Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(2,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(156))
chi = DirichletCharacter(H, H._module([78, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.2");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.x (of order \(156\), degree \(48\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{156}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | 0 | 1.38468 | − | 1.04052i | 1.99838 | + | 0.0805319i | 0 | 0 | −1.33289 | + | 2.01672i | 0 | 0.834652 | − | 2.88155i | 0 | ||||||||||
11.1 | 0 | 1.59345 | − | 0.678906i | −1.06893 | − | 1.69038i | 0 | 0 | 1.78351 | − | 3.57116i | 0 | 2.07817 | − | 2.16361i | 0 | ||||||||||
20.1 | 0 | 1.19983 | − | 1.24916i | 1.80690 | + | 0.857385i | 0 | 0 | −0.697469 | + | 4.91487i | 0 | −0.120798 | − | 2.99757i | 0 | ||||||||||
32.1 | 0 | 1.72643 | − | 0.139372i | 1.95958 | + | 0.400051i | 0 | 0 | −0.421909 | − | 1.87333i | 0 | 2.96115 | − | 0.481234i | 0 | ||||||||||
41.1 | 0 | −0.346455 | + | 1.69705i | −1.92104 | − | 0.556435i | 0 | 0 | −0.766841 | − | 1.06446i | 0 | −2.75994 | − | 1.17590i | 0 | ||||||||||
50.1 | 0 | −1.64291 | − | 0.548485i | 1.44240 | + | 1.38545i | 0 | 0 | 0.680973 | + | 0.0688013i | 0 | 2.39833 | + | 1.80223i | 0 | ||||||||||
59.1 | 0 | −1.46391 | + | 0.925722i | 0.320823 | + | 1.97410i | 0 | 0 | 5.25731 | + | 0.105888i | 0 | 1.28608 | − | 2.71035i | 0 | ||||||||||
71.1 | 0 | −1.64291 | + | 0.548485i | 1.44240 | − | 1.38545i | 0 | 0 | 0.680973 | − | 0.0688013i | 0 | 2.39833 | − | 1.80223i | 0 | ||||||||||
98.1 | 0 | 1.64291 | − | 0.548485i | −1.44240 | + | 1.38545i | 0 | 0 | −0.527444 | − | 5.22047i | 0 | 2.39833 | − | 1.80223i | 0 | ||||||||||
110.1 | 0 | 1.46391 | − | 0.925722i | −0.320823 | − | 1.97410i | 0 | 0 | 0.0119040 | − | 0.591030i | 0 | 1.28608 | − | 2.71035i | 0 | ||||||||||
119.1 | 0 | 1.64291 | + | 0.548485i | −1.44240 | − | 1.38545i | 0 | 0 | −0.527444 | + | 5.22047i | 0 | 2.39833 | + | 1.80223i | 0 | ||||||||||
128.1 | 0 | 0.346455 | − | 1.69705i | 1.92104 | + | 0.556435i | 0 | 0 | 4.15936 | − | 2.99643i | 0 | −2.75994 | − | 1.17590i | 0 | ||||||||||
137.1 | 0 | −1.72643 | + | 0.139372i | −1.95958 | − | 0.400051i | 0 | 0 | −4.81030 | + | 1.08337i | 0 | 2.96115 | − | 0.481234i | 0 | ||||||||||
149.1 | 0 | −1.19983 | + | 1.24916i | −1.80690 | − | 0.857385i | 0 | 0 | 1.81421 | + | 0.257455i | 0 | −0.120798 | − | 2.99757i | 0 | ||||||||||
158.1 | 0 | −1.59345 | + | 0.678906i | 1.06893 | + | 1.69038i | 0 | 0 | 3.10761 | + | 1.55200i | 0 | 2.07817 | − | 2.16361i | 0 | ||||||||||
167.1 | 0 | −1.38468 | + | 1.04052i | −1.99838 | − | 0.0805319i | 0 | 0 | 3.92688 | + | 2.59536i | 0 | 0.834652 | − | 2.88155i | 0 | ||||||||||
176.1 | 0 | 1.70962 | + | 0.277840i | −0.783933 | − | 1.83996i | 0 | 0 | 1.45291 | + | 4.07679i | 0 | 2.84561 | + | 0.950004i | 0 | ||||||||||
197.1 | 0 | 0.742517 | − | 1.56482i | −0.633336 | − | 1.89707i | 0 | 0 | −0.0345359 | + | 0.0318602i | 0 | −1.89734 | − | 2.32381i | 0 | ||||||||||
206.1 | 0 | 1.72643 | + | 0.139372i | 1.95958 | − | 0.400051i | 0 | 0 | −0.421909 | + | 1.87333i | 0 | 2.96115 | + | 0.481234i | 0 | ||||||||||
215.1 | 0 | −1.59345 | − | 0.678906i | 1.06893 | − | 1.69038i | 0 | 0 | 3.10761 | − | 1.55200i | 0 | 2.07817 | + | 2.16361i | 0 | ||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-3}) \) |
169.l | odd | 156 | 1 | inner |
507.x | even | 156 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 507.2.x.a | ✓ | 48 |
3.b | odd | 2 | 1 | CM | 507.2.x.a | ✓ | 48 |
169.l | odd | 156 | 1 | inner | 507.2.x.a | ✓ | 48 |
507.x | even | 156 | 1 | inner | 507.2.x.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
507.2.x.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
507.2.x.a | ✓ | 48 | 3.b | odd | 2 | 1 | CM |
507.2.x.a | ✓ | 48 | 169.l | odd | 156 | 1 | inner |
507.2.x.a | ✓ | 48 | 507.x | even | 156 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\).