\cdots\!30$$$$T_{2}^{1286} +$$$$19\!\cdots\!51$$$$T_{2}^{1284} +$$$$10\!\cdots\!68$$$$T_{2}^{1282} -$$$$98\!\cdots\!15$$$$T_{2}^{1280} -$$$$46\!\cdots\!84$$$$T_{2}^{1278} -$$$$12\!\cdots\!57$$$$T_{2}^{1276} -$$$$30\!\cdots\!80$$$$T_{2}^{1274} -$$$$51\!\cdots\!24$$$$T_{2}^{1272} -$$$$61\!\cdots\!62$$$$T_{2}^{1270} +$$$$99\!\cdots\!48$$$$T_{2}^{1268} +$$$$36\!\cdots\!66$$$$T_{2}^{1266} +$$$$12\!\cdots\!11$$$$T_{2}^{1264} +$$$$34\!\cdots\!16$$$$T_{2}^{1262} +$$$$66\!\cdots\!99$$$$T_{2}^{1260} +$$$$99\!\cdots\!56$$$$T_{2}^{1258} +$$$$70\!\cdots\!33$$$$T_{2}^{1256} -$$$$19\!\cdots\!04$$$$T_{2}^{1254} -$$$$98\!\cdots\!32$$$$T_{2}^{1252} -$$$$28\!\cdots\!18$$$$T_{2}^{1250} -$$$$58\!\cdots\!39$$$$T_{2}^{1248} -$$$$90\!\cdots\!70$$$$T_{2}^{1246} -$$$$77\!\cdots\!95$$$$T_{2}^{1244} +$$$$11\!\cdots\!12$$$$T_{2}^{1242} +$$$$70\!\cdots\!53$$$$T_{2}^{1240} +$$$$20\!\cdots\!46$$$$T_{2}^{1238} +$$$$39\!\cdots\!83$$$$T_{2}^{1236} +$$$$53\!\cdots\!66$$$$T_{2}^{1234} +$$$$23\!\cdots\!26$$$$T_{2}^{1232} -$$$$15\!\cdots\!06$$$$T_{2}^{1230} -$$$$58\!\cdots\!84$$$$T_{2}^{1228} -$$$$13\!\cdots\!42$$$$T_{2}^{1226} -$$$$21\!\cdots\!11$$$$T_{2}^{1224} -$$$$15\!\cdots\!10$$$$T_{2}^{1222} +$$$$41\!\cdots\!45$$$$T_{2}^{1220} +$$$$22\!\cdots\!36$$$$T_{2}^{1218} +$$$$58\!\cdots\!94$$$$T_{2}^{1216} +$$$$10\!\cdots\!52$$$$T_{2}^{1214} +$$$$12\!\cdots\!66$$$$T_{2}^{1212} -$$$$36\!\cdots\!16$$$$T_{2}^{1210} -$$$$68\!\cdots\!04$$$$T_{2}^{1208} -$$$$23\!\cdots\!64$$$$T_{2}^{1206} -$$$$53\!\cdots\!39$$$$T_{2}^{1204} -$$$$89\!\cdots\!40$$$$T_{2}^{1202} -$$$$88\!\cdots\!31$$$$T_{2}^{1200} +$$$$70\!\cdots\!06$$$$T_{2}^{1198} +$$$$61\!\cdots\!57$$$$T_{2}^{1196} +$$$$19\!\cdots\!58$$$$T_{2}^{1194} +$$$$41\!\cdots\!46$$$$T_{2}^{1192} +$$$$67\!\cdots\!16$$$$T_{2}^{1190} +$$$$68\!\cdots\!12$$$$T_{2}^{1188} -$$$$34\!\cdots\!82$$$$T_{2}^{1186} -$$$$38\!\cdots\!23$$$$T_{2}^{1184} -$$$$12\!\cdots\!26$$$$T_{2}^{1182} -$$$$26\!\cdots\!39$$$$T_{2}^{1180} -$$$$43\!\cdots\!08$$$$T_{2}^{1178} -$$$$49\!\cdots\!19$$$$T_{2}^{1176} -$$$$43\!\cdots\!64$$$$T_{2}^{1174} +$$$$16\!\cdots\!50$$$$T_{2}^{1172} +$$$$58\!\cdots\!68$$$$T_{2}^{1170} +$$$$13\!\cdots\!76$$$$T_{2}^{1168} +$$$$23\!\cdots\!76$$$$T_{2}^{1166} +$$$$30\!\cdots\!42$$$$T_{2}^{1164} +$$$$17\!\cdots\!98$$$$T_{2}^{1162} -$$$$46\!\cdots\!44$$$$T_{2}^{1160} -$$$$21\!\cdots\!90$$$$T_{2}^{1158} -$$$$53\!\cdots\!81$$$$T_{2}^{1156} -$$$$10\!\cdots\!70$$$$T_{2}^{1154} -$$$$14\!\cdots\!81$$$$T_{2}^{1152} -$$$$13\!\cdots\!06$$$$T_{2}^{1150} +$$$$30\!\cdots\!06$$$$T_{2}^{1148} +$$$$55\!\cdots\!72$$$$T_{2}^{1146} +$$$$16\!\cdots\!86$$$$T_{2}^{1144} +$$$$34\!\cdots\!62$$$$T_{2}^{1142} +$$$$57\!\cdots\!21$$$$T_{2}^{1140} +$$$$70\!\cdots\!96$$$$T_{2}^{1138} +$$$$45\!\cdots\!64$$$$T_{2}^{1136} -$$$$76\!\cdots\!64$$$$T_{2}^{1134} -$$$$37\!\cdots\!59$$$$T_{2}^{1132} -$$$$91\!\cdots\!80$$$$T_{2}^{1130} -$$$$17\!