Properties

Label 507.2.x
Level $507$
Weight $2$
Character orbit 507.x
Rep. character $\chi_{507}(2,\cdot)$
Character field $\Q(\zeta_{156})$
Dimension $2832$
Newform subspaces $2$
Sturm bound $121$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.x (of order \(156\) and degree \(48\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 507 \)
Character field: \(\Q(\zeta_{156})\)
Newform subspaces: \( 2 \)
Sturm bound: \(121\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(507, [\chi])\).

Total New Old
Modular forms 3024 3024 0
Cusp forms 2832 2832 0
Eisenstein series 192 192 0

Trace form

\( 2832q - 50q^{3} - 92q^{4} - 50q^{6} - 90q^{7} - 50q^{9} + O(q^{10}) \) \( 2832q - 50q^{3} - 92q^{4} - 50q^{6} - 90q^{7} - 50q^{9} - 116q^{10} - 52q^{12} - 112q^{13} - 38q^{15} - 212q^{16} - 56q^{18} - 102q^{19} - 74q^{21} - 48q^{22} + 86q^{24} - 104q^{25} - 32q^{27} - 104q^{28} - 174q^{30} - 98q^{31} - 68q^{33} - 68q^{34} - 16q^{36} - 74q^{37} - 118q^{39} - 96q^{40} - 44q^{42} - 134q^{43} + 98q^{45} - 58q^{48} - 122q^{49} - 52q^{51} - 180q^{52} - 98q^{54} - 324q^{55} - 80q^{57} - 132q^{58} - 96q^{60} - 124q^{61} - 198q^{63} - 104q^{64} + 58q^{66} + 112q^{67} + 26q^{69} + 136q^{70} - 64q^{72} - 42q^{73} - 164q^{75} - 68q^{76} + 28q^{78} - 120q^{79} - 38q^{81} - 340q^{82} - 44q^{84} - 116q^{85} - 34q^{87} + 116q^{88} - 52q^{90} - 114q^{91} + 68q^{93} + 36q^{94} - 406q^{96} - 86q^{97} - 92q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(507, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
507.2.x.a \(48\) \(4.048\) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(10\)
507.2.x.b \(2784\) \(4.048\) None \(0\) \(-50\) \(0\) \(-100\)