Properties

Label 507.2.k.k.80.18
Level $507$
Weight $2$
Character 507.80
Analytic conductor $4.048$
Analytic rank $0$
Dimension $96$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(80,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.80");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.k (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 80.18
Character \(\chi\) \(=\) 507.80
Dual form 507.2.k.k.488.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.339800 - 1.26815i) q^{2} +(1.60126 + 0.660289i) q^{3} +(0.239309 + 0.138165i) q^{4} +(2.12536 + 2.12536i) q^{5} +(1.38145 - 1.80627i) q^{6} +(-2.82123 + 0.755945i) q^{7} +(2.11323 - 2.11323i) q^{8} +(2.12804 + 2.11458i) q^{9} +(3.41747 - 1.97308i) q^{10} +(-2.57352 - 0.689573i) q^{11} +(0.291966 + 0.379251i) q^{12} +3.83461i q^{14} +(1.99989 + 4.80659i) q^{15} +(-1.68549 - 2.91935i) q^{16} +(-0.0994162 + 0.172194i) q^{17} +(3.40472 - 1.98013i) q^{18} +(-1.37337 - 5.12548i) q^{19} +(0.214967 + 0.802269i) q^{20} +(-5.01665 - 0.652364i) q^{21} +(-1.74897 + 3.02930i) q^{22} +(1.65038 + 2.85855i) q^{23} +(4.77917 - 1.98848i) q^{24} +4.03430i q^{25} +(2.01129 + 4.79111i) q^{27} +(-0.779591 - 0.208891i) q^{28} +(3.23258 - 1.86633i) q^{29} +(6.77505 - 0.902881i) q^{30} +(0.550550 - 0.550550i) q^{31} +(1.49855 - 0.401535i) q^{32} +(-3.66555 - 2.80345i) q^{33} +(0.184586 + 0.184586i) q^{34} +(-7.60277 - 4.38946i) q^{35} +(0.217097 + 0.800060i) q^{36} +(-1.32066 + 4.92878i) q^{37} -6.96655 q^{38} +8.98276 q^{40} +(-0.986066 + 3.68005i) q^{41} +(-2.53195 + 6.14019i) q^{42} +(-10.0942 - 5.82790i) q^{43} +(-0.520592 - 0.520592i) q^{44} +(0.0285911 + 9.01709i) q^{45} +(4.18587 - 1.12160i) q^{46} +(4.29586 - 4.29586i) q^{47} +(-0.771281 - 5.78754i) q^{48} +(1.32568 - 0.765385i) q^{49} +(5.11610 + 1.37086i) q^{50} +(-0.272889 + 0.210083i) q^{51} -13.6276i q^{53} +(6.75928 - 0.922602i) q^{54} +(-4.00407 - 6.93525i) q^{55} +(-4.36442 + 7.55939i) q^{56} +(1.18519 - 9.11402i) q^{57} +(-1.26836 - 4.73357i) q^{58} +(-0.864088 - 3.22482i) q^{59} +(-0.185512 + 1.42658i) q^{60} +(1.35047 - 2.33909i) q^{61} +(-0.511103 - 0.885257i) q^{62} +(-7.60218 - 4.35704i) q^{63} -8.77879i q^{64} +(-4.80075 + 3.69585i) q^{66} +(-7.28944 - 1.95320i) q^{67} +(-0.0475824 + 0.0274717i) q^{68} +(0.755216 + 5.66699i) q^{69} +(-8.14992 + 8.14992i) q^{70} +(5.16536 - 1.38405i) q^{71} +(8.96564 - 0.0284280i) q^{72} +(3.46215 + 3.46215i) q^{73} +(5.80168 + 3.34960i) q^{74} +(-2.66381 + 6.45995i) q^{75} +(0.379503 - 1.41633i) q^{76} +7.78177 q^{77} -11.1376 q^{79} +(2.62241 - 9.78695i) q^{80} +(0.0570734 + 8.99982i) q^{81} +(4.33179 + 2.50096i) q^{82} +(-1.84014 - 1.84014i) q^{83} +(-1.11040 - 0.849243i) q^{84} +(-0.577269 + 0.154679i) q^{85} +(-10.8207 + 10.8207i) q^{86} +(6.40850 - 0.854033i) q^{87} +(-6.89568 + 3.98122i) q^{88} +(1.06120 + 0.284349i) q^{89} +(11.4447 + 3.02775i) q^{90} +0.912102i q^{92} +(1.24509 - 0.518049i) q^{93} +(-3.98807 - 6.90753i) q^{94} +(7.97458 - 13.8124i) q^{95} +(2.66469 + 0.346516i) q^{96} +(3.14829 + 11.7496i) q^{97} +(-0.520155 - 1.94125i) q^{98} +(-4.01839 - 6.90936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 24 q^{9} + 8 q^{16} - 112 q^{22} - 168 q^{27} + 256 q^{40} + 56 q^{42} + 188 q^{48} - 8 q^{55} - 56 q^{61} - 184 q^{66} + 72 q^{81} + 112 q^{87} - 296 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.339800 1.26815i 0.240275 0.896718i −0.735425 0.677606i \(-0.763017\pi\)
0.975700 0.219112i \(-0.0703159\pi\)
\(3\) 1.60126 + 0.660289i 0.924485 + 0.381218i
\(4\) 0.239309 + 0.138165i 0.119655 + 0.0690826i
\(5\) 2.12536 + 2.12536i 0.950489 + 0.950489i 0.998831 0.0483414i \(-0.0153935\pi\)
−0.0483414 + 0.998831i \(0.515394\pi\)
\(6\) 1.38145 1.80627i 0.563976 0.737405i
\(7\) −2.82123 + 0.755945i −1.06632 + 0.285720i −0.748982 0.662591i \(-0.769457\pi\)
−0.317342 + 0.948311i \(0.602790\pi\)
\(8\) 2.11323 2.11323i 0.747141 0.747141i
\(9\) 2.12804 + 2.11458i 0.709345 + 0.704861i
\(10\) 3.41747 1.97308i 1.08070 0.623942i
\(11\) −2.57352 0.689573i −0.775946 0.207914i −0.150949 0.988541i \(-0.548233\pi\)
−0.624997 + 0.780627i \(0.714900\pi\)
\(12\) 0.291966 + 0.379251i 0.0842833 + 0.109480i
\(13\) 0 0
\(14\) 3.83461i 1.02484i
\(15\) 1.99989 + 4.80659i 0.516369 + 1.24106i
\(16\) −1.68549 2.91935i −0.421373 0.729839i
\(17\) −0.0994162 + 0.172194i −0.0241120 + 0.0417632i −0.877830 0.478973i \(-0.841009\pi\)
0.853718 + 0.520736i \(0.174342\pi\)
\(18\) 3.40472 1.98013i 0.802499 0.466722i
\(19\) −1.37337 5.12548i −0.315072 1.17586i −0.923922 0.382580i \(-0.875036\pi\)
0.608850 0.793285i \(-0.291631\pi\)
\(20\) 0.214967 + 0.802269i 0.0480681 + 0.179393i
\(21\) −5.01665 0.652364i −1.09472 0.142358i
\(22\) −1.74897 + 3.02930i −0.372881 + 0.645848i
\(23\) 1.65038 + 2.85855i 0.344129 + 0.596048i 0.985195 0.171437i \(-0.0548410\pi\)
−0.641066 + 0.767485i \(0.721508\pi\)
\(24\) 4.77917 1.98848i 0.975544 0.405897i
\(25\) 4.03430i 0.806861i
\(26\) 0 0
\(27\) 2.01129 + 4.79111i 0.387073 + 0.922049i
\(28\) −0.779591 0.208891i −0.147329 0.0394766i
\(29\) 3.23258 1.86633i 0.600274 0.346568i −0.168875 0.985637i \(-0.554013\pi\)
0.769149 + 0.639069i \(0.220680\pi\)
\(30\) 6.77505 0.902881i 1.23695 0.164843i
\(31\) 0.550550 0.550550i 0.0988817 0.0988817i −0.655935 0.754817i \(-0.727726\pi\)
0.754817 + 0.655935i \(0.227726\pi\)
\(32\) 1.49855 0.401535i 0.264908 0.0709820i
\(33\) −3.66555 2.80345i −0.638090 0.488018i
\(34\) 0.184586 + 0.184586i 0.0316563 + 0.0316563i
\(35\) −7.60277 4.38946i −1.28510 0.741955i
\(36\) 0.217097 + 0.800060i 0.0361828 + 0.133343i
\(37\) −1.32066 + 4.92878i −0.217116 + 0.810287i 0.768295 + 0.640096i \(0.221105\pi\)
−0.985411 + 0.170191i \(0.945561\pi\)
\(38\) −6.96655 −1.13012
\(39\) 0 0
\(40\) 8.98276 1.42030
\(41\) −0.986066 + 3.68005i −0.153998 + 0.574727i 0.845192 + 0.534464i \(0.179486\pi\)