\cdots\!87$$$$T_{2}^{1128} -$$$$25\!\cdots\!00$$$$T_{2}^{1126} -$$$$26\!\cdots\!98$$$$T_{2}^{1124} -$$$$72\!\cdots\!44$$$$T_{2}^{1122} +$$$$54\!\cdots\!22$$$$T_{2}^{1120} +$$$$18\!\cdots\!98$$$$T_{2}^{1118} +$$$$40\!\cdots\!44$$$$T_{2}^{1116} +$$$$69\!\cdots\!78$$$$T_{2}^{1114} +$$$$94\!\cdots\!61$$$$T_{2}^{1112} +$$$$88\!\cdots\!56$$$$T_{2}^{1110} +$$$$47\!\cdots\!75$$$$T_{2}^{1108} -$$$$22\!\cdots\!60$$$$T_{2}^{1106} -$$$$68\!\cdots\!33$$$$T_{2}^{1104} -$$$$13\!\cdots\!48$$$$T_{2}^{1102} -$$$$23\!\cdots\!76$$$$T_{2}^{1100} -$$$$30\!\cdots\!02$$$$T_{2}^{1098} -$$$$31\!\cdots\!92$$$$T_{2}^{1096} -$$$$11\!\cdots\!46$$$$T_{2}^{1094} +$$$$41\!\cdots\!48$$$$T_{2}^{1092} +$$$$14\!\cdots\!48$$$$T_{2}^{1090} +$$$$30\!\cdots\!86$$$$T_{2}^{1088} +$$$$49\!\cdots\!70$$$$T_{2}^{1086} +$$$$67\!\cdots\!86$$$$T_{2}^{1084} +$$$$71\!\cdots\!24$$$$T_{2}^{1082} +$$$$46\!\cdots\!33$$$$T_{2}^{1080} -$$$$24\!\cdots\!12$$$$T_{2}^{1078} -$$$$15\!\cdots\!20$$$$T_{2}^{1076} -$$$$33\!\cdots\!54$$$$T_{2}^{1074} -$$$$50\!\cdots\!89$$$$T_{2}^{1072} -$$$$57\!\cdots\!42$$$$T_{2}^{1070} -$$$$37\!\cdots\!75$$$$T_{2}^{1068} +$$$$27\!\cdots\!02$$$$T_{2}^{1066} +$$$$15\!\cdots\!95$$$$T_{2}^{1064} +$$$$34\!\cdots\!54$$$$T_{2}^{1062} +$$$$57\!\cdots\!49$$$$T_{2}^{1060} +$$$$73\!\cdots\!96$$$$T_{2}^{1058} +$$$$73\!\cdots\!50$$$$T_{2}^{1056} +$$$$37\!\cdots\!94$$$$T_{2}^{1054} -$$$$53\!\cdots\!87$$$$T_{2}^{1052} -$$$$19\!\cdots\!78$$$$T_{2}^{1050} -$$$$40\!\cdots\!45$$$$T_{2}^{1048} -$$$$63\!\cdots\!14$$$$T_{2}^{1046} -$$$$83\!\cdots\!68$$$$T_{2}^{1044} -$$$$95\!\cdots\!14$$$$T_{2}^{1042} -$$$$88\!\cdots\!85$$$$T_{2}^{1040} -$$$$82\!\cdots\!38$$$$T_{2}^{1038} -$$$$60\!\cdots\!89$$$$T_{2}^{1036} -$$$$88\!\cdots\!38$$$$T_{2}^{1034} -$$$$15\!\cdots\!39$$$$T_{2}^{1032} -$$$$29\!\cdots\!08$$$$T_{2}^{1030} -$$$$51\!\cdots\!23$$$$T_{2}^{1028} -$$$$61\!\cdots\!20$$$$T_{2}^{1026} -$$$$61\!\cdots\!48$$$$T_{2}^{1024} +$$$$15\!\cdots\!52$$$$T_{2}^{1022} +$$$$15\!\cdots\!23$$$$T_{2}^{1020} +$$$$42\!\cdots\!00$$$$T_{2}^{1018} +$$$$80\!\cdots\!83$$$$T_{2}^{1016} +$$$$11\!\cdots\!82$$$$T_{2}^{1014} +$$$$15\!\cdots\!14$$$$T_{2}^{1012} +$$$$14\!\cdots\!26$$$$T_{2}^{1010} +$$$$11\!\cdots\!25$$$$T_{2}^{1008} -$$$$26\!\cdots\!36$$$$T_{2}^{1006} -$$$$15\!\cdots\!38$$$$T_{2}^{1004} -$$$$29\!\cdots\!32$$$$T_{2}^{1002} -$$$$37\!\cdots\!14$$$$T_{2}^{1000} -$$$$11\!\cdots\!90$$$$T_{2}^{998} +$$$$42\!\cdots\!40$$$$T_{2}^{996} +$$$$16\!\cdots\!42$$$$T_{2}^{994} +$$$$32\!\cdots\!34$$$$T_{2}^{992} +$$$$50\!\cdots\!54$$$$T_{2}^{990} +$$$$67\!\cdots\!07$$$$T_{2}^{988} +$$$$66\!\cdots\!74$$$$T_{2}^{986} +$$$$47\!\cdots\!45$$$$T_{2}^{984} -$$$$12\!\cdots\!02$$$$T_{2}^{982} -$$$$10\!\cdots\!78$$$$T_{2}^{980} -$$$$23\!\cdots\!74$$$$T_{2}^{978} -$$$$39\!\cdots\!33$$$$T_{2}^{976} -$$$$51\!\cdots\!80$$$$T_{2}^{974} -$$$$61\!\cdots\!89$$$$T_{2}^{972} -$$$$59\!