Properties

Label 507.2.k.a.80.1
Level $507$
Weight $2$
Character 507.80
Analytic conductor $4.048$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(80,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.80");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.k (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 80.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 507.80
Dual form 507.2.k.a.488.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.86603 + 0.767949i) q^{7} +(-1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(0.866025 + 1.50000i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.86603 + 0.767949i) q^{7} +(-1.50000 + 2.59808i) q^{9} +3.46410i q^{12} +(2.00000 + 3.46410i) q^{16} +(2.09808 + 7.83013i) q^{19} +(-3.63397 - 3.63397i) q^{21} -5.00000i q^{25} -5.19615 q^{27} +(-5.73205 - 1.53590i) q^{28} +(7.83013 - 7.83013i) q^{31} +(-5.19615 + 3.00000i) q^{36} +(0.562178 - 2.09808i) q^{37} +(1.50000 + 0.866025i) q^{43} +(-3.46410 + 6.00000i) q^{48} +(1.56218 - 0.901924i) q^{49} +(-9.92820 + 9.92820i) q^{57} +(4.33013 - 7.50000i) q^{61} +(2.30385 - 8.59808i) q^{63} +8.00000i q^{64} +(0.767949 + 0.205771i) q^{67} +(9.36603 + 9.36603i) q^{73} +(7.50000 - 4.33013i) q^{75} +(-4.19615 + 15.6603i) q^{76} +12.1244 q^{79} +(-4.50000 - 7.79423i) q^{81} +(-2.66025 - 9.92820i) q^{84} +(18.5263 + 4.96410i) q^{93} +(-4.40192 - 16.4282i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} - 6 q^{9} + 8 q^{16} - 2 q^{19} - 18 q^{21} - 16 q^{28} + 14 q^{31} - 22 q^{37} + 6 q^{43} - 18 q^{49} - 12 q^{57} + 30 q^{63} + 10 q^{67} + 34 q^{73} + 30 q^{75} + 4 q^{76} - 18 q^{81} + 24 q^{84} + 36 q^{93} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) 0.866025 + 1.50000i 0.500000 + 0.866025i
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(6\) 0 0
\(7\) −2.86603 + 0.767949i −1.08326 + 0.290258i −0.755929 0.654654i \(-0.772814\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 0 0
\(9\) −1.50000 + 2.59808i −0.500000 + 0.866025i
\(10\) 0 0
\(11\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(12\) 3.46410i 1.00000i
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) 2.09808 + 7.83013i 0.481332 + 1.79635i 0.596040 + 0.802955i \(0.296740\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) −3.63397 3.63397i −0.792998 0.792998i
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 5.00000i 1.00000i
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) −5.73205 1.53590i −1.08326 0.290258i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0 0
\(31\) 7.83013 7.83013i 1.40633 1.40633i 0.628619 0.777714i \(-0.283621\pi\)
0.777714 0.628619i \(-0.216379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −5.19615 + 3.00000i −0.866025 + 0.500000i
\(37\) 0.562178 2.09808i 0.0924215 0.344922i −0.904194 0.427121i \(-0.859528\pi\)
0.996616 + 0.0821995i \(0.0261945\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(42\) 0 0
\(43\) 1.50000 + 0.866025i 0.228748 + 0.132068i 0.609994 0.792406i \(-0.291172\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −3.46410 + 6.00000i −0.500000 + 0.866025i
\(49\) 1.56218 0.901924i 0.223168 0.128846i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −9.92820 + 9.92820i −1.31502 + 1.31502i
\(58\) 0 0
\(59\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(60\) 0 0
\(61\) 4.33013 7.50000i 0.554416 0.960277i −0.443533 0.896258i \(-0.646275\pi\)
0.997949 0.0640184i \(-0.0203916\pi\)
\(62\) 0 0
\(63\) 2.30385 8.59808i 0.290258 1.08326i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.767949 + 0.205771i 0.0938199 + 0.0251390i 0.305424 0.952217i \(-0.401202\pi\)
−0.211604 + 0.977356i \(0.567869\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(72\) 0 0