−0.999189 + 0.0402633i \(0.987180\pi\)
\(42\) −2.53195 + 6.14019i −0.390689 + 0.947451i
\(43\) −10.0942 5.82790i −1.53936 0.888747i −0.998876 0.0473894i \(-0.984910\pi\)
−0.540479 0.841358i \(-0.681757\pi\)
\(44\) −0.520592 0.520592i −0.0784823 0.0784823i
\(45\) 0.0285911 + 9.01709i 0.00426212 + 1.34419i
\(46\) 4.18587 1.12160i 0.617173 0.165371i
\(47\) 4.29586 4.29586i 0.626616 0.626616i −0.320599 0.947215i \(-0.603884\pi\)
0.947215 + 0.320599i \(0.103884\pi\)
\(48\) −0.771281 5.78754i −0.111325 0.835360i
\(49\) 1.32568 0.765385i 0.189384 0.109341i
\(50\) 5.11610 + 1.37086i 0.723526 + 0.193868i
\(51\) −0.272889 + 0.210083i −0.0382120 + 0.0294175i
\(52\) 0 0
\(53\) 13.6276i 1.87189i −0.352142 0.935947i \(-0.614546\pi\)
0.352142 0.935947i \(-0.385454\pi\)
\(54\) 6.75928 0.922602i 0.919822 0.125550i
\(55\) −4.00407 6.93525i −0.539908 0.935149i
\(56\) −4.36442 + 7.55939i −0.583220 + 1.01017i
\(57\) 1.18519 9.11402i 0.156982 1.20718i
\(58\) −1.26836 4.73357i −0.166543 0.621548i
\(59\) −0.864088 3.22482i −0.112495 0.419836i 0.886593 0.462551i \(-0.153066\pi\)
−0.999087 + 0.0427154i \(0.986399\pi\)
\(60\) −0.185512 + 1.42658i −0.0239495 + 0.184170i
\(61\) 1.35047 2.33909i 0.172910 0.299489i −0.766526 0.642213i \(-0.778016\pi\)
0.939436 + 0.342724i \(0.111350\pi\)
\(62\) −0.511103 0.885257i −0.0649102 0.112428i
\(63\) −7.60218 4.35704i −0.957785 0.548935i
\(64\) 8.77879i 1.09735i
\(65\) 0 0
\(66\) −4.80075 + 3.69585i −0.590932 + 0.454928i
\(67\) −7.28944 1.95320i −0.890547 0.238621i −0.215595 0.976483i \(-0.569169\pi\)
−0.674952 + 0.737862i \(0.735836\pi\)
\(68\) −0.0475824 + 0.0274717i −0.00577022 + 0.00333144i
\(69\) 0.755216 + 5.66699i 0.0909173 + 0.682226i
\(70\) −8.14992 + 8.14992i −0.974102 + 0.974102i
\(71\) 5.16536 1.38405i 0.613016 0.164257i 0.0610649 0.998134i \(-0.480550\pi\)
0.551951 + 0.833877i \(0.313884\pi\)
\(72\) 8.96564 0.0284280i 1.05661 0.00335027i
\(73\) 3.46215 + 3.46215i 0.405214 + 0.405214i 0.880066 0.474852i \(-0.157498\pi\)
−0.474852 + 0.880066i \(0.657498\pi\)
\(74\) 5.80168 + 3.34960i 0.674431 + 0.389383i
\(75\) −2.66381 + 6.45995i −0.307590 + 0.745931i
\(76\) 0.379503 1.41633i 0.0435320 0.162464i
\(77\) 7.78177 0.886815
\(78\) 0 0
\(79\) −11.1376 −1.25308 −0.626540 0.779389i \(-0.715530\pi\)
−0.626540 + 0.779389i \(0.715530\pi\)
\(80\) 2.62241 9.78695i 0.293194 1.09421i
\(81\) 0.0570734 + 8.99982i 0.00634148 + 0.999980i
\(82\) 4.33179 + 2.50096i 0.478366 + 0.276185i
\(83\) −1.84014 1.84014i −0.201981 0.201981i 0.598867 0.800848i \(-0.295618\pi\)
−0.800848 + 0.598867i \(0.795618\pi\)
\(84\) −1.11040 0.849243i −0.121154 0.0926600i
\(85\) −0.577269 + 0.154679i −0.0626136 + 0.0167773i
\(86\) −10.8207 + 10.8207i −1.16682 + 1.16682i
\(87\) 6.40850 0.854033i 0.687063 0.0915619i
\(88\) −6.89568 + 3.98122i −0.735082 + 0.424400i
\(89\) 1.06120 + 0.284349i 0.112487 + 0.0301409i 0.314624 0.949217i \(-0.398122\pi\)
−0.202136 + 0.979357i \(0.564788\pi\)
\(90\) 11.4447 + 3.02775i 1.20638 + 0.319153i
\(91\) 0 0
\(92\) 0.912102i 0.0950932i
\(93\) 1.24509 0.518049i 0.129110 0.0537191i
\(94\) −3.98807 6.90753i −0.411338 0.712458i
\(95\) 7.97458 13.8124i 0.818175 1.41712i
\(96\) 2.66469 + 0.346516i 0.271964 + 0.0353661i
\(97\) 3.14829 + 11.7496i 0.319661 + 1.19299i 0.919571 + 0.392923i \(0.128536\pi\)
−0.599911 + 0.800067i \(0.704797\pi\)
\(98\) −0.520155 1.94125i −0.0525436 0.196095i
\(99\) −4.01839 6.90936i −0.403863 0.694417i
\(100\) −0.557400 + 0.965446i −0.0557400 + 0.0965446i
\(101\) −6.19691 10.7334i −0.616616 1.06801i −0.990099 0.140373i \(-0.955170\pi\)
0.373483 0.927637i \(-0.378164\pi\)
\(102\) 0.173689 + 0.417450i 0.0171978 + 0.0413337i
\(103\) 5.68798i 0.560453i 0.959934 + 0.280226i \(0.0904096\pi\)
−0.959934 + 0.280226i \(0.909590\pi\)
\(104\) 0 0
\(105\) −9.27566 12.0487i −0.905212 1.17583i
\(106\) −17.2818 4.63065i −1.67856 0.449769i
\(107\) −6.72785 + 3.88433i −0.650406 + 0.375512i −0.788612 0.614891i \(-0.789200\pi\)
0.138206 + 0.990404i \(0.455866\pi\)
\(108\) −0.180644 + 1.42445i −0.0173825 + 0.137067i
\(109\) −7.18355 + 7.18355i −0.688060 + 0.688060i −0.961803 0.273743i \(-0.911738\pi\)
0.273743 + 0.961803i \(0.411738\pi\)
\(110\) −10.1555 + 2.72116i −0.968291 + 0.259453i
\(111\) −5.36914 + 7.02022i −0.509616 + 0.666330i
\(112\) 6.96202 + 6.96202i 0.657849 + 0.657849i
\(113\) 14.7985 + 8.54390i 1.39212 + 0.803743i 0.993550 0.113394i \(-0.0361721\pi\)
0.398573 + 0.917136i \(0.369505\pi\)
\(114\) −11.1552 4.59994i −1.04478 0.430823i
\(115\) −2.56778 + 9.58310i −0.239447 + 0.893628i
\(116\) 1.03145 0.0957674
\(117\) 0 0
\(118\) −4.38317 −0.403504
\(119\) 0.150306 0.560951i 0.0137786 0.0514223i
\(120\) 14.3837 + 5.93122i 1.31304 + 0.541444i
\(121\) −3.37877 1.95074i −0.307161 0.177340i
\(122\) −2.50742 2.50742i −0.227011 0.227011i
\(123\) −4.00884 + 5.24161i −0.361465 + 0.472620i
\(124\) 0.207818 0.0556848i 0.0186627 0.00500064i
\(125\) 2.05245 2.05245i 0.183577 0.183577i
\(126\) −8.10860 + 8.16019i −0.722372 + 0.726967i
\(127\) 8.33573 4.81263i 0.739676 0.427052i −0.0822755 0.996610i \(-0.526219\pi\)
0.821952 + 0.569557i \(0.192885\pi\)
\(128\) −8.13573 2.17996i −0.719103 0.192683i
\(129\) −12.3153 15.9971i −1.08430 1.40846i
\(130\) 0 0
\(131\) 11.9013i 1.03982i 0.854221 + 0.519910i \(0.174035\pi\)
−0.854221 + 0.519910i \(0.825965\pi\)
\(132\) −0.489860 1.17734i −0.0426368 0.102475i
\(133\) 7.74916 + 13.4219i 0.671937 + 1.16383i
\(134\) −4.95390 + 8.58041i −0.427952 + 0.741234i
\(135\) −5.90811 + 14.4575i −0.508489 + 1.24431i
\(136\) 0.153796 + 0.573976i 0.0131879 + 0.0492180i
\(137\) 4.50231 + 16.8029i 0.384659 + 1.43557i 0.838704 + 0.544587i \(0.183314\pi\)
−0.454045 + 0.890979i \(0.650020\pi\)
\(138\) 7.44322 + 0.967917i 0.633609 + 0.0823945i
\(139\) −1.16453 + 2.01702i −0.0987737 + 0.171081i −0.911177 0.412014i \(-0.864825\pi\)
0.812404 + 0.583096i \(0.198159\pi\)