\cdots\!14$$$$T_{2}^{970} -$$$$48\!\cdots\!34$$$$T_{2}^{968} -$$$$25\!\cdots\!92$$$$T_{2}^{966} +$$$$34\!\cdots\!85$$$$T_{2}^{964} +$$$$25\!\cdots\!38$$$$T_{2}^{962} +$$$$44\!\cdots\!21$$$$T_{2}^{960} +$$$$26\!\cdots\!98$$$$T_{2}^{958} -$$$$59\!\cdots\!73$$$$T_{2}^{956} -$$$$65\!\cdots\!26$$$$T_{2}^{954} -$$$$15\!\cdots\!11$$$$T_{2}^{952} -$$$$20\!\cdots\!52$$$$T_{2}^{950} -$$$$25\!\cdots\!46$$$$T_{2}^{948} -$$$$21\!\cdots\!98$$$$T_{2}^{946} -$$$$70\!\cdots\!07$$$$T_{2}^{944} +$$$$83\!\cdots\!10$$$$T_{2}^{942} +$$$$40\!\cdots\!58$$$$T_{2}^{940} +$$$$57\!\cdots\!96$$$$T_{2}^{938} +$$$$80\!\cdots\!24$$$$T_{2}^{936} +$$$$91\!\cdots\!96$$$$T_{2}^{934} +$$$$96\!\cdots\!10$$$$T_{2}^{932} +$$$$13\!\cdots\!48$$$$T_{2}^{930} +$$$$17\!\cdots\!70$$$$T_{2}^{928} +$$$$32\!\cdots\!20$$$$T_{2}^{926} +$$$$52\!\cdots\!61$$$$T_{2}^{924} +$$$$86\!\cdots\!98$$$$T_{2}^{922} +$$$$12\!\cdots\!08$$$$T_{2}^{920} +$$$$16\!\cdots\!50$$$$T_{2}^{918} +$$$$22\!\cdots\!94$$$$T_{2}^{916} +$$$$25\!\cdots\!28$$$$T_{2}^{914} +$$$$29\!\cdots\!38$$$$T_{2}^{912} +$$$$33\!\cdots\!94$$$$T_{2}^{910} +$$$$36\!\cdots\!98$$$$T_{2}^{908} +$$$$45\!\cdots\!44$$$$T_{2}^{906} +$$$$50\!\cdots\!92$$$$T_{2}^{904} +$$$$64\!\cdots\!58$$$$T_{2}^{902} +$$$$80\!\cdots\!41$$$$T_{2}^{900} +$$$$10\!\cdots\!50$$$$T_{2}^{898} +$$$$14\!\cdots\!09$$$$T_{2}^{896} +$$$$17\!\cdots\!82$$$$T_{2}^{894} +$$$$21\!\cdots\!07$$$$T_{2}^{892} +$$$$23\!\cdots\!38$$$$T_{2}^{890} +$$$$24\!\cdots\!92$$$$T_{2}^{888} +$$$$26\!\cdots\!32$$$$T_{2}^{886} +$$$$26\!\cdots\!66$$$$T_{2}^{884} +$$$$31\!\cdots\!06$$$$T_{2}^{882} +$$$$32\!\cdots\!22$$$$T_{2}^{880} +$$$$35\!\cdots\!68$$$$T_{2}^{878} +$$$$37\!\cdots\!13$$$$T_{2}^{876} +$$$$35\!\cdots\!28$$$$T_{2}^{874} +$$$$46\!\cdots\!79$$$$T_{2}^{872} +$$$$47\!\cdots\!10$$$$T_{2}^{870} +$$$$54\!\cdots\!73$$$$T_{2}^{868} +$$$$54\!\cdots\!32$$$$T_{2}^{866} +$$$$37\!\cdots\!23$$$$T_{2}^{864} +$$$$38\!\cdots\!66$$$$T_{2}^{862} +$$$$24\!\cdots\!34$$$$T_{2}^{860} +$$$$31\!\cdots\!60$$$$T_{2}^{858} +$$$$46\!\cdots\!57$$$$T_{2}^{856} +$$$$34\!\cdots\!46$$$$T_{2}^{854} +$$$$58\!\cdots\!51$$$$T_{2}^{852} +$$$$44\!\cdots\!24$$$$T_{2}^{850} +$$$$68\!\cdots\!03$$$$T_{2}^{848} +$$$$83\!\cdots\!32$$$$T_{2}^{846} +$$$$67\!\cdots\!27$$$$T_{2}^{844} +$$$$65\!\cdots\!26$$$$T_{2}^{842} -$$$$14\!\cdots\!65$$$$T_{2}^{840} -$$$$21\!\cdots\!72$$$$T_{2}^{838} -$$$$41\!\cdots\!89$$$$T_{2}^{836} -$$$$66\!\cdots\!96$$$$T_{2}^{834} -$$$$45\!\cdots\!21$$$$T_{2}^{832} -$$$$77\!\cdots\!34$$$$T_{2}^{830} -$$$$27\!\cdots\!78$$$$T_{2}^{828} +$$$$44\!\cdots\!30$$$$T_{2}^{826} +$$$$63\!\cdots\!41$$$$T_{2}^{824} +$$$$18\!\cdots\!22$$$$T_{2}^{822} +$$$$96\!\cdots\!44$$$$T_{2}^{820} +$$$$13\!\cdots\!18$$$$T_{2}^{818} +$$$$60\!\cdots\!94$$$$T_{2}^{816} +$$$$11\!\cdots\!62$$$$T_{2}^{814} +$$$$22\!\cdots\!68$$$$T_{2}^{812} -$$$$15\!\cdots\!50$$$$T_{2}^{810} -$$$$14\!