Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(40,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(26))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.40");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.m (of order \(13\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(204\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{13})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{13}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40.1 | −2.61147 | − | 0.643669i | 0.120537 | − | 0.992709i | 4.63454 | + | 2.43240i | 2.12219 | − | 3.07452i | −0.953754 | + | 2.51484i | 1.40227 | + | 1.24231i | −6.51088 | − | 5.76814i | −0.970942 | − | 0.239316i | −7.52100 | + | 6.66303i |
40.2 | −2.55822 | − | 0.630545i | 0.120537 | − | 0.992709i | 4.37599 | + | 2.29670i | −1.41367 | + | 2.04805i | −0.934307 | + | 2.46356i | −3.49265 | − | 3.09422i | −5.80225 | − | 5.14035i | −0.970942 | − | 0.239316i | 4.90787 | − | 4.34799i |
40.3 | −2.29214 | − | 0.564962i | 0.120537 | − | 0.992709i | 3.16382 | + | 1.66050i | −1.62559 | + | 2.35507i | −0.837130 | + | 2.20733i | 3.18940 | + | 2.82556i | −2.77972 | − | 2.46262i | −0.970942 | − | 0.239316i | 5.05660 | − | 4.47975i |
40.4 | −1.94540 | − | 0.479497i | 0.120537 | − | 0.992709i | 1.78373 | + | 0.936175i | 1.40868 | − | 2.04083i | −0.710492 | + | 1.87341i | −0.476086 | − | 0.421776i | −0.0217150 | − | 0.0192378i | −0.970942 | − | 0.239316i | −3.71901 | + | 3.29475i |
40.5 | −1.68275 | − | 0.414759i | 0.120537 | − | 0.992709i | 0.888694 | + | 0.466423i | 0.797976 | − | 1.15607i | −0.614568 | + | 1.62048i | −1.62398 | − | 1.43872i | 1.29250 | + | 1.14506i | −0.970942 | − | 0.239316i | −1.82228 | + | 1.61440i |
40.6 | −1.18717 | − | 0.292610i | 0.120537 | − | 0.992709i | −0.447170 | − | 0.234693i | −0.808035 | + | 1.17064i | −0.433574 | + | 1.14324i | −0.0218939 | − | 0.0193963i | 2.29259 | + | 2.03106i | −0.970942 | − | 0.239316i | 1.30181 | − | 1.15330i |
40.7 | −1.09223 | − | 0.269211i | 0.120537 | − | 0.992709i | −0.650419 | − | 0.341366i | −2.21140 | + | 3.20377i | −0.398902 | + | 1.05182i | −0.833262 | − | 0.738206i | 2.30254 | + | 2.03987i | −0.970942 | − | 0.239316i | 3.27785 | − | 2.90392i |
40.8 | −0.374061 | − | 0.0921977i | 0.120537 | − | 0.992709i | −1.63949 | − | 0.860471i | 0.205107 | − | 0.297149i | −0.136614 | + | 0.360220i | −0.762777 | − | 0.675762i | 1.11067 | + | 0.983969i | −0.970942 | − | 0.239316i | −0.104119 | + | 0.0922415i |
40.9 | 0.203567 | + | 0.0501748i | 0.120537 | − | 0.992709i | −1.73199 | − | 0.909018i | −0.892774 | + | 1.29341i | 0.0743463 | − | 0.196035i | 2.37726 | + | 2.10607i | −0.620832 | − | 0.550009i | −0.970942 | − | 0.239316i | −0.246636 | + | 0.218500i |
40.10 | 0.479187 | + | 0.118109i | 0.120537 | − | 0.992709i | −1.55524 | − | 0.816254i | 2.38960 | − | 3.46193i | 0.175008 | − | 0.461457i | −0.109460 | − | 0.0969731i | −1.38767 | − | 1.22937i | −0.970942 | − | 0.239316i | 1.55395 | − | 1.37668i |
