Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(80,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.80");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.k (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
80.1 | −0.668092 | + | 2.49335i | −1.55464 | − | 0.763602i | −4.03841 | − | 2.33158i | 0.624703 | + | 0.624703i | 2.94257 | − | 3.36612i | 1.62412 | − | 0.435181i | 4.86096 | − | 4.86096i | 1.83382 | + | 2.37425i | −1.97496 | + | 1.14025i |
80.2 | −0.668092 | + | 2.49335i | 0.116023 | − | 1.72816i | −4.03841 | − | 2.33158i | 0.624703 | + | 0.624703i | 4.23140 | + | 1.44386i | −1.62412 | + | 0.435181i | 4.86096 | − | 4.86096i | −2.97308 | − | 0.401012i | −1.97496 | + | 1.14025i |
80.3 | −0.522394 | + | 1.94960i | 0.152679 | + | 1.72531i | −1.79600 | − | 1.03692i | 1.72251 | + | 1.72251i | −3.44342 | − | 0.603628i | 3.00582 | − | 0.805406i | 0.105393 | − | 0.105393i | −2.95338 | + | 0.526837i | −4.25804 | + | 2.45838i |
80.4 | −0.522394 | + | 1.94960i | 1.41782 | + | 0.994878i | −1.79600 | − | 1.03692i | 1.72251 | + | 1.72251i | −2.68028 | + | 2.24447i | −3.00582 | + | 0.805406i | 0.105393 | − | 0.105393i | 1.02043 | + | 2.82112i | −4.25804 | + | 2.45838i |
80.5 | −0.506604 | + | 1.89067i | −1.69226 | + | 0.369140i | −1.58594 | − | 0.915644i | 1.04664 | + | 1.04664i | 0.159382 | − | 3.38651i | −4.33161 | + | 1.16065i | −0.233508 | + | 0.233508i | 2.72747 | − | 1.24936i | −2.50908 | + | 1.44862i |
80.6 | −0.506604 | + | 1.89067i | 1.16581 | − | 1.28097i | −1.58594 | − | 0.915644i | 1.04664 | + | 1.04664i | 1.83128 | + | 2.85311i | 4.33161 | − | 1.16065i | −0.233508 | + | 0.233508i | −0.281758 | − | 2.98674i | −2.50908 | + | 1.44862i |
80.7 | −0.339800 | + | 1.26815i | −0.228800 | + | 1.71687i | 0.239309 | + | 0.138165i | −2.12536 | − | 2.12536i | −2.09951 | − | 0.873546i | −2.82123 | + | 0.755945i | −2.11323 | + | 2.11323i | −2.89530 | − | 0.785641i | 3.41747 | − | 1.97308i |
80.8 | −0.339800 | + | 1.26815i | 1.60126 | + | 0.660289i | 0.239309 | + | 0.138165i | −2.12536 | − | 2.12536i | −1.38145 | + | 1.80627i | 2.82123 | − | 0.755945i | −2.11323 | + | 2.11323i | 2.12804 | + | 2.11458i | 3.41747 | − | 1.97308i |
80.9 | −0.197759 | + | 0.738045i | −1.54108 | + | 0.790622i | 1.22645 | + | 0.708090i | 0.996141 | + | 0.996141i | −0.278754 | − | 1.29374i | 2.46232 | − | 0.659775i | −1.84572 | + | 1.84572i | 1.74983 | − | 2.43682i | −0.932193 | + | 0.538202i |
80.10 | −0.197759 | + | 0.738045i | 1.45524 | − | 0.939300i | 1.22645 | + | 0.708090i | 0.996141 | + | 0.996141i | 0.405460 | + | 1.25979i | −2.46232 | + | 0.659775i | −1.84572 | + | 1.84572i | 1.23543 | − | 2.73381i | −0.932193 | + | 0.538202i |
80.11 | −0.0912193 | + | 0.340435i | −1.73179 | − | 0.0302056i | 1.62448 | + | 0.937892i | −2.45719 | − | 2.45719i | 0.168255 | − | 0.586806i | −1.12240 | + | 0.300747i | −0.965906 | + | 0.965906i | 2.99818 | + | 0.104619i | 1.06066 | − | 0.612371i |
80.12 | −0.0912193 | + | 0.340435i | 0.839735 | − | 1.51487i | 1.62448 | + | 0.937892i | −2.45719 | − | 2.45719i | 0.439116 | + | 0.424061i | 1.12240 | − | 0.300747i | −0.965906 | + | 0.965906i | −1.58969 | − | 2.54419i | 1.06066 | − | 0.612371i |
80.13 | 0.0912193 | − | 0.340435i | −1.73179 | − | 0.0302056i | 1.62448 | + | 0.937892i | 2.45719 | + | 2.45719i | −0.168255 | + | 0.586806i | 1.12240 | − | 0.300747i | 0.965906 | − | 0.965906i | 2.99818 | + | 0.104619i | 1.06066 | − | 0.612371i |
80.14 | 0.0912193 | − | 0.340435i | 0.839735 | − | 1.51487i | 1.62448 | + | 0.937892i | 2.45719 | + | 2.45719i | −0.439116 | − | 0.424061i | −1.12240 | + | 0.300747i | 0.965906 | − | 0.965906i | −1.58969 | − | 2.54419i | 1.06066 | − | 0.612371i |
80.15 | 0.197759 | − | 0.738045i | −1.54108 | + | 0.790622i | 1.22645 | + | 0.708090i | −0.996141 | − | 0.996141i | 0.278754 | + | 1.29374i | −2.46232 | + | 0.659775i | 1.84572 | − | 1.84572i | 1.74983 | − | 2.43682i | −0.932193 | + | 0.538202i |