\cdots\!66$$$$T_{2}^{808} -$$$$20\!\cdots\!40$$$$T_{2}^{806} -$$$$14\!\cdots\!72$$$$T_{2}^{804} -$$$$54\!\cdots\!64$$$$T_{2}^{802} -$$$$47\!\cdots\!58$$$$T_{2}^{800} +$$$$52\!\cdots\!30$$$$T_{2}^{798} +$$$$85\!\cdots\!99$$$$T_{2}^{796} +$$$$95\!\cdots\!14$$$$T_{2}^{794} +$$$$18\!\cdots\!67$$$$T_{2}^{792} +$$$$44\!\cdots\!84$$$$T_{2}^{790} +$$$$84\!\cdots\!90$$$$T_{2}^{788} -$$$$52\!\cdots\!34$$$$T_{2}^{786} -$$$$54\!\cdots\!84$$$$T_{2}^{784} -$$$$45\!\cdots\!24$$$$T_{2}^{782} -$$$$12\!\cdots\!54$$$$T_{2}^{780} -$$$$18\!\cdots\!26$$$$T_{2}^{778} -$$$$87\!\cdots\!68$$$$T_{2}^{776} -$$$$35\!\cdots\!92$$$$T_{2}^{774} +$$$$28\!\cdots\!92$$$$T_{2}^{772} +$$$$49\!\cdots\!64$$$$T_{2}^{770} +$$$$88\!\cdots\!89$$$$T_{2}^{768} +$$$$22\!\cdots\!40$$$$T_{2}^{766} +$$$$57\!\cdots\!34$$$$T_{2}^{764} +$$$$14\!\cdots\!98$$$$T_{2}^{762} -$$$$29\!\cdots\!20$$$$T_{2}^{760} +$$$$41\!\cdots\!44$$$$T_{2}^{758} -$$$$83\!\cdots\!16$$$$T_{2}^{756} +$$$$48\!\cdots\!86$$$$T_{2}^{754} -$$$$69\!\cdots\!96$$$$T_{2}^{752} +$$$$30\!\cdots\!86$$$$T_{2}^{750} -$$$$14\!\cdots\!44$$$$T_{2}^{748} -$$$$44\!\cdots\!08$$$$T_{2}^{746} +$$$$33\!\cdots\!98$$$$T_{2}^{744} -$$$$32\!\cdots\!44$$$$T_{2}^{742} +$$$$46\!\cdots\!51$$$$T_{2}^{740} -$$$$35\!\cdots\!56$$$$T_{2}^{738} +$$$$32\!\cdots\!59$$$$T_{2}^{736} -$$$$22\!\cdots\!24$$$$T_{2}^{734} +$$$$10\!\cdots\!65$$$$T_{2}^{732} -$$$$48\!\cdots\!78$$$$T_{2}^{730} -$$$$35\!\cdots\!09$$$$T_{2}^{728} +$$$$58\!\cdots\!22$$$$T_{2}^{726} -$$$$71\!\cdots\!45$$$$T_{2}^{724} +$$$$74\!\cdots\!60$$$$T_{2}^{722} -$$$$51\!\cdots\!88$$$$T_{2}^{720} +$$$$41\!\cdots\!34$$$$T_{2}^{718} -$$$$22\!\cdots\!54$$$$T_{2}^{716} +$$$$79\!\cdots\!76$$$$T_{2}^{714} -$$$$26\!\cdots\!10$$$$T_{2}^{712} -$$$$63\!\cdots\!84$$$$T_{2}^{710} +$$$$46\!\cdots\!39$$$$T_{2}^{708} -$$$$63\!\cdots\!04$$$$T_{2}^{706} +$$$$43\!\cdots\!78$$$$T_{2}^{704} -$$$$27\!\cdots\!40$$$$T_{2}^{702} +$$$$18\!\cdots\!84$$$$T_{2}^{700} -$$$$47\!\cdots\!74$$$$T_{2}^{698} +$$$$10\!\cdots\!32$$$$T_{2}^{696} +$$$$22\!\cdots\!20$$$$T_{2}^{694} -$$$$41\!\cdots\!90$$$$T_{2}^{692} +$$$$20\!\cdots\!96$$$$T_{2}^{690} -$$$$34\!\cdots\!51$$$$T_{2}^{688} +$$$$11\!\cdots\!06$$$$T_{2}^{686} -$$$$15\!\cdots\!91$$$$T_{2}^{684} +$$$$10\!\cdots\!62$$$$T_{2}^{682} -$$$$33\!\cdots\!53$$$$T_{2}^{680} +$$$$67\!\cdots\!94$$$$T_{2}^{678} +$$$$55\!\cdots\!75$$$$T_{2}^{676} +$$$$17\!\cdots\!54$$$$T_{2}^{674} +$$$$71\!\cdots\!56$$$$T_{2}^{672} -$$$$89\!\cdots\!74$$$$T_{2}^{670} +$$$$13\!\cdots\!45$$$$T_{2}^{668} -$$$$12\!\cdots\!86$$$$T_{2}^{666} +$$$$14\!\cdots\!43$$$$T_{2}^{664} -$$$$70\!\cdots\!84$$$$T_{2}^{662} +$$$$86\!\cdots\!20$$$$T_{2}^{660} -$$$$26\!\cdots\!76$$$$T_{2}^{658} +$$$$32\!\cdots\!66$$$$T_{2}^{656} -$$$$27\!\cdots\!66$$$$T_{2}^{654} +$$$$57\!\cdots\!44$$$$T_{2}^{652} +$$$$36\!\cdots\!68$$$$T_{2}^{650} -$$$$11\!\cdots\!32$$$$T_{2}^{648} +$$$$25\!