\(73\) 9.36603 + 9.36603i 1.09621 + 1.09621i 0.994850 + 0.101361i \(0.0323196\pi\)
0.101361 + 0.994850i \(0.467680\pi\)
\(74\) 0 0
\(75\) 7.50000 4.33013i 0.866025 0.500000i
\(76\) −4.19615 + 15.6603i −0.481332 + 1.79635i
\(77\) 0 0
\(78\) 0 0
\(79\) 12.1244 1.36410 0.682048 0.731307i \(-0.261089\pi\)
0.682048 + 0.731307i \(0.261089\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) −2.66025 9.92820i −0.290258 1.08326i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 18.5263 + 4.96410i 1.92109 + 0.514753i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.40192 16.4282i −0.446948 1.66803i −0.710742 0.703452i \(-0.751641\pi\)
0.263795 0.964579i \(-0.415026\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.00000 8.66025i 0.500000 0.866025i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 15.5885i 1.53598i −0.640464 0.767988i \(-0.721258\pi\)
0.640464 0.767988i \(-0.278742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) −9.00000 5.19615i −0.866025 0.500000i
\(109\) −5.16987 + 5.16987i −0.495184 + 0.495184i −0.909935 0.414751i \(-0.863869\pi\)
0.414751 + 0.909935i \(0.363869\pi\)
\(110\) 0 0
\(111\) 3.63397 0.973721i 0.344922 0.0924215i
\(112\) −8.39230 8.39230i −0.792998 0.792998i
\(113\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.52628 5.50000i −0.866025 0.500000i
\(122\) 0 0
\(123\) 0 0
\(124\) 21.3923 5.73205i 1.92109 0.514753i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.866025 0.500000i 0.0768473 0.0443678i −0.461084 0.887357i \(-0.652539\pi\)
0.537931 + 0.842989i \(0.319206\pi\)
\(128\) 0 0
\(129\) 3.00000i 0.264135i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −12.0263 20.8301i −1.04281 1.80620i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(138\) 0 0
\(139\) 3.50000 6.06218i 0.296866 0.514187i −0.678551 0.734553i \(-0.737392\pi\)
0.975417 + 0.220366i \(0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 2.70577 + 1.56218i 0.223168 + 0.128846i
\(148\) 3.07180 3.07180i 0.252500 0.252500i
\(149\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(150\) 0 0
\(151\) 14.1244 + 14.1244i 1.14942 + 1.14942i 0.986666 + 0.162758i \(0.0520389\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.0000 −0.877896 −0.438948 0.898513i \(-0.644649\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −20.6244 + 5.52628i −1.61542 + 0.432852i −0.949653 0.313304i \(-0.898564\pi\)
−0.665771 + 0.746156i \(0.731897\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −23.4904 6.29423i −1.79635 0.481332i
\(172\) 1.73205 + 3.00000i 0.132068 + 0.228748i
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 3.83975 + 14.3301i 0.290258 + 1.08326i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i 0.966282 + 0.257485i \(0.0828937\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) 15.0000 1.10883
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 14.8923 3.99038i 1.08326 0.290258i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −12.0000 + 6.92820i −0.866025 + 0.500000i
\(193\) 7.06218 26.3564i 0.508347 1.89718i 0.0719816 0.997406i \(-0.477068\pi\)
0.436365 0.899770i \(-0.356266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 3.60770 0.257693
\(197\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(198\) 0 0
\(199\) 14.7224 + 8.50000i 1.04365 + 0.602549i 0.920864 0.389885i \(-0.127485\pi\)
0.122782 + 0.992434i \(0.460818\pi\)
\(200\) 0 0
\(201\) 0.356406 + 1.33013i 0.0251390 + 0.0938199i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.9904 + 22.5000i 0.894295 + 1.54896i 0.834675 + 0.550743i \(0.185655\pi\)
0.0596196 + 0.998221i \(0.481011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −16.4282 + 28.4545i −1.11522 + 1.93162i
\(218\) 0 0
\(219\) −5.93782 + 22.1603i −0