40.11 | 0.781588 | + | 0.192644i | 0.120537 | − | 0.992709i | −1.19714 | − | 0.628310i | −1.69825 | + | 2.46034i | 0.285450 | − | 0.752669i | 1.79485 | + | 1.59010i | −2.01970 | − | 1.78930i | −0.970942 | − | 0.239316i | −1.80130 | + | 1.59582i |
40.12 | 1.31905 | + | 0.325116i | 0.120537 | − | 0.992709i | −0.136731 | − | 0.0717618i | 0.705120 | − | 1.02154i | 0.481738 | − | 1.27024i | −2.12000 | − | 1.87816i | −2.19076 | − | 1.94084i | −0.970942 | − | 0.239316i | 1.26221 | − | 1.11822i |
40.13 | 1.37667 | + | 0.339319i | 0.120537 | − | 0.992709i | 0.00917504 | + | 0.00481543i | −2.23921 | + | 3.24406i | 0.502784 | − | 1.32573i | −3.33005 | − | 2.95017i | −2.11159 | − | 1.87070i | −0.970942 | − | 0.239316i | −4.18343 | + | 3.70620i |
40.14 | 1.45113 | + | 0.357672i | 0.120537 | − | 0.992709i | 0.206949 | + | 0.108615i | 0.974467 | − | 1.41176i | 0.529980 | − | 1.39744i | 2.67610 | + | 2.37082i | −1.97593 | − | 1.75052i | −0.970942 | − | 0.239316i | 1.91903 | − | 1.70011i |
40.15 | 2.11067 | + | 0.520234i | 0.120537 | − | 0.992709i | 2.41339 | + | 1.26664i | 1.14528 | − | 1.65922i | 0.770855 | − | 2.03258i | −0.139189 | − | 0.123310i | 1.18063 | + | 1.04595i | −0.970942 | − | 0.239316i | 3.28049 | − | 2.90626i |
40.16 | 2.38165 | + | 0.587024i | 0.120537 | − | 0.992709i | 3.55674 | + | 1.86672i | −1.58170 | + | 2.29149i | 0.869820 | − | 2.29353i | 2.70346 | + | 2.39506i | 3.70302 | + | 3.28059i | −0.970942 | − | 0.239316i | −5.11221 | + | 4.52903i |
40.17 | 2.66897 | + | 0.657842i | 0.120537 | − | 0.992709i | 4.91973 | + | 2.58207i | 0.113107 | − | 0.163863i | 0.974754 | − | 2.57022i | −1.95577 | − | 1.73266i | 7.31692 | + | 6.48223i | −0.970942 | − | 0.239316i | 0.409674 | − | 0.362939i |
79.1 | −2.42650 | − | 1.27353i | −0.970942 | − | 0.239316i | 3.12991 | + | 4.53445i | −0.0390694 | − | 0.103018i | 2.05122 | + | 1.81722i | −0.184062 | − | 1.51589i | −1.15934 | − | 9.54803i | 0.885456 | + | 0.464723i | −0.0363936 | + | 0.299728i |
79.2 | −1.97300 | − | 1.03551i | −0.970942 | − | 0.239316i | 1.68431 | + | 2.44014i | 1.49468 | + | 3.94114i | 1.66785 | + | 1.47759i | −0.165780 | − | 1.36532i | −0.259180 | − | 2.13454i | 0.885456 | + | 0.464723i | 1.13209 | − | 9.32359i |
79.3 | −1.80313 | − | 0.946355i | −0.970942 | − | 0.239316i | 1.21956 | + | 1.76683i | −0.526754 | − | 1.38893i | 1.52426 | + | 1.35037i | −0.593546 | − | 4.88829i | −0.0360490 | − | 0.296891i | 0.885456 | + | 0.464723i | −0.364621 | + | 3.00293i |
See next 80 embeddings (of 204 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
169.g | even | 13 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 507.2.m.b | ✓ | 204 |
169.g | even | 13 | 1 | inner | 507.2.m.b | ✓ | 204 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
507.2.m.b | ✓ | 204 | 1.a | even | 1 | 1 | trivial |
507.2.m.b | ✓ | 204 | 169.g | even | 13 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{204} + T_{2}^{203} + 28 T_{2}^{202} + 32 T_{2}^{201} + 473 T_{2}^{200} + 587 T_{2}^{199} + \cdots + 43\!\cdots\!89 \) acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\).