\cdots\!66$$$$T_{2}^{646} -$$$$84\!\cdots\!59$$$$T_{2}^{644} +$$$$70\!\cdots\!60$$$$T_{2}^{642} +$$$$19\!\cdots\!66$$$$T_{2}^{640} -$$$$11\!\cdots\!12$$$$T_{2}^{638} +$$$$42\!\cdots\!41$$$$T_{2}^{636} -$$$$85\!\cdots\!02$$$$T_{2}^{634} +$$$$19\!\cdots\!33$$$$T_{2}^{632} -$$$$33\!\cdots\!60$$$$T_{2}^{630} +$$$$33\!\cdots\!08$$$$T_{2}^{628} -$$$$93\!\cdots\!62$$$$T_{2}^{626} -$$$$46\!\cdots\!80$$$$T_{2}^{624} -$$$$46\!\cdots\!04$$$$T_{2}^{622} -$$$$29\!\cdots\!76$$$$T_{2}^{620} -$$$$39\!\cdots\!28$$$$T_{2}^{618} -$$$$95\!\cdots\!15$$$$T_{2}^{616} -$$$$29\!\cdots\!88$$$$T_{2}^{614} -$$$$18\!\cdots\!93$$$$T_{2}^{612} -$$$$15\!\cdots\!24$$$$T_{2}^{610} -$$$$39\!\cdots\!40$$$$T_{2}^{608} -$$$$47\!\cdots\!92$$$$T_{2}^{606} -$$$$20\!\cdots\!28$$$$T_{2}^{604} -$$$$18\!\cdots\!00$$$$T_{2}^{602} -$$$$55\!\cdots\!77$$$$T_{2}^{600} +$$$$61\!\cdots\!18$$$$T_{2}^{598} +$$$$36\!\cdots\!75$$$$T_{2}^{596} +$$$$34\!\cdots\!26$$$$T_{2}^{594} +$$$$42\!\cdots\!44$$$$T_{2}^{592} +$$$$13\!\cdots\!48$$$$T_{2}^{590} +$$$$19\!\cdots\!93$$$$T_{2}^{588} +$$$$59\!\cdots\!20$$$$T_{2}^{586} +$$$$46\!\cdots\!74$$$$T_{2}^{584} +$$$$28\!\cdots\!44$$$$T_{2}^{582} +$$$$34\!\cdots\!80$$$$T_{2}^{580} +$$$$10\!\cdots\!58$$$$T_{2}^{578} -$$$$92\!\cdots\!81$$$$T_{2}^{576} +$$$$19\!\cdots\!84$$$$T_{2}^{574} +$$$$28\!\cdots\!05$$$$T_{2}^{572} -$$$$18\!\cdots\!88$$$$T_{2}^{570} +$$$$42\!\cdots\!47$$$$T_{2}^{568} -$$$$23\!\cdots\!06$$$$T_{2}^{566} +$$$$16\!\cdots\!78$$$$T_{2}^{564} -$$$$65\!\cdots\!40$$$$T_{2}^{562} +$$$$28\!\cdots\!21$$$$T_{2}^{560} -$$$$44\!\cdots\!50$$$$T_{2}^{558} -$$$$56\!\cdots\!06$$$$T_{2}^{556} +$$$$21\!\cdots\!42$$$$T_{2}^{554} -$$$$11\!\cdots\!87$$$$T_{2}^{552} +$$$$58\!\cdots\!20$$$$T_{2}^{550} -$$$$96\!\cdots\!33$$$$T_{2}^{548} -$$$$36\!\cdots\!38$$$$T_{2}^{546} +$$$$88\!\cdots\!57$$$$T_{2}^{544} -$$$$64\!\cdots\!06$$$$T_{2}^{542} +$$$$46\!\cdots\!47$$$$T_{2}^{540} -$$$$26\!\cdots\!58$$$$T_{2}^{538} +$$$$15\!\cdots\!77$$$$T_{2}^{536} -$$$$81\!\cdots\!24$$$$T_{2}^{534} +$$$$44\!\cdots\!24$$$$T_{2}^{532} -$$$$23\!\cdots\!40$$$$T_{2}^{530} +$$$$11\!\cdots\!04$$$$T_{2}^{528} -$$$$60\!\cdots\!40$$$$T_{2}^{526} +$$$$29\!\cdots\!49$$$$T_{2}^{524} -$$$$13\!\cdots\!20$$$$T_{2}^{522} +$$$$62\!\cdots\!30$$$$T_{2}^{520} -$$$$26\!\cdots\!18$$$$T_{2}^{518} +$$$$10\!\cdots\!65$$$$T_{2}^{516} -$$$$41\!\cdots\!66$$$$T_{2}^{514} +$$$$14\!\cdots\!77$$$$T_{2}^{512} -$$$$48\!\cdots\!86$$$$T_{2}^{510} +$$$$14\!\cdots\!64$$$$T_{2}^{508} -$$$$38\!\cdots\!30$$$$T_{2}^{506} +$$$$98\!\cdots\!16$$$$T_{2}^{504} -$$$$31\!\cdots\!70$$$$T_{2}^{502} +$$$$17\!\cdots\!81$$$$T_{2}^{500} -$$$$11\!\cdots\!12$$$$T_{2}^{498} +$$$$72\!\cdots\!96$$$$T_{2}^{496} -$$$$41\!\cdots\!38$$$$T_{2}^{494} +$$$$21\!\cdots\!50$$$$T_{2}^{492} -$$$$10\!\cdots\!70$$$$T_{2}^{490} +$$$$43\!\cdots\!32$$$$T_{2}^{488} -$$$$17\!\cdots\!16$$$$T_{2}^{486} +$$$$63\!