Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(40,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(26))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.40");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.m (of order \(13\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(180\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{13})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{13}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40.1 | −2.58082 | − | 0.636114i | −0.120537 | + | 0.992709i | 4.48506 | + | 2.35394i | 0.134864 | − | 0.195384i | 0.942559 | − | 2.48533i | 1.30603 | + | 1.15704i | −6.09859 | − | 5.40288i | −0.970942 | − | 0.239316i | −0.472345 | + | 0.418461i |
40.2 | −2.31903 | − | 0.571589i | −0.120537 | + | 0.992709i | 3.28027 | + | 1.72162i | −2.03486 | + | 2.94800i | 0.846950 | − | 2.23322i | −0.933245 | − | 0.826783i | −3.04745 | − | 2.69981i | −0.970942 | − | 0.239316i | 6.40394 | − | 5.67340i |
40.3 | −1.76615 | − | 0.435317i | −0.120537 | + | 0.992709i | 1.15887 | + | 0.608224i | 1.67811 | − | 2.43117i | 0.645029 | − | 1.70080i | 3.62124 | + | 3.20814i | 0.941117 | + | 0.833757i | −0.970942 | − | 0.239316i | −4.02213 | + | 3.56330i |
40.4 | −1.73397 | − | 0.427384i | −0.120537 | + | 0.992709i | 1.05307 | + | 0.552694i | 0.457873 | − | 0.663343i | 0.633275 | − | 1.66981i | −0.852902 | − | 0.755605i | 1.08370 | + | 0.960071i | −0.970942 | − | 0.239316i | −1.07744 | + | 0.954527i |
40.5 | −1.56270 | − | 0.385172i | −0.120537 | + | 0.992709i | 0.522773 | + | 0.274373i | −0.878504 | + | 1.27273i | 0.570727 | − | 1.50488i | 0.273931 | + | 0.242682i | 1.69816 | + | 1.50443i | −0.970942 | − | 0.239316i | 1.86306 | − | 1.65053i |
40.6 | −0.926138 | − | 0.228272i | −0.120537 | + | 0.992709i | −0.965289 | − | 0.506623i | −0.278592 | + | 0.403610i | 0.338242 | − | 0.891870i | −3.10155 | − | 2.74774i | 2.20628 | + | 1.95460i | −0.970942 | − | 0.239316i | 0.350148 | − | 0.310204i |
40.7 | −0.584736 | − | 0.144124i | −0.120537 | + | 0.992709i | −1.44977 | − | 0.760897i | −2.25739 | + | 3.27039i | 0.213556 | − | 0.563100i | 2.17116 | + | 1.92348i | 1.63963 | + | 1.45258i | −0.970942 | − | 0.239316i | 1.79132 | − | 1.58697i |
40.8 | −0.0301922 | − | 0.00744170i | −0.120537 | + | 0.992709i | −1.77006 | − | 0.928997i | 1.67342 | − | 2.42437i | 0.0110267 | − | 0.0290750i | −1.02495 | − | 0.908024i | 0.0930795 | + | 0.0824612i | −0.970942 | − | 0.239316i | −0.0685655 | + | 0.0607437i |
40.9 | −0.00839886 | − | 0.00207013i | −0.120537 | + | 0.992709i | −1.77085 | − | 0.929412i | 0.646404 | − | 0.936478i | 0.00306741 | − | 0.00808810i | 2.26833 | + | 2.00956i | 0.0258987 | + | 0.0229442i | −0.970942 | − | 0.239316i | −0.00736769 | + | 0.00652721i |
40.10 | 0.869211 | + | 0.214241i | −0.120537 | + | 0.992709i | −1.06128 | − | 0.557005i | −1.13901 | + | 1.65015i | −0.317451 | + | 0.837049i | −1.32969 | − | 1.17800i | −2.14332 | − | 1.89881i | −0.970942 | − | 0.239316i | −1.34357 | + | 1.19030i |