\(140\) −1.21294 2.10088i −0.102512 0.177557i
\(141\) 9.71528 4.04226i 0.818174 0.340420i
\(142\) 7.02076i 0.589169i
\(143\) 0 0
\(144\) 2.58644 9.77660i 0.215536 0.814717i
\(145\) 10.8370 + 2.90377i 0.899964 + 0.241145i
\(146\) 5.56697 3.21409i 0.460725 0.266000i
\(147\) 2.62814 0.350240i 0.216765 0.0288873i
\(148\) −0.997033 + 0.997033i −0.0819556 + 0.0819556i
\(149\) −15.2383 + 4.08308i −1.24837 + 0.334499i −0.821705 0.569913i \(-0.806977\pi\)
−0.426661 + 0.904412i \(0.640310\pi\)
\(150\) 7.28702 + 5.57320i 0.594983 + 0.455050i
\(151\) 8.56897 + 8.56897i 0.697333 + 0.697333i 0.963834 0.266502i \(-0.0858678\pi\)
−0.266502 + 0.963834i \(0.585868\pi\)
\(152\) −13.7336 7.92908i −1.11394 0.643133i
\(153\) −0.575680 + 0.156211i −0.0465410 + 0.0126289i
\(154\) 2.64424 9.86845i 0.213079 0.795222i
\(155\) 2.34023 0.187972
\(156\) 0 0
\(157\) −3.26731 −0.260759 −0.130380 0.991464i \(-0.541620\pi\)
−0.130380 + 0.991464i \(0.541620\pi\)
\(158\) −3.78456 + 14.1242i −0.301084 + 1.12366i
\(159\) 8.99815 21.8212i 0.713600 1.73054i
\(160\) 4.03836 + 2.33155i 0.319260 + 0.184325i
\(161\) −6.81701 6.81701i −0.537256 0.537256i
\(162\) 11.4325 + 2.98576i 0.898223 + 0.234583i
\(163\) 5.62972 1.50848i 0.440954 0.118153i −0.0315098 0.999503i \(-0.510032\pi\)
0.472463 + 0.881350i \(0.343365\pi\)
\(164\) −0.744429 + 0.744429i −0.0581302 + 0.0581302i
\(165\) −1.83226 13.7489i −0.142641 1.07035i
\(166\) −2.95885 + 1.70829i −0.229651 + 0.132589i
\(167\) −1.52736 0.409254i −0.118190 0.0316690i 0.199239 0.979951i \(-0.436153\pi\)
−0.317429 + 0.948282i \(0.602820\pi\)
\(168\) −11.9799 + 9.22274i −0.924272 + 0.711550i
\(169\) 0 0
\(170\) 0.784624i 0.0601779i
\(171\) 7.91567 13.8113i 0.605327 1.05618i
\(172\) −1.61043 2.78934i −0.122794 0.212685i
\(173\) 6.21160 10.7588i 0.472259 0.817977i −0.527237 0.849718i \(-0.676772\pi\)
0.999496 + 0.0317413i \(0.0101053\pi\)
\(174\) 1.09456 8.41714i 0.0829787 0.638101i
\(175\) −3.04971 11.3817i −0.230537 0.860374i
\(176\) 2.32454 + 8.67529i 0.175219 + 0.653925i
\(177\) 0.745689 5.73431i 0.0560494 0.431017i
\(178\) 0.721194 1.24914i 0.0540557 0.0936273i
\(179\) 8.15142 + 14.1187i 0.609265 + 1.05528i 0.991362 + 0.131156i \(0.0418689\pi\)
−0.382096 + 0.924123i \(0.624798\pi\)
\(180\) −1.23901 + 2.16182i −0.0923501 + 0.161133i
\(181\) 9.29621i 0.690982i 0.938422 + 0.345491i \(0.112288\pi\)
−0.938422 + 0.345491i \(0.887712\pi\)
\(182\) 0 0
\(183\) 3.70692 2.85377i 0.274024 0.210957i
\(184\) 9.52842 + 2.55313i 0.702444 + 0.188219i
\(185\) −13.2823 + 7.66855i −0.976535 + 0.563803i
\(186\) −0.233881 1.75500i −0.0171490 0.128683i
\(187\) 0.374590 0.374590i 0.0273928 0.0273928i
\(188\) 1.62158 0.434500i 0.118266 0.0316892i
\(189\) −9.29612 11.9964i −0.676193 0.872607i
\(190\) −14.8064 14.8064i −1.07417 1.07417i
\(191\) 1.75656 + 1.01415i 0.127100 + 0.0733813i 0.562202 0.827000i \(-0.309954\pi\)
−0.435102 + 0.900381i \(0.643288\pi\)
\(192\) 5.79654 14.0571i 0.418329 1.01448i
\(193\) −1.02822 + 3.83737i −0.0740130 + 0.276220i −0.993008 0.118050i \(-0.962336\pi\)
0.918995 + 0.394270i \(0.129002\pi\)
\(194\) 15.9700 1.14658
\(195\) 0 0
\(196\) 0.422998 0.0302142
\(197\) −1.78323 + 6.65511i −0.127050 + 0.474157i −0.999904 0.0138237i \(-0.995600\pi\)
0.872855 + 0.487981i \(0.162266\pi\)
\(198\) −10.1276 + 2.74812i −0.719734 + 0.195300i
\(199\) −5.49109 3.17028i −0.389253 0.224735i 0.292584 0.956240i \(-0.405485\pi\)
−0.681836 + 0.731505i \(0.738818\pi\)
\(200\) 8.52542 + 8.52542i 0.602838 + 0.602838i
\(201\) −10.3826 7.94071i −0.732330 0.560094i
\(202\) −15.7172 + 4.21142i −1.10586 + 0.296315i
\(203\) −7.70898 + 7.70898i −0.541065 + 0.541065i
\(204\) −0.0943309 + 0.0125711i −0.00660449 + 0.000880151i
\(205\) −9.91717 + 5.72568i −0.692645 + 0.399899i
\(206\) 7.21321 + 1.93277i 0.502568 + 0.134663i
\(207\) −2.53256 + 9.57296i −0.176025 + 0.665367i
\(208\) 0 0
\(209\) 14.1376i 0.977916i
\(210\) −18.4314 + 7.66880i −1.27189 + 0.529197i
\(211\) 0.401137 + 0.694790i 0.0276154 + 0.0478313i 0.879503 0.475894i \(-0.157875\pi\)
−0.851887 + 0.523725i \(0.824542\pi\)
\(212\) 1.88286 3.26121i 0.129315 0.223981i
\(213\) 9.18494 + 1.19441i 0.629342 + 0.0818396i
\(214\) 2.63979 + 9.85182i 0.180452 + 0.673457i
\(215\) −9.06747 33.8402i −0.618396 2.30789i
\(216\) 14.3751 + 5.87440i 0.978098 + 0.399702i
\(217\) −1.13704 + 1.96941i −0.0771873 + 0.133692i
\(218\) 6.66886 + 11.5508i 0.451672 + 0.782319i
\(219\) 3.25776 + 7.82981i 0.220139 + 0.529089i
\(220\) 2.21289i 0.149193i
\(221\) 0 0
\(222\) 7.07826 + 9.19435i 0.475062 + 0.617084i
\(223\) −2.98478 0.799768i −0.199875 0.0535565i 0.157492 0.987520i \(-0.449659\pi\)
−0.357368 + 0.933964i \(0.616326\pi\)
\(224\) −3.92421 + 2.26564i −0.262197 + 0.151380i
\(225\) −8.53087 + 8.58514i −0.568725 + 0.572343i
\(226\) 15.8635 15.8635i 1.05522 1.05522i
\(227\) 25.0314 6.70715i 1.66139 0.445169i 0.698624 0.715489i \(-0.253796\pi\)
0.962770 + 0.270320i \(0.0871296\pi\)
\(228\) 1.54287 2.01732i 0.102179 0.133600i
\(229\) −19.6410 19.6410i −1.29791 1.29791i −0.929768 0.368147i \(-0.879992\pi\)
−0.368147 0.929768i \(-0.620008\pi\)
\(230\) 11.2803 + 6.51267i 0.743799 + 0.429433i
\(231\) 12.4606 + 5.13822i 0.819847 + 0.338070i
\(232\) 2.88720 10.7752i 0.189554 0.707425i
\(233\) −14.4551 −0.946988 −0.473494 0.880797i \(-0.657007\pi\)
−0.473494 + 0.880797i \(0.657007\pi\)
\(234\) 0 0
\(235\) 18.2605 1.19118
\(236\) 0.238774 0.891116i 0.0155428 0.0580067i
\(237\) −17.8342 7.35405i −1.15845 0.477697i
\(238\) −0.660297 0.381222i −0.0428007 0.0247110i
\(239\) −4.24248 4.24248i −0.274423 0.274423i 0.556455 0.830878i \(-0.312161\pi\)
−0.830878 + 0.556455i \(0.812161\pi\)
\(240\) 10.6614 13.9399i 0.688188 0.899814i
\(241\) 23.8375 6.38724i 1.53551 0.411438i 0.610697 0.791864i \(-0.290889\pi\)
0.924811 + 0.380426i \(0.124223\pi\)
\(242\) −3.62193 + 3.62193i −0.232827 + 0.232827i