\cdots\!58$$$$T_{2}^{484} -$$$$21\!\cdots\!08$$$$T_{2}^{482} +$$$$63\!\cdots\!97$$$$T_{2}^{480} -$$$$17\!\cdots\!16$$$$T_{2}^{478} +$$$$36\!\cdots\!03$$$$T_{2}^{476} -$$$$49\!\cdots\!00$$$$T_{2}^{474} -$$$$50\!\cdots\!87$$$$T_{2}^{472} +$$$$67\!\cdots\!72$$$$T_{2}^{470} -$$$$23\!\cdots\!08$$$$T_{2}^{468} +$$$$45\!\cdots\!02$$$$T_{2}^{466} +$$$$15\!\cdots\!41$$$$T_{2}^{464} -$$$$16\!\cdots\!08$$$$T_{2}^{462} +$$$$97\!\cdots\!50$$$$T_{2}^{460} -$$$$42\!\cdots\!24$$$$T_{2}^{458} +$$$$14\!\cdots\!55$$$$T_{2}^{456} -$$$$43\!\cdots\!02$$$$T_{2}^{454} +$$$$83\!\cdots\!71$$$$T_{2}^{452} +$$$$47\!\cdots\!44$$$$T_{2}^{450} -$$$$11\!\cdots\!38$$$$T_{2}^{448} +$$$$74\!\cdots\!30$$$$T_{2}^{446} -$$$$34\!\cdots\!54$$$$T_{2}^{444} +$$$$13\!\cdots\!90$$$$T_{2}^{442} -$$$$42\!\cdots\!02$$$$T_{2}^{440} +$$$$12\!\cdots\!68$$$$T_{2}^{438} -$$$$27\!\cdots\!74$$$$T_{2}^{436} +$$$$42\!\cdots\!66$$$$T_{2}^{434} +$$$$21\!\cdots\!06$$$$T_{2}^{432} -$$$$53\!\cdots\!14$$$$T_{2}^{430} +$$$$27\!\cdots\!61$$$$T_{2}^{428} -$$$$10\!\cdots\!62$$$$T_{2}^{426} +$$$$33\!\cdots\!93$$$$T_{2}^{424} -$$$$92\!\cdots\!40$$$$T_{2}^{422} +$$$$21\!\cdots\!84$$$$T_{2}^{420} -$$$$40\!\cdots\!12$$$$T_{2}^{418} +$$$$49\!\cdots\!71$$$$T_{2}^{416} +$$$$36\!\cdots\!06$$$$T_{2}^{414} -$$$$45\!\cdots\!80$$$$T_{2}^{412} +$$$$18\!\cdots\!36$$$$T_{2}^{410} -$$$$52\!\cdots\!38$$$$T_{2}^{408} +$$$$12\!\cdots\!56$$$$T_{2}^{406} -$$$$30\!\cdots\!64$$$$T_{2}^{404} +$$$$82\!\cdots\!14$$$$T_{2}^{402} -$$$$28\!\cdots\!05$$$$T_{2}^{400} +$$$$10\!\cdots\!24$$$$T_{2}^{398} -$$$$37\!\cdots\!43$$$$T_{2}^{396} +$$$$11\!\cdots\!34$$$$T_{2}^{394} -$$$$30\!\cdots\!90$$$$T_{2}^{392} +$$$$62\!\cdots\!32$$$$T_{2}^{390} -$$$$62\!\cdots\!54$$$$T_{2}^{388} -$$$$19\!\cdots\!12$$$$T_{2}^{386} +$$$$15\!\cdots\!21$$$$T_{2}^{384} -$$$$59\!\cdots\!50$$$$T_{2}^{382} +$$$$17\!\cdots\!66$$$$T_{2}^{380} -$$$$41\!\cdots\!52$$$$T_{2}^{378} +$$$$68\!\cdots\!81$$$$T_{2}^{376} -$$$$37\!\cdots\!52$$$$T_{2}^{374} -$$$$27\!\cdots\!38$$$$T_{2}^{372} +$$$$14\!\cdots\!32$$$$T_{2}^{370} -$$$$45\!\cdots\!14$$$$T_{2}^{368} +$$$$10\!\cdots\!24$$$$T_{2}^{366} -$$$$16\!\cdots\!41$$$$T_{2}^{364} +$$$$64\!\cdots\!32$$$$T_{2}^{362} +$$$$75\!\cdots\!87$$$$T_{2}^{360} -$$$$36\!\cdots\!62$$$$T_{2}^{358} +$$$$10\!\cdots\!45$$$$T_{2}^{356} -$$$$25\!\cdots\!98$$$$T_{2}^{354} +$$$$44\!\cdots\!80$$$$T_{2}^{352} -$$$$49\!\cdots\!78$$$$T_{2}^{350} -$$$$22\!\cdots\!20$$$$T_{2}^{348} +$$$$30\!\cdots\!14$$$$T_{2}^{346} -$$$$99\!\cdots\!94$$$$T_{2}^{344} +$$$$21\!\cdots\!04$$$$T_{2}^{342} -$$$$28\!\cdots\!73$$$$T_{2}^{340} -$$$$18\!\cdots\!78$$$$T_{2}^{338} +$$$$15\!\cdots\!27$$$$T_{2}^{336} -$$$$61\!\cdots\!02$$$$T_{2}^{334} +$$$$16\!\cdots\!57$$$$T_{2}^{332} -$$$$36\!\cdots\!92$$$$T_{2}^{330} +$$$$65\!\cdots\!44$$$$T_{2}^{328} -$$$$97\!\cdots\!92$$$$T_{2}^{326} +$$$$11\!\cdots\!92$$$$T_{2}^{324} -$$$$61\!