80.16 | 0.197759 | − | 0.738045i | 1.45524 | − | 0.939300i | 1.22645 | + | 0.708090i | −0.996141 | − | 0.996141i | −0.405460 | − | 1.25979i | 2.46232 | − | 0.659775i | 1.84572 | − | 1.84572i | 1.23543 | − | 2.73381i | −0.932193 | + | 0.538202i |
80.17 | 0.339800 | − | 1.26815i | −0.228800 | + | 1.71687i | 0.239309 | + | 0.138165i | 2.12536 | + | 2.12536i | 2.09951 | + | 0.873546i | 2.82123 | − | 0.755945i | 2.11323 | − | 2.11323i | −2.89530 | − | 0.785641i | 3.41747 | − | 1.97308i |
80.18 | 0.339800 | − | 1.26815i | 1.60126 | + | 0.660289i | 0.239309 | + | 0.138165i | 2.12536 | + | 2.12536i | 1.38145 | − | 1.80627i | −2.82123 | + | 0.755945i | 2.11323 | − | 2.11323i | 2.12804 | + | 2.11458i | 3.41747 | − | 1.97308i |
80.19 | 0.506604 | − | 1.89067i | −1.69226 | + | 0.369140i | −1.58594 | − | 0.915644i | −1.04664 | − | 1.04664i | −0.159382 | + | 3.38651i | 4.33161 | − | 1.16065i | 0.233508 | − | 0.233508i | 2.72747 | − | 1.24936i | −2.50908 | + | 1.44862i |
80.20 | 0.506604 | − | 1.89067i | 1.16581 | − | 1.28097i | −1.58594 | − | 0.915644i | −1.04664 | − | 1.04664i | −1.83128 | − | 2.85311i | −4.33161 | + | 1.16065i | 0.233508 | − | 0.233508i | −0.281758 | − | 2.98674i | −2.50908 | + | 1.44862i |
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.d | odd | 4 | 2 | inner |
13.e | even | 6 | 1 | inner |
13.f | odd | 12 | 2 | inner |
39.d | odd | 2 | 1 | inner |
39.f | even | 4 | 2 | inner |
39.h | odd | 6 | 1 | inner |
39.i | odd | 6 | 1 | inner |
39.k | even | 12 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 507.2.k.k | 96 | |
3.b | odd | 2 | 1 | inner | 507.2.k.k | 96 | |
13.b | even | 2 | 1 | inner | 507.2.k.k | 96 | |
13.c | even | 3 | 1 | 507.2.f.g | ✓ | 48 | |
13.c | even | 3 | 1 | inner | 507.2.k.k | 96 | |
13.d | odd | 4 | 2 | inner | 507.2.k.k | 96 | |
13.e | even | 6 | 1 | 507.2.f.g | ✓ | 48 | |
13.e | even | 6 | 1 | inner | 507.2.k.k | 96 | |
13.f | odd | 12 | 2 | 507.2.f.g | ✓ | 48 | |
13.f | odd | 12 | 2 | inner | 507.2.k.k | 96 | |
39.d | odd | 2 | 1 | inner | 507.2.k.k | 96 | |
39.f | even | 4 | 2 | inner | 507.2.k.k | 96 | |
39.h | odd | 6 | 1 | 507.2.f.g | ✓ | 48 | |
39.h | odd | 6 | 1 | inner | 507.2.k.k | 96 | |
39.i | odd | 6 | 1 | 507.2.f.g | ✓ | 48 | |
39.i | odd | 6 | 1 | inner | 507.2.k.k | 96 | |
39.k | even | 12 | 2 | 507.2.f.g | ✓ | 48 | |
39.k | even | 12 | 2 | inner | 507.2.k.k | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
507.2.f.g | ✓ | 48 | 13.c | even | 3 | 1 | |
507.2.f.g | ✓ | 48 | 13.e | even | 6 | 1 | |
507.2.f.g | ✓ | 48 | 13.f | odd | 12 | 2 | |
507.2.f.g | ✓ | 48 | 39.h | odd | 6 | 1 | |
507.2.f.g | ✓ | 48 | 39.i | odd | 6 | 1 | |
507.2.f.g | ✓ | 48 | 39.k | even | 12 | 2 | |
507.2.k.k | 96 | 1.a | even | 1 | 1 | trivial | |
507.2.k.k | 96 | 3.b | odd | 2 | 1 | inner | |
507.2.k.k | 96 | 13.b | even | 2 | 1 | inner | |
507.2.k.k | 96 | 13.c | even | 3 | 1 | inner | |
507.2.k.k | 96 | 13.d | odd | 4 | 2 | inner | |
507.2.k.k | 96 | 13.e | even | 6 | 1 | inner | |
507.2.k.k | 96 | 13.f | odd | 12 | 2 | inner | |
507.2.k.k | 96 | 39.d | odd | 2 | 1 | inner | |
507.2.k.k | 96 | 39.f | even | 4 | 2 | inner | |
507.2.k.k | 96 | 39.h | odd | 6 | 1 | inner | |
507.2.k.k | 96 | 39.i | odd | 6 | 1 | inner | |
507.2.k.k | 96 | 39.k | even | 12 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\):
\( T_{2}^{48} - 79 T_{2}^{44} + 4356 T_{2}^{40} - 116261 T_{2}^{36} + 2225667 T_{2}^{32} - 24827376 T_{2}^{28} + \cdots + 28561 \) |
\( T_{5}^{24} + 272T_{5}^{20} + 22390T_{5}^{16} + 611594T_{5}^{12} + 4403113T_{5}^{8} + 10383698T_{5}^{4} + 4826809 \) |
\( T_{7}^{48} - 623 T_{7}^{44} + 283808 T_{7}^{40} - 51260321 T_{7}^{36} + 6429650591 T_{7}^{32} + \cdots + 28\!\cdots\!61 \) |