\(243\) −5.85110 + 14.4487i −0.375348 + 0.926884i
\(244\) 0.646361 0.373177i 0.0413790 0.0238902i
\(245\) 4.44427 + 1.19084i 0.283934 + 0.0760799i
\(246\) 5.28494 + 6.86491i 0.336956 + 0.437691i
\(247\) 0 0
\(248\) 2.32688i 0.147757i
\(249\) −1.73151 4.16156i −0.109730 0.263728i
\(250\) −1.90540 3.30024i −0.120508 0.208726i
\(251\) −10.8649 + 18.8186i −0.685789 + 1.18782i 0.287400 + 0.957811i \(0.407209\pi\)
−0.973188 + 0.230010i \(0.926124\pi\)
\(252\) −1.21728 2.09304i −0.0766814 0.131849i
\(253\) −2.27612 8.49459i −0.143098 0.534051i
\(254\) −3.27066 12.2063i −0.205220 0.765891i
\(255\) −1.02649 0.133484i −0.0642812 0.00835912i
\(256\) 3.24975 5.62873i 0.203109 0.351796i
\(257\) −8.15559 14.1259i −0.508732 0.881149i −0.999949 0.0101119i \(-0.996781\pi\)
0.491217 0.871037i \(-0.336552\pi\)
\(258\) −24.4714 + 10.1819i −1.52353 + 0.633897i
\(259\) 14.9036i 0.926062i
\(260\) 0 0
\(261\) 10.8255 + 2.86394i 0.670084 + 0.177273i
\(262\) 15.0926 + 4.04406i 0.932426 + 0.249843i
\(263\) 9.95602 5.74811i 0.613914 0.354444i −0.160582 0.987023i \(-0.551337\pi\)
0.774496 + 0.632579i \(0.218004\pi\)
\(264\) −13.6705 + 1.82181i −0.841361 + 0.112125i
\(265\) 28.9635 28.9635i 1.77922 1.77922i
\(266\) 19.6542 5.26633i 1.20508 0.322899i
\(267\) 1.51151 + 1.15602i 0.0925026 + 0.0707470i
\(268\) −1.47457 1.47457i −0.0900734 0.0900734i
\(269\) −9.64658 5.56946i −0.588162 0.339576i 0.176208 0.984353i \(-0.443617\pi\)
−0.764371 + 0.644777i \(0.776950\pi\)
\(270\) 16.3268 + 12.4050i 0.993615 + 0.754947i
\(271\) −1.57276 + 5.86962i −0.0955383 + 0.356554i −0.997101 0.0760956i \(-0.975755\pi\)
0.901562 + 0.432650i \(0.142421\pi\)
\(272\) 0.670260 0.0406405
\(273\) 0 0
\(274\) 22.8384 1.37972
\(275\) 2.78195 10.3824i 0.167758 0.626080i
\(276\) −0.602251 + 1.46051i −0.0362513 + 0.0879123i
\(277\) 24.0591 + 13.8905i 1.44557 + 0.834600i 0.998213 0.0597558i \(-0.0190322\pi\)
0.447356 + 0.894356i \(0.352366\pi\)
\(278\) 2.16218 + 2.16218i 0.129679 + 0.129679i
\(279\) 2.33577 0.00740621i 0.139839 0.000443398i
\(280\) −25.3424 + 6.79047i −1.51450 + 0.405808i
\(281\) 11.6187 11.6187i 0.693113 0.693113i −0.269803 0.962916i \(-0.586958\pi\)
0.962916 + 0.269803i \(0.0869585\pi\)
\(282\) −1.82494 13.6940i −0.108674 0.815466i
\(283\) 23.0251 13.2935i 1.36870 0.790219i 0.377938 0.925831i \(-0.376633\pi\)
0.990762 + 0.135612i \(0.0432999\pi\)
\(284\) 1.42735 + 0.382456i 0.0846974 + 0.0226946i
\(285\) 21.8895 16.8516i 1.29662 0.998203i
\(286\) 0 0
\(287\) 11.1277i 0.656845i
\(288\) 4.03804 + 2.31433i 0.237944 + 0.136373i
\(289\) 8.48023 + 14.6882i 0.498837 + 0.864011i
\(290\) 7.36482 12.7563i 0.432477 0.749073i
\(291\) −2.71691 + 20.8929i −0.159268 + 1.22476i
\(292\) 0.350176 + 1.30687i 0.0204925 + 0.0764790i
\(293\) 0.749260 + 2.79628i 0.0437722 + 0.163360i 0.984352 0.176212i \(-0.0563844\pi\)
−0.940580 + 0.339572i \(0.889718\pi\)
\(294\) 0.448883 3.45188i 0.0261794 0.201318i
\(295\) 5.01740 8.69039i 0.292124 0.505974i
\(296\) 7.62480 + 13.2065i 0.443182 + 0.767614i
\(297\) −1.87228 13.7170i −0.108641 0.795938i
\(298\) 20.7118i 1.19980i
\(299\) 0 0
\(300\) −1.53001 + 1.17788i −0.0883354 + 0.0680049i
\(301\) 32.8837 + 8.81115i 1.89538 + 0.507866i
\(302\) 13.7785 7.95501i 0.792862 0.457759i
\(303\) −2.83571 21.2786i −0.162907 1.22242i
\(304\) −12.6483 + 12.6483i −0.725429 + 0.725429i
\(305\) 7.84164 2.10116i 0.449011 0.120312i
\(306\) 0.00248313 + 0.783129i 0.000141951 + 0.0447685i
\(307\) 13.9565 + 13.9565i 0.796541 + 0.796541i 0.982548 0.186007i \(-0.0595549\pi\)
−0.186007 + 0.982548i \(0.559555\pi\)
\(308\) 1.86225 + 1.07517i 0.106111 + 0.0612635i
\(309\) −3.75571 + 9.10790i −0.213655 + 0.518130i
\(310\) 0.795211 2.96777i 0.0451649 0.168558i
\(311\) −26.9755 −1.52964 −0.764821 0.644243i \(-0.777172\pi\)
−0.764821 + 0.644243i \(0.777172\pi\)
\(312\) 0 0
\(313\) −23.9660 −1.35464 −0.677320 0.735689i \(-0.736859\pi\)
−0.677320 + 0.735689i \(0.736859\pi\)
\(314\) −1.11023 + 4.14344i −0.0626539 + 0.233828i
\(315\) −6.89709 25.4176i −0.388607 1.43212i
\(316\) −2.66533 1.53883i −0.149937 0.0865660i
\(317\) 21.6899 + 21.6899i 1.21823 + 1.21823i 0.968253 + 0.249973i \(0.0804218\pi\)
0.249973 + 0.968253i \(0.419578\pi\)
\(318\) −24.6151 18.8259i −1.38034 1.05570i
\(319\) −9.60608 + 2.57394i −0.537837 + 0.144113i
\(320\) 18.6581 18.6581i 1.04302 1.04302i
\(321\) −13.3378 + 1.77747i −0.744443 + 0.0992087i
\(322\) −10.9614 + 6.32857i −0.610856 + 0.352678i
\(323\) 1.01911 + 0.273070i 0.0567049 + 0.0151940i
\(324\) −1.22980 + 2.16162i −0.0683224 + 0.120090i
\(325\) 0 0
\(326\) 7.65191i 0.423800i
\(327\) −16.2459 + 6.75948i −0.898402 + 0.373800i
\(328\) 5.69301 + 9.86058i 0.314344 + 0.544460i
\(329\) −8.87216 + 15.3670i −0.489138 + 0.847212i
\(330\) −18.0583 2.34831i −0.994079 0.129270i
\(331\) 0.171746 + 0.640966i 0.00944003 + 0.0352307i 0.970485 0.241161i \(-0.0775281\pi\)
−0.961045 + 0.276391i \(0.910861\pi\)
\(332\) −0.186119 0.694605i −0.0102146 0.0381214i
\(333\) −13.2327 + 7.69597i −0.725150 + 0.421737i
\(334\) −1.03799 + 1.79785i −0.0567964 + 0.0983742i
\(335\) −11.3414 19.6439i −0.619648 1.07326i
\(336\) 6.55102 + 15.7449i 0.357388 + 0.858956i
\(337\) 25.0872i 1.36659i 0.730143 + 0.683294i \(0.239453\pi\)
−0.730143 + 0.683294i \(0.760547\pi\)
\(338\) 0 0
\(339\) 18.0547 + 23.4522i 0.980596 + 1.27375i
\(340\) −0.159517 0.0427425i −0.00865103 0.00231804i
\(341\) −1.79650 + 1.03721i −0.0972858 + 0.0561680i
\(342\) −14.8251 14.7313i −0.801647 0.796580i
\(343\) 11.2955 11.2955i 0.609900 0.609900i
\(344\) −33.6472 + 9.01573i −1.81413 + 0.486096i
\(345\) −10.4393 + 13.6495i −0.562033 + 0.734864i
\(346\) −11.5331 11.5331i −0.620023 0.620023i
\(347\) −14.2117 8.20511i −0.762923 0.440474i 0.0674214 0.997725i \(-0.478523\pi\)
−0.830344 + 0.557251i \(0.811856\pi\)
\(348\) 1.65161 + 0.681053i 0.0885356 + 0.0365083i