\cdots\!98$$$$T_{2}^{322} -$$$$10\!\cdots\!40$$$$T_{2}^{320} +$$$$41\!\cdots\!36$$$$T_{2}^{318} -$$$$80\!\cdots\!52$$$$T_{2}^{316} +$$$$97\!\cdots\!58$$$$T_{2}^{314} -$$$$34\!\cdots\!94$$$$T_{2}^{312} -$$$$19\!\cdots\!90$$$$T_{2}^{310} +$$$$64\!\cdots\!52$$$$T_{2}^{308} -$$$$13\!\cdots\!28$$$$T_{2}^{306} +$$$$19\!\cdots\!10$$$$T_{2}^{304} -$$$$20\!\cdots\!58$$$$T_{2}^{302} +$$$$10\!\cdots\!49$$$$T_{2}^{300} +$$$$18\!\cdots\!82$$$$T_{2}^{298} -$$$$65\!\cdots\!27$$$$T_{2}^{296} +$$$$11\!\cdots\!66$$$$T_{2}^{294} -$$$$14\!\cdots\!85$$$$T_{2}^{292} +$$$$11\!\cdots\!04$$$$T_{2}^{290} +$$$$36\!\cdots\!01$$$$T_{2}^{288} -$$$$22\!\cdots\!66$$$$T_{2}^{286} +$$$$48\!\cdots\!54$$$$T_{2}^{284} -$$$$69\!\cdots\!88$$$$T_{2}^{282} +$$$$73\!\cdots\!22$$$$T_{2}^{280} -$$$$48\!\cdots\!38$$$$T_{2}^{278} -$$$$10\!\cdots\!78$$$$T_{2}^{276} +$$$$10\!\cdots\!72$$$$T_{2}^{274} -$$$$22\!\cdots\!77$$$$T_{2}^{272} +$$$$34\!\cdots\!48$$$$T_{2}^{270} -$$$$45\!\cdots\!83$$$$T_{2}^{268} +$$$$52\!\cdots\!84$$$$T_{2}^{266} -$$$$44\!\cdots\!54$$$$T_{2}^{264} +$$$$98\!\cdots\!58$$$$T_{2}^{262} +$$$$58\!\cdots\!54$$$$T_{2}^{260} -$$$$15\!\cdots\!88$$$$T_{2}^{258} +$$$$24\!\cdots\!27$$$$T_{2}^{256} -$$$$28\!\cdots\!48$$$$T_{2}^{254} +$$$$20\!\cdots\!85$$$$T_{2}^{252} +$$$$13\!\cdots\!42$$$$T_{2}^{250} -$$$$32\!\cdots\!33$$$$T_{2}^{248} +$$$$62\!\cdots\!70$$$$T_{2}^{246} -$$$$77\!\cdots\!32$$$$T_{2}^{244} +$$$$69\!\cdots\!04$$$$T_{2}^{242} -$$$$37\!\cdots\!36$$$$T_{2}^{240} -$$$$10\!\cdots\!08$$$$T_{2}^{238} +$$$$68\!\cdots\!78$$$$T_{2}^{236} -$$$$13\!\cdots\!12$$$$T_{2}^{234} +$$$$19\!\cdots\!20$$$$T_{2}^{232} -$$$$26\!\cdots\!14$$$$T_{2}^{230} +$$$$30\!\cdots\!10$$$$T_{2}^{228} -$$$$28\!\cdots\!72$$$$T_{2}^{226} +$$$$16\!\cdots\!54$$$$T_{2}^{224} +$$$$32\!\cdots\!66$$$$T_{2}^{222} -$$$$27\!\cdots\!92$$$$T_{2}^{220} +$$$$46\!\cdots\!74$$$$T_{2}^{218} -$$$$52\!\cdots\!78$$$$T_{2}^{216} +$$$$39\!\cdots\!04$$$$T_{2}^{214} -$$$$11\!\cdots\!26$$$$T_{2}^{212} -$$$$23\!\cdots\!10$$$$T_{2}^{210} +$$$$54\!\cdots\!52$$$$T_{2}^{208} -$$$$72\!\cdots\!16$$$$T_{2}^{206} +$$$$74\!\cdots\!52$$$$T_{2}^{204} -$$$$63\!\cdots\!20$$$$T_{2}^{202} +$$$$44\!\cdots\!64$$$$T_{2}^{200} -$$$$26\!\cdots\!10$$$$T_{2}^{198} +$$$$12\!\cdots\!76$$$$T_{2}^{196} -$$$$38\!\cdots\!42$$$$T_{2}^{194} +$$$$59\!\cdots\!51$$$$T_{2}^{192} -$$$$91\!\cdots\!70$$$$T_{2}^{190} +$$$$55\!\cdots\!44$$$$T_{2}^{188} -$$$$93\!\cdots\!54$$$$T_{2}^{186} +$$$$92\!\cdots\!13$$$$T_{2}^{184} -$$$$65\!\cdots\!36$$$$T_{2}^{182} +$$$$35\!\cdots\!63$$$$T_{2}^{180} -$$$$14\!\cdots\!62$$$$T_{2}^{178} +$$$$48\!\cdots\!05$$$$T_{2}^{176} -$$$$21\!\cdots\!04$$$$T_{2}^{174} +$$$$18\!\cdots\!01$$$$T_{2}^{172} -$$$$14\!\cdots\!16$$$$T_{2}^{170} +$$$$92\!\cdots\!67$$$$T_{2}^{168} -$$$$48\!\cdots\!86$$$$T_{2}^{166} +$$$$20\!\cdots\!02$$$$T_{2}^{164} -$$$$82\!\cdots\!92$$$$T_{2}^{162} +$$$$49\!