40.11 | 1.36051 | + | 0.335337i | −0.120537 | + | 0.992709i | −0.0323644 | − | 0.0169861i | 1.40752 | − | 2.03915i | −0.496883 | + | 1.31017i | −3.59937 | − | 3.18876i | −2.13601 | − | 1.89234i | −0.970942 | − | 0.239316i | 2.59876 | − | 2.30230i |
40.12 | 1.56583 | + | 0.385942i | −0.120537 | + | 0.992709i | 0.531960 | + | 0.279194i | 1.72727 | − | 2.50239i | −0.571868 | + | 1.50789i | 1.75934 | + | 1.55864i | −1.68903 | − | 1.49635i | −0.970942 | − | 0.239316i | 3.67039 | − | 3.25168i |
40.13 | 1.74042 | + | 0.428975i | −0.120537 | + | 0.992709i | 1.07413 | + | 0.563748i | −1.82535 | + | 2.64447i | −0.635632 | + | 1.67602i | 2.27352 | + | 2.01416i | −1.05581 | − | 0.935370i | −0.970942 | − | 0.239316i | −4.31129 | + | 3.81947i |
40.14 | 2.46984 | + | 0.608762i | −0.120537 | + | 0.992709i | 3.95863 | + | 2.07765i | 0.951102 | − | 1.37791i | −0.902030 | + | 2.37846i | 0.576934 | + | 0.511119i | 4.70433 | + | 4.16767i | −0.970942 | − | 0.239316i | 3.18789 | − | 2.82423i |
40.15 | 2.53537 | + | 0.624913i | −0.120537 | + | 0.992709i | 4.26668 | + | 2.23932i | −2.06622 | + | 2.99344i | −0.925962 | + | 2.44156i | −3.04788 | − | 2.70019i | 5.50913 | + | 4.88066i | −0.970942 | − | 0.239316i | −7.10928 | + | 6.29828i |
79.1 | −2.26213 | − | 1.18726i | 0.970942 | + | 0.239316i | 2.57152 | + | 3.72549i | −1.11131 | − | 2.93028i | −1.91227 | − | 1.69412i | 0.198155 | + | 1.63195i | −0.778110 | − | 6.40831i | 0.885456 | + | 0.464723i | −0.965071 | + | 7.94807i |
79.2 | −2.25517 | − | 1.18361i | 0.970942 | + | 0.239316i | 2.54876 | + | 3.69251i | 1.29246 | + | 3.40793i | −1.90639 | − | 1.68891i | 0.394148 | + | 3.24610i | −0.763417 | − | 6.28731i | 0.885456 | + | 0.464723i | 1.11893 | − | 9.21525i |
79.3 | −1.85232 | − | 0.972175i | 0.970942 | + | 0.239316i | 1.34985 | + | 1.95560i | 0.359355 | + | 0.947542i | −1.56584 | − | 1.38722i | −0.194000 | − | 1.59773i | −0.0948689 | − | 0.781316i | 0.885456 | + | 0.464723i | 0.255534 | − | 2.10451i |
79.4 | −1.32045 | − | 0.693027i | 0.970942 | + | 0.239316i | 0.127180 | + | 0.184253i | −0.0244689 | − | 0.0645191i | −1.11623 | − | 0.988894i | 0.0316924 | + | 0.261010i | 0.319262 | + | 2.62936i | 0.885456 | + | 0.464723i | −0.0124035 | + | 0.102152i |
79.5 | −0.890994 | − | 0.467630i | 0.970942 | + | 0.239316i | −0.560937 | − | 0.812658i | −1.54798 | − | 4.08168i | −0.753192 | − | 0.667270i | −0.324090 | − | 2.66912i | 0.362350 | + | 2.98422i | 0.885456 | + | 0.464723i | −0.529477 | + | 4.36063i |
See next 80 embeddings (of 180 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
169.g | even | 13 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 507.2.m.a | ✓ | 180 |
169.g | even | 13 | 1 | inner | 507.2.m.a | ✓ | 180 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
507.2.m.a | ✓ | 180 | 1.a | even | 1 | 1 | trivial |
507.2.m.a | ✓ | 180 | 169.g | even | 13 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{180} + T_{2}^{179} + 23 T_{2}^{178} + 23 T_{2}^{177} + 321 T_{2}^{176} + 321 T_{2}^{175} + \cdots + 28561 \) acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\).