\(349\) 7.75800 28.9532i 0.415276 1.54983i −0.369006 0.929427i \(-0.620302\pi\)
0.784282 0.620405i \(-0.213032\pi\)
\(350\) −15.4700 −0.826905
\(351\) 0 0
\(352\) −4.13344 −0.220313
\(353\) −1.74394 + 6.50846i −0.0928203 + 0.346410i −0.996680 0.0814189i \(-0.974055\pi\)
0.903860 + 0.427829i \(0.140721\pi\)
\(354\) −7.01858 2.89416i −0.373033 0.153823i
\(355\) 13.9199 + 8.03664i 0.738790 + 0.426540i
\(356\) 0.214669 + 0.214669i 0.0113774 + 0.0113774i
\(357\) 0.611069 0.798980i 0.0323412 0.0422865i
\(358\) 20.6744 5.53970i 1.09268 0.292782i
\(359\) −6.76884 + 6.76884i −0.357246 + 0.357246i −0.862797 0.505551i \(-0.831289\pi\)
0.505551 + 0.862797i \(0.331289\pi\)
\(360\) 19.1156 + 18.9948i 1.00748 + 1.00111i
\(361\) −7.92989 + 4.57832i −0.417363 + 0.240964i
\(362\) 11.7890 + 3.15885i 0.619616 + 0.166025i
\(363\) −4.12223 5.35459i −0.216361 0.281043i
\(364\) 0 0
\(365\) 14.7166i 0.770303i
\(366\) −2.35940 5.67065i −0.123328 0.296410i
\(367\) 6.01337 + 10.4155i 0.313895 + 0.543682i 0.979202 0.202888i \(-0.0650326\pi\)
−0.665307 + 0.746570i \(0.731699\pi\)
\(368\) 5.56341 9.63611i 0.290013 0.502317i
\(369\) −9.88015 + 5.74615i −0.514340 + 0.299133i
\(370\) 5.21154 + 19.4497i 0.270935 + 1.01114i
\(371\) 10.3017 + 38.4465i 0.534838 + 1.99604i
\(372\) 0.369539 + 0.0480548i 0.0191597 + 0.00249152i
\(373\) −6.67932 + 11.5689i −0.345842 + 0.599016i −0.985506 0.169638i \(-0.945740\pi\)
0.639664 + 0.768654i \(0.279073\pi\)
\(374\) −0.347751 0.602323i −0.0179818 0.0311454i
\(375\) 4.64172 1.93129i 0.239697 0.0997313i
\(376\) 18.1563i 0.936340i
\(377\) 0 0
\(378\) −18.3720 + 7.71252i −0.944955 + 0.396689i
\(379\) −29.9123 8.01497i −1.53649 0.411701i −0.611360 0.791352i \(-0.709377\pi\)
−0.925130 + 0.379651i \(0.876044\pi\)
\(380\) 3.81678 2.20362i 0.195797 0.113043i
\(381\) 16.5254 2.20226i 0.846620 0.112825i
\(382\) 1.88297 1.88297i 0.0963413 0.0963413i
\(383\) −9.90441 + 2.65388i −0.506092 + 0.135607i −0.502826 0.864388i \(-0.667706\pi\)
−0.00326604 + 0.999995i \(0.501040\pi\)
\(384\) −11.5880 8.86261i −0.591346 0.452268i
\(385\) 16.5390 + 16.5390i 0.842908 + 0.842908i
\(386\) 4.51698 + 2.60788i 0.229908 + 0.132738i
\(387\) −9.15729 33.7471i −0.465491 1.71546i
\(388\) −0.869969 + 3.24677i −0.0441660 + 0.164830i
\(389\) 30.1074 1.52650 0.763252 0.646101i \(-0.223602\pi\)
0.763252 + 0.646101i \(0.223602\pi\)
\(390\) 0 0
\(391\) −0.656299 −0.0331905
\(392\) 1.18405 4.41892i 0.0598033 0.223189i
\(393\) −7.85830 + 19.0570i −0.396399 + 0.961299i
\(394\) 7.83374 + 4.52281i 0.394658 + 0.227856i
\(395\) −23.6714 23.6714i −1.19104 1.19104i
\(396\) −0.00700321 2.20868i −0.000351925 0.110990i
\(397\) −3.31510 + 0.888280i −0.166380 + 0.0445815i −0.341048 0.940046i \(-0.610782\pi\)
0.174667 + 0.984628i \(0.444115\pi\)
\(398\) −5.88626 + 5.88626i −0.295052 + 0.295052i
\(399\) 3.54602 + 26.6086i 0.177523 + 1.33210i
\(400\) 11.7776 6.79978i 0.588878 0.339989i
\(401\) −19.2725 5.16404i −0.962421 0.257880i −0.256796 0.966466i \(-0.582667\pi\)
−0.705625 + 0.708586i \(0.749334\pi\)
\(402\) −13.5980 + 10.4684i −0.678207 + 0.522117i
\(403\) 0 0
\(404\) 3.42479i 0.170390i
\(405\) −19.0065 + 19.2491i −0.944443 + 0.956498i
\(406\) 7.15664 + 12.3957i 0.355178 + 0.615186i
\(407\) 6.79751 11.7736i 0.336940 0.583598i
\(408\) −0.132723 + 1.02063i −0.00657076 + 0.0505288i
\(409\) 1.43417 + 5.35240i 0.0709152 + 0.264659i 0.992276 0.124049i \(-0.0395881\pi\)
−0.921361 + 0.388708i \(0.872921\pi\)
\(410\) 3.89117 + 14.5220i 0.192171 + 0.717193i
\(411\) −3.88540 + 29.8785i −0.191653 + 1.47380i
\(412\) −0.785880 + 1.36118i −0.0387175 + 0.0670608i
\(413\) 4.87557 + 8.44474i 0.239911 + 0.415538i
\(414\) 11.2794 + 6.46456i 0.554352 + 0.317716i
\(415\) 7.82191i 0.383962i
\(416\) 0 0
\(417\) −3.19652 + 2.46083i −0.156534 + 0.120508i
\(418\) 17.9286 + 4.80394i 0.876914 + 0.234969i
\(419\) 29.8207 17.2170i 1.45684 0.841106i 0.457983 0.888961i \(-0.348572\pi\)
0.998854 + 0.0478553i \(0.0152386\pi\)
\(420\) −0.555043 4.16493i −0.0270833 0.203228i
\(421\) −18.6143 + 18.6143i −0.907208 + 0.907208i −0.996046 0.0888383i \(-0.971685\pi\)
0.0888383 + 0.996046i \(0.471685\pi\)
\(422\) 1.01740 0.272613i 0.0495265 0.0132706i
\(423\) 18.2257 0.0577896i 0.886164 0.00280983i
\(424\) −28.7983 28.7983i −1.39857 1.39857i
\(425\) −0.694683 0.401075i −0.0336971 0.0194550i
\(426\) 4.63573 11.2420i 0.224602 0.544678i
\(427\) −2.04177 + 7.61997i −0.0988080 + 0.368756i
\(428\) −2.14672 −0.103765
\(429\) 0 0
\(430\) −45.9956 −2.21811
\(431\) 2.92686 10.9232i 0.140982 0.526152i −0.858919 0.512111i \(-0.828864\pi\)
0.999901 0.0140414i \(-0.00446966\pi\)
\(432\) 10.5969 13.9470i 0.509845 0.671027i
\(433\) 5.37469 + 3.10308i 0.258291 + 0.149124i 0.623555 0.781780i \(-0.285688\pi\)
−0.365264 + 0.930904i \(0.619021\pi\)
\(434\) 2.11114 + 2.11114i 0.101338 + 0.101338i
\(435\) 15.4355 + 11.8052i 0.740075 + 0.566017i
\(436\) −2.71161 + 0.726573i −0.129862 + 0.0347965i
\(437\) 12.3848 12.3848i 0.592447 0.592447i
\(438\) 11.0364 1.47077i 0.527338 0.0702760i
\(439\) −33.5869 + 19.3914i −1.60301 + 0.925501i −0.612135 + 0.790753i \(0.709689\pi\)
−0.990880 + 0.134748i \(0.956978\pi\)
\(440\) −23.1173 6.19427i −1.10208 0.295300i
\(441\) 4.43957 + 1.17451i 0.211408 + 0.0559288i
\(442\) 0 0
\(443\) 18.3132i 0.870087i −0.900409 0.435043i \(-0.856733\pi\)
0.900409 0.435043i \(-0.143267\pi\)
\(444\) −2.25484 + 0.938174i −0.107010 + 0.0445238i
\(445\) 1.65110 + 2.85978i 0.0782694 + 0.135567i
\(446\) −2.02845 + 3.51338i −0.0960500 + 0.166364i
\(447\) −27.0963 3.52361i −1.28161 0.166661i
\(448\) 6.63628 + 24.7669i 0.313535 + 1.17013i
\(449\) −0.501884 1.87306i −0.0236854 0.0883950i 0.953071 0.302745i \(-0.0979032\pi\)
−0.976757 + 0.214350i \(0.931237\pi\)
\(450\) 7.98846 + 13.7357i 0.376580 + 0.647505i
\(451\) 5.07532 8.79072i 0.238988 0.413939i
\(452\) 2.36094 + 4.08927i 0.111049 + 0.192343i