\cdots\!07$$$$T_{2}^{160} -$$$$37\!\cdots\!66$$$$T_{2}^{158} +$$$$20\!\cdots\!68$$$$T_{2}^{156} -$$$$80\!\cdots\!00$$$$T_{2}^{154} +$$$$17\!\cdots\!13$$$$T_{2}^{152} +$$$$57\!\cdots\!90$$$$T_{2}^{150} -$$$$25\!\cdots\!59$$$$T_{2}^{148} -$$$$27\!\cdots\!08$$$$T_{2}^{146} +$$$$31\!\cdots\!89$$$$T_{2}^{144} -$$$$19\!\cdots\!52$$$$T_{2}^{142} +$$$$72\!\cdots\!78$$$$T_{2}^{140} -$$$$11\!\cdots\!48$$$$T_{2}^{138} -$$$$15\!\cdots\!22$$$$T_{2}^{136} -$$$$26\!\cdots\!24$$$$T_{2}^{134} +$$$$15\!\cdots\!97$$$$T_{2}^{132} -$$$$13\!\cdots\!78$$$$T_{2}^{130} +$$$$72\!\cdots\!63$$$$T_{2}^{128} -$$$$29\!\cdots\!86$$$$T_{2}^{126} +$$$$12\!\cdots\!01$$$$T_{2}^{124} -$$$$59\!\cdots\!78$$$$T_{2}^{122} +$$$$29\!\cdots\!91$$$$T_{2}^{120} -$$$$12\!\cdots\!72$$$$T_{2}^{118} +$$$$40\!\cdots\!80$$$$T_{2}^{116} -$$$$91\!\cdots\!34$$$$T_{2}^{114} +$$$$55\!\cdots\!58$$$$T_{2}^{112} +$$$$54\!\cdots\!86$$$$T_{2}^{110} -$$$$30\!\cdots\!06$$$$T_{2}^{108} +$$$$94\!\cdots\!24$$$$T_{2}^{106} -$$$$19\!\cdots\!64$$$$T_{2}^{104} +$$$$23\!\cdots\!60$$$$T_{2}^{102} +$$$$16\!\cdots\!06$$$$T_{2}^{100} -$$$$14\!\cdots\!06$$$$T_{2}^{98} +$$$$44\!\cdots\!24$$$$T_{2}^{96} -$$$$87\!\cdots\!22$$$$T_{2}^{94} +$$$$14\!\cdots\!92$$$$T_{2}^{92} -$$$$18\!\cdots\!74$$$$T_{2}^{90} +$$$$24\!\cdots\!89$$$$T_{2}^{88} -$$$$27\!\cdots\!30$$$$T_{2}^{86} +$$$$36\!\cdots\!79$$$$T_{2}^{84} -$$$$35\!\cdots\!46$$$$T_{2}^{82} +$$$$40\!\cdots\!52$$$$T_{2}^{80} -$$$$29\!\cdots\!30$$$$T_{2}^{78} +$$$$31\!\cdots\!55$$$$T_{2}^{76} -$$$$19\!\cdots\!86$$$$T_{2}^{74} +$$$$20\!\cdots\!83$$$$T_{2}^{72} -$$$$82\!\cdots\!04$$$$T_{2}^{70} +$$$$25\!\cdots\!16$$$$T_{2}^{68} +$$$$10\!\cdots\!12$$$$T_{2}^{66} -$$$$71\!\cdots\!20$$$$T_{2}^{64} -$$$$66\!\cdots\!22$$$$T_{2}^{62} +$$$$76\!\cdots\!61$$$$T_{2}^{60} +$$$$20\!\cdots\!24$$$$T_{2}^{58} +$$$$17\!\cdots\!87$$$$T_{2}^{56} -$$$$21\!\cdots\!86$$$$T_{2}^{54} -$$$$43\!\cdots\!84$$$$T_{2}^{52} +$$$$16\!\cdots\!04$$$$T_{2}^{50} +$$$$56\!\cdots\!43$$$$T_{2}^{48} -$$$$30\!\cdots\!86$$$$T_{2}^{46} -$$$$11\!\cdots\!27$$$$T_{2}^{44} +$$$$78\!\cdots\!06$$$$T_{2}^{42} +$$$$21\!\cdots\!06$$$$T_{2}^{40} +$$$$29\!\cdots\!42$$$$T_{2}^{38} +$$$$37\!\cdots\!25$$$$T_{2}^{36} +$$$$19\!\cdots\!48$$$$T_{2}^{34} +$$$$11\!\cdots\!98$$$$T_{2}^{32} -$$$$27\!\cdots\!68$$$$T_{2}^{30} +$$$$68\!\cdots\!78$$$$T_{2}^{28} -$$$$22\!\cdots\!08$$$$T_{2}^{26} -$$$$10\!\cdots\!78$$$$T_{2}^{24} +$$$$11\!\cdots\!44$$$$T_{2}^{22} -$$$$66\!\cdots\!55$$$$T_{2}^{20} -$$$$94\!\cdots\!36$$$$T_{2}^{18} +$$$$28\!\cdots\!05$$$$T_{2}^{16} +$$$$22\!\cdots\!82$$$$T_{2}^{14} +$$$$77\!\cdots\!42$$$$T_{2}^{12} +$$$$29\!\cdots\!26$$$$T_{2}^{10} +$$$$17\!\cdots\!07$$$$T_{2}^{8} +$$$$55\!\cdots\!52$$$$T_{2}^{6} +$$$$14\!\cdots\!90$$$$T_{2}^{4} +$$$$15\!\cdots\!44$$$$T_{2}^{2} +$$$$26\!\cdots\!61$$">$$T_{2}^{2784} + \cdots$$ acting on $$S_{2}^{\mathrm{new}}(507, [\chi])$$.