\(453\) 8.06311 + 19.3791i 0.378838 + 0.910510i
\(454\) 34.0227i 1.59676i
\(455\) 0 0
\(456\) −16.7555 21.7646i −0.784646 1.01922i
\(457\) 5.62868 + 1.50820i 0.263299 + 0.0705507i 0.388053 0.921637i \(-0.373148\pi\)
−0.124755 + 0.992188i \(0.539814\pi\)
\(458\) −31.5818 + 18.2337i −1.47572 + 0.852007i
\(459\) −1.02495 0.129982i −0.0478408 0.00606702i
\(460\) −1.93854 + 1.93854i −0.0903851 + 0.0903851i
\(461\) −13.8221 + 3.70361i −0.643758 + 0.172494i −0.565905 0.824470i \(-0.691473\pi\)
−0.0778529 + 0.996965i \(0.524806\pi\)
\(462\) 10.7501 14.0559i 0.500142 0.653942i
\(463\) 2.99038 + 2.99038i 0.138975 + 0.138975i 0.773172 0.634197i \(-0.218669\pi\)
−0.634197 + 0.773172i \(0.718669\pi\)
\(464\) −10.8969 6.29136i −0.505878 0.292069i
\(465\) 3.74731 + 1.54523i 0.173777 + 0.0716584i
\(466\) −4.91185 + 18.3313i −0.227537 + 0.849181i
\(467\) 37.5105 1.73578 0.867888 0.496759i \(-0.165477\pi\)
0.867888 + 0.496759i \(0.165477\pi\)
\(468\) 0 0
\(469\) 22.0417 1.01779
\(470\) 6.20491 23.1571i 0.286211 1.06816i
\(471\) −5.23179 2.15737i −0.241068 0.0994063i
\(472\) −8.64081 4.98877i −0.397726 0.229627i
\(473\) 21.9589 + 21.9589i 1.00967 + 1.00967i
\(474\) −15.3861 + 20.1175i −0.706707 + 0.924028i
\(475\) 20.6777 5.54058i 0.948759 0.254219i
\(476\) 0.113474 0.113474i 0.00520106 0.00520106i
\(477\) 28.8167 29.0000i 1.31942 1.32782i
\(478\) −6.82169 + 3.93851i −0.312017 + 0.180143i
\(479\) −1.97272 0.528588i −0.0901358 0.0241518i 0.213469 0.976950i \(-0.431524\pi\)
−0.303605 + 0.952798i \(0.598190\pi\)
\(480\) 4.92695 + 6.39989i 0.224883 + 0.292114i
\(481\) 0 0
\(482\) 32.3999i 1.47578i
\(483\) −6.41457 15.4170i −0.291873 0.701496i
\(484\) −0.539048 0.933658i −0.0245022 0.0424390i
\(485\) −18.2808 + 31.6633i −0.830090 + 1.43776i
\(486\) 16.3349 + 12.3297i 0.740967 + 0.559288i
\(487\) −6.49144 24.2264i −0.294155 1.09780i −0.941886 0.335933i \(-0.890948\pi\)
0.647731 0.761869i \(-0.275718\pi\)
\(488\) −2.08917 7.79690i −0.0945724 0.352949i
\(489\) 10.0106 + 1.30178i 0.452697 + 0.0588687i
\(490\) 3.02033 5.23136i 0.136444 0.236329i
\(491\) 3.76608 + 6.52305i 0.169961 + 0.294381i 0.938406 0.345535i \(-0.112302\pi\)
−0.768445 + 0.639916i \(0.778969\pi\)
\(492\) −1.68356 + 0.700482i −0.0759007 + 0.0315802i
\(493\) 0.742173i 0.0334258i
\(494\) 0 0
\(495\) 6.14436 23.2254i 0.276169 1.04390i
\(496\) −2.53520 0.679304i −0.113834 0.0305016i
\(497\) −13.5264 + 7.80946i −0.606741 + 0.350302i
\(498\) −5.86584 + 0.781716i −0.262855 + 0.0350295i
\(499\) −8.71539 + 8.71539i −0.390154 + 0.390154i −0.874742 0.484588i \(-0.838970\pi\)
0.484588 + 0.874742i \(0.338970\pi\)
\(500\) 0.774749 0.207593i 0.0346478 0.00928385i
\(501\) −2.17546 1.66382i −0.0971925 0.0743339i
\(502\) 20.1729 + 20.1729i 0.900362 + 0.900362i
\(503\) −2.03490 1.17485i −0.0907316 0.0523839i 0.453948 0.891028i \(-0.350015\pi\)
−0.544679 + 0.838644i \(0.683349\pi\)
\(504\) −25.2726 + 6.85774i −1.12573 + 0.305468i
\(505\) 9.64160 35.9829i 0.429046 1.60122i
\(506\) −11.5458 −0.513276
\(507\) 0 0
\(508\) 2.65975 0.118008
\(509\) 7.75830 28.9544i 0.343881 1.28338i −0.550034 0.835142i \(-0.685385\pi\)
0.893914 0.448238i \(-0.147948\pi\)
\(510\) −0.518079 + 1.25638i −0.0229409 + 0.0556336i
\(511\) −12.3847 7.15031i −0.547867 0.316311i
\(512\) −17.9453 17.9453i −0.793080 0.793080i
\(513\) 21.7945 16.8888i 0.962249 0.745658i
\(514\) −20.6850 + 5.54254i −0.912377 + 0.244471i
\(515\) −12.0890 + 12.0890i −0.532705 + 0.532705i
\(516\) −0.736932 5.52980i −0.0324416 0.243436i
\(517\) −14.0178 + 8.09318i −0.616502 + 0.355938i
\(518\) −18.9000 5.06423i −0.830416 0.222509i
\(519\) 17.0503 13.1261i 0.748424 0.576174i
\(520\) 0 0
\(521\) 5.94611i 0.260504i −0.991481 0.130252i \(-0.958421\pi\)
0.991481 0.130252i \(-0.0415786\pi\)
\(522\) 7.31042 12.7553i 0.319968 0.558282i
\(523\) 0.429973 + 0.744735i 0.0188014 + 0.0325650i 0.875273 0.483629i \(-0.160682\pi\)
−0.856472 + 0.516194i \(0.827348\pi\)
\(524\) −1.64434 + 2.84809i −0.0718335 + 0.124419i
\(525\) 2.63184 20.2387i 0.114863 0.883288i
\(526\) −3.90641 14.5789i −0.170328 0.635672i
\(527\) 0.0400678 + 0.149535i 0.00174538 + 0.00651385i
\(528\) −2.00603 + 15.4262i −0.0873011 + 0.671340i
\(529\) 6.05247 10.4832i 0.263151 0.455791i
\(530\) −26.8883 46.5719i −1.16795 2.02295i
\(531\) 4.98034 8.68971i 0.216128 0.377102i
\(532\) 4.28266i 0.185677i
\(533\) 0 0
\(534\) 1.97961 1.52400i 0.0856662 0.0659500i
\(535\) −22.5547 6.04351i −0.975124 0.261284i
\(536\) −19.5318 + 11.2767i −0.843647 + 0.487080i
\(537\) 3.73009 + 27.9899i 0.160965 + 1.20785i
\(538\) −10.3408 + 10.3408i −0.445824 + 0.445824i
\(539\) −3.93947 + 1.05558i −0.169685 + 0.0454669i
\(540\) −3.41139 + 2.64353i −0.146803 + 0.113759i
\(541\) 5.67009 + 5.67009i 0.243776 + 0.243776i 0.818410 0.574634i \(-0.194856\pi\)
−0.574634 + 0.818410i \(0.694856\pi\)
\(542\) 6.90914 + 3.98899i 0.296773 + 0.171342i
\(543\) −6.13819 + 14.8856i −0.263415 + 0.638802i
\(544\) −0.0798382 + 0.297960i −0.00342303 + 0.0127749i
\(545\) −30.5353 −1.30799
\(546\) 0 0
\(547\) −29.3587 −1.25529 −0.627643 0.778501i \(-0.715980\pi\)
−0.627643 + 0.778501i \(0.715980\pi\)
\(548\) −1.24413 + 4.64314i −0.0531465 + 0.198345i
\(549\) 7.82005 2.12197i 0.333751 0.0905636i
\(550\) −12.2211 7.05585i −0.521109 0.300863i
\(551\) −14.0053 14.0053i −0.596647 0.596647i
\(552\) 13.5716 + 10.3797i 0.577647 + 0.441791i
\(553\) 31.4217 8.41943i 1.33619 0.358031i
\(554\) 25.7905 25.7905i 1.09573 1.09573i
\(555\) −26.3318 + 3.50913i −1.11772 + 0.148954i
\(556\) −0.557363 + 0.321794i −0.0236375 + 0.0136471i
\(557\) 36.1240 + 9.67941i 1.53062 + 0.410130i 0.923223 0.384265i \(-0.125545\pi\)
0.607402 + 0.794395i \(0.292212\pi\)
\(558\) 0.784303 2.96463i 0.0332022 0.125503i
\(559\) 0 0
\(560\) 29.5936i 1.25056i
\(561\) 0.847152 0.352477i 0.0357668 0.0148816i
\(562\) −10.7862 18.6823i −0.454989 0.788064i
\(563\) −6.70261 + 11.6093i −0.282481 + 0.489272i −0.971995 0.235000i \(-0.924491\pi\)
0.689514 + 0.724272i \(0.257824\pi\)
\(564\) 2.88346 + 0.374965i 0.121415 + 0.0157889i
\(565\) 13.2932 + 49.6109i 0.559250 + 2.08715i
\(566\) −9.03429 33.7164i −0.379740 1.41721i
\(567\) −6.96439 25.3474i −0.292477 1.06449i
\(568\) 7.99078 13.8404i 0.335286 0.580732i
\(569\) 11.3396 + 19.6407i 0.475380 + 0.823382i 0.999602 0.0281995i \(-0.00897737\pi\)
−0.524223 + 0.851581i \(0.675644\pi\)
\(570\) −13.9323 33.4854i −0.583561 1.40255i
\(571\) 21.9369i 0.918032i 0.888428 + 0.459016i \(0.151798\pi\)
−0.888428 + 0.459016i \(0.848202\pi\)
\(572\) 0 0
\(573\) 2.14307 + 2.78375i 0.0895279 + 0.116293i
\(574\) −14.1115 3.78118i −0.589004 0.157823i
\(575\) −11.5322 + 6.65814i −0.480928 + 0.277664i
\(576\) 18.5635 18.6816i 0.773478 0.778399i
\(577\) 18.7633 18.7633i 0.781126 0.781126i −0.198895 0.980021i \(-0.563735\pi\)
0.980021 + 0.198895i \(0.0637354\pi\)
\(578\) 21.5084 5.76316i 0.894632 0.239716i
\(579\) −4.18022 + 5.46569i −0.173724 + 0.227146i
\(580\) 2.19219 + 2.19219i 0.0910259 + 0.0910259i
\(581\) 6.58249 + 3.80040i 0.273088 + 0.157667i
\(582\) 25.5721 + 10.5448i 1.06000 + 0.437098i
\(583\) −9.39722 + 35.0709i −0.389193 + 1.45249i
\(584\) 14.6327 0.605504
\(585\) 0 0
\(586\) 3.80070 0.157005
\(587\) −3.16920 + 11.8276i −0.130807 + 0.488178i −0.999980 0.00632980i \(-0.997985\pi\)
0.869173 + 0.494508i \(0.164652\pi\)
\(588\) 0.677328 + 0.279301i 0.0279325 + 0.0115182i
\(589\) −3.57794 2.06572i −0.147426 0.0851166i
\(590\) −9.31581 9.31581i −0.383526 0.383526i
\(591\) −7.24970 + 9.47908i −0.298213 + 0.389917i
\(592\) 16.6148 4.45193i 0.682865 0.182973i
\(593\) −32.4467 + 32.4467i −1.33243 + 1.33243i −0.429232 + 0.903194i \(0.641216\pi\)
−0.903194 + 0.429232i \(0.858784\pi\)
\(594\) −18.0314 2.28668i −0.739836 0.0938237i
\(595\) 1.51168 0.872768i 0.0619728 0.0357800i
\(596\) −4.21079 1.12828i −0.172481 0.0462161i
\(597\) −6.69933 8.70213i −0.274185 0.356155i
\(598\) 0 0
\(599\) 11.5870i 0.473430i −0.971579 0.236715i \(-0.923929\pi\)
0.971579 0.236715i \(-0.0760708\pi\)
\(600\) 8.02213 + 19.2806i 0.327502 + 0.787128i
\(601\) 2.26709 + 3.92671i 0.0924764 + 0.160174i 0.908553 0.417771i \(-0.137188\pi\)
−0.816076 + 0.577944i \(0.803855\pi\)
\(602\) 22.3477 38.7074i 0.910826 1.57760i
\(603\) −11.3820 19.5706i −0.463510 0.796977i
\(604\) 0.866700 + 3.23457i 0.0352655 + 0.131613i
\(605\) −3.03509 11.3271i −0.123394 0.460513i
\(606\) −27.9481 3.63437i −1.13531 0.147636i
\(607\) −6.51641 + 11.2868i −0.264493 + 0.458115i −0.967431 0.253136i \(-0.918538\pi\)
0.702938 + 0.711251i \(0.251871\pi\)
\(608\) −4.11611 7.12932i −0.166930 0.289132i
\(609\) −17.4342 + 7.25389i −0.706470 + 0.293942i
\(610\) 10.6583i 0.431544i
\(611\) 0 0
\(612\) −0.159348 0.0421562i −0.00644128 0.00170406i
\(613\) 3.47446 + 0.930978i 0.140332 + 0.0376019i 0.328301 0.944573i \(-0.393524\pi\)
−0.187969 + 0.982175i \(0.560191\pi\)
\(614\) 22.4414 12.9565i 0.905661 0.522884i
\(615\) −19.6605 + 2.62007i −0.792789 + 0.105652i
\(616\) 16.4447 16.4447i 0.662575 0.662575i
\(617\) −6.41496 + 1.71888i −0.258257 + 0.0691997i −0.385624 0.922656i \(-0.626014\pi\)
0.127368 + 0.991856i \(0.459347\pi\)
\(618\) 10.2740 + 7.85767i 0.413281 + 0.316082i
\(619\) −13.3334 13.3334i −0.535916 0.535916i 0.386411 0.922327i \(-0.373715\pi\)
−0.922327 + 0.386411i \(0.873715\pi\)
\(620\) 0.560039 + 0.323339i 0.0224917 + 0.0129856i
\(621\) −10.3762 + 13.6565i −0.416383 + 0.548018i
\(622\) −9.16628 + 34.2090i −0.367534 + 1.37166i
\(623\) −3.20885 −0.128560
\(624\) 0 0
\(625\) 28.8959 1.15584
\(626\) −8.14365 + 30.3925i −0.325486 + 1.21473i
\(627\) −9.33488 + 22.6378i −0.372799 + 0.904069i
\(628\) −0.781896 0.451428i −0.0312011 0.0180139i
\(629\) −0.717411 0.717411i −0.0286051 0.0286051i
\(630\) −34.5770 + 0.109636i −1.37758 + 0.00436800i
\(631\) 1.42316 0.381334i 0.0566550 0.0151807i −0.230380 0.973101i \(-0.573997\pi\)
0.287035 + 0.957920i \(0.407330\pi\)
\(632\) −23.5364 + 23.5364i −0.936227 + 0.936227i
\(633\) 0.183561 + 1.37740i 0.00729588 + 0.0547469i
\(634\) 34.8763 20.1358i 1.38511 0.799696i
\(635\) 27.9450 + 7.48784i 1.10896 + 0.297146i
\(636\) 5.16828 3.97879i 0.204936 0.157769i
\(637\) 0 0
\(638\) 13.0566i 0.516915i
\(639\) 13.9188 + 7.97727i 0.550618 + 0.315576i
\(640\) −12.6581 21.9245i −0.500357 0.866644i
\(641\) 7.43034 12.8697i 0.293481 0.508323i −0.681150 0.732144i \(-0.738520\pi\)
0.974630 + 0.223821i \(0.0718530\pi\)
\(642\) −2.27808 + 17.5183i −0.0899086 + 0.691392i
\(643\) −12.5754 46.9319i −0.495924 1.85081i −0.524792 0.851230i \(-0.675857\pi\)
0.0288681 0.999583i \(-0.490810\pi\)
\(644\) −0.689499 2.57325i −0.0271701 0.101400i
\(645\) 7.82503 60.1740i 0.308110 2.36935i
\(646\) 0.692588 1.19960i 0.0272495 0.0471975i
\(647\) 18.8371 + 32.6268i 0.740562 + 1.28269i 0.952240 + 0.305351i \(0.0987739\pi\)
−0.211678 + 0.977340i \(0.567893\pi\)
\(648\) 19.1393 + 18.8981i 0.751864 + 0.742388i
\(649\) 8.89499i 0.349159i
\(650\) 0 0
\(651\) −3.12107 + 2.40275i −0.122324 + 0.0941714i
\(652\) 1.55566 + 0.416839i 0.0609245 + 0.0163247i
\(653\) 19.2876 11.1357i 0.754782 0.435774i −0.0726369 0.997358i \(-0.523141\pi\)
0.827419 + 0.561585i \(0.189808\pi\)
\(654\) 3.05167 + 22.8992i 0.119330 + 0.895428i
\(655\) −25.2945 + 25.2945i −0.988339 + 0.988339i
\(656\) 12.4054 3.32401i 0.484348 0.129781i
\(657\) 0.0465742 + 14.6886i 0.00181703 + 0.573056i
\(658\) 16.4729 + 16.4729i 0.642182 + 0.642182i
\(659\) 23.2104 + 13.4005i 0.904148 + 0.522010i 0.878544 0.477662i \(-0.158516\pi\)
0.0256043 + 0.999672i \(0.491849\pi\)
\(660\) 1.46115 3.54340i 0.0568751 0.137927i
\(661\) 4.52232 16.8775i 0.175898 0.656459i −0.820499 0.571647i \(-0.806304\pi\)
0.996397 0.0848116i \(-0.0270288\pi\)
\(662\) 0.871200 0.0338602
\(663\) 0 0
\(664\) −7.77728 −0.301817
\(665\) −12.0567 + 44.9962i −0.467538 + 1.74488i
\(666\) 5.26317 + 19.3962i 0.203944 + 0.751587i
\(667\) 10.6700 + 6.16031i 0.413143 + 0.238528i
\(668\) −0.308966 0.308966i −0.0119543 0.0119543i
\(669\) −4.25131 3.25145i −0.164365 0.125708i
\(670\) −28.7653 + 7.70763i −1.11130 + 0.297772i
\(671\) −5.08844 + 5.08844i −0.196437 + 0.196437i
\(672\) −7.77963 + 1.03676i −0.300106 + 0.0399938i
\(673\) 30.8369 17.8037i 1.18867 0.686281i 0.230669 0.973032i \(-0.425909\pi\)
0.958005 + 0.286751i \(0.0925753\pi\)
\(674\) 31.8144 + 8.52464i 1.22544 + 0.328357i
\(675\) −19.3288 + 8.11416i −0.743965 + 0.312314i
\(676\) 0 0
\(677\) 16.3795i 0.629517i 0.949172 + 0.314758i \(0.101924\pi\)
−0.949172 + 0.314758i \(0.898076\pi\)
\(678\) 35.8760 14.9270i 1.37781 0.573267i
\(679\) −17.7641 30.7683i −0.681723 1.18078i
\(680\) −0.893032 + 1.54678i −0.0342462 + 0.0593162i
\(681\) 44.5104 + 5.78813i 1.70564 + 0.221801i
\(682\) 0.704886 + 2.63067i 0.0269915 + 0.100734i
\(683\) 9.94232 + 37.1052i 0.380432 + 1.41979i 0.845243 + 0.534382i \(0.179456\pi\)
−0.464811 + 0.885410i \(0.653878\pi\)
\(684\) 3.80253 2.21150i 0.145394 0.0845588i
\(685\) −26.1431 + 45.2812i −0.998876 + 1.73010i
\(686\) −10.4862 18.1626i −0.400364 0.693451i
\(687\) −18.4815 44.4190i −0.705114 1.69469i
\(688\) 39.2915i 1.49797i
\(689\) 0 0
\(690\) 13.7624 + 17.8767i 0.523924 + 0.680554i
\(691\) −18.6598 4.99988i −0.709853 0.190204i −0.114213 0.993456i \(-0.536435\pi\)
−0.595640 + 0.803252i \(0.703101\pi\)
\(692\) 2.97299 1.71645i 0.113016 0.0652498i
\(693\) 16.5599 + 16.4552i 0.629058 + 0.625081i
\(694\) −15.2344 + 15.2344i −0.578292 + 0.578292i
\(695\) −6.76192 + 1.81185i −0.256494 + 0.0687274i
\(696\) 11.7379 15.3474i 0.444923 0.581742i
\(697\) −0.535651 0.535651i −0.0202892 0.0202892i
\(698\) −34.0809 19.6766i −1.28998 0.744771i
\(699\) −23.1464 9.54457i −0.875476 0.361009i
\(700\) 0.842728 3.14510i 0.0318521 0.118874i
\(701\) −12.7471 −0.481453 −0.240726 0.970593i \(-0.577386\pi\)
−0.240726 + 0.970593i \(0.577386\pi\)
\(702\) 0 0
\(703\) 27.0761 1.02120
\(704\) −6.05362 + 22.5924i −0.228154 + 0.851483i
\(705\) 29.2397 + 12.0572i 1.10123 + 0.454101i
\(706\) 7.66111 + 4.42315i 0.288330 + 0.166467i
\(707\) 25.5967 + 25.5967i 0.962664 + 0.962664i
\(708\) 0.970732 1.26924i 0.0364823 0.0477011i
\(709\) −42.1029 + 11.2814i −1.58121 + 0.423683i −0.939299 0.343099i \(-0.888523\pi\)
−0.641907 + 0.766782i \(0.721857\pi\)
\(710\) 14.9216 14.9216i 0.559999 0.559999i
\(711\) −23.7013 23.5514i −0.888866 0.883247i
\(712\) 2.84346 1.64168i 0.106563 0.0615244i
\(713\) 2.48239 + 0.665155i 0.0929663 + 0.0249102i
\(714\) −0.805586 1.04642i −0.0301483 0.0391613i
\(715\) 0 0
\(716\) 4.50497i 0.168359i
\(717\) −3.99203 9.59455i −0.149085 0.358315i
\(718\) 6.28386 + 10.8840i 0.234512 + 0.406186i
\(719\) 17.7809 30.7974i 0.663116 1.14855i −0.316677 0.948534i \(-0.602567\pi\)
0.979793 0.200017i \(-0.0640996\pi\)
\(720\) 26.2759 15.2817i 0.979245 0.569515i
\(721\) −4.29980 16.0471i −0.160133 0.597624i
\(722\) 3.11143 + 11.6120i 0.115795 + 0.432154i
\(723\) 42.3873 + 5.51205i 1.57640 + 0.204995i
\(724\) −1.28441 + 2.22467i −0.0477348 + 0.0826791i
\(725\) 7.52933 + 13.0412i 0.279632 + 0.484338i
\(726\) −8.19116 + 3.40812i −0.304003 + 0.126487i
\(727\) 26.2936i 0.975176i −0.873074 0.487588i \(-0.837877\pi\)
0.873074 0.487588i \(-0.162123\pi\)
\(728\) 0 0
\(729\) −18.9094 + 19.2726i −0.700349 + 0.713801i
\(730\) 18.6629 + 5.00071i 0.690745 + 0.185084i
\(731\) 2.00706 1.15878i 0.0742338 0.0428589i
\(732\) 1.28139 0.170766i 0.0473617 0.00631168i
\(733\) 5.72217 5.72217i 0.211353 0.211353i −0.593489 0.804842i \(-0.702250\pi\)
0.804842 + 0.593489i \(0.202250\pi\)
\(734\) 15.2517 4.08668i 0.562951 0.150842i
\(735\) 6.33012 + 4.84134i 0.233490 + 0.178576i
\(736\) 3.62099 + 3.62099i 0.133471 + 0.133471i
\(737\) 17.4127 + 10.0532i 0.641403 + 0.370314i
\(738\) 3.92971 + 14.4821i 0.144655 + 0.533092i
\(739\) 5.31693 19.8431i 0.195587 0.729939i −0.796528 0.604602i \(-0.793332\pi\)
0.992114 0.125337i \(-0.0400012\pi\)
\(740\) −4.23811 −0.155796
\(741\) 0 0
\(742\) 52.2565 1.91840
\(743\) 8.90116 33.2196i 0.326552 1.21871i −0.586191 0.810173i \(-0.699373\pi\)
0.912743 0.408535i \(-0.133960\pi\)
\(744\) 1.53641 3.72593i 0.0563277 0.136599i
\(745\) −41.0648 23.7087i −1.50450 0.868621i
\(746\) 12.4015 + 12.4015i 0.454051 + 0.454051i
\(747\) −0.0247543 7.80701i −0.000905711 0.285643i
\(748\) 0.141398 0.0378875i 0.00517003 0.00138531i
\(749\) 16.0445 16.0445i 0.586252 0.586252i
\(750\) −0.871910 6.54264i −0.0318377 0.238904i
\(751\) 25.8847 14.9445i 0.944546 0.545334i 0.0531635 0.998586i \(-0.483070\pi\)
0.891382 + 0.453252i \(0.149736\pi\)
\(752\) −19.7818 5.30051i −0.721367 0.193290i
\(753\) −29.8233 + 22.9594i −1.08682 + 0.836687i
\(754\) 0 0
\(755\) 36.4243i 1.32562i
\(756\) −0.567166 4.15524i −0.0206276 0.151125i
\(757\) −11.1534 19.3182i −0.405376 0.702132i 0.588989 0.808141i \(-0.299526\pi\)
−0.994365 + 0.106009i \(0.966193\pi\)
\(758\) −20.3284 + 35.2098i −0.738360 + 1.27888i
\(759\) 1.96424 15.1049i 0.0712975 0.548274i
\(760\) −12.3366 46.0409i −0.447496 1.67008i
\(761\) −6.85369 25.5783i −0.248446 0.927214i −0.971620 0.236547i \(-0.923984\pi\)
0.723174 0.690666i \(-0.242683\pi\)
\(762\) 2.82251 21.7050i 0.102249 0.786288i
\(763\) 14.8361 25.6968i 0.537101 0.930287i
\(764\) 0.280241 + 0.485391i 0.0101387 + 0.0175608i
\(765\) −1.55553 0.891522i −0.0562403 0.0322330i
\(766\) 13.4621i 0.486404i
\(767\) 0 0
\(768\) 8.92027 6.86726i 0.321882 0.247801i
\(769\) 11.8606 + 3.17804i 0.427704 + 0.114603i 0.466248 0.884654i \(-0.345605\pi\)
−0.0385441 + 0.999257i \(0.512272\pi\)
\(770\) 26.5940 15.3540i 0.958380 0.553321i
\(771\) −3.73200 28.0042i −0.134405 1.00855i
\(772\) −0.776254 + 0.776254i −0.0279380 + 0.0279380i
\(773\) 22.2683 5.96678i 0.800937 0.214610i 0.164941 0.986303i \(-0.447256\pi\)
0.635995 + 0.771693i \(0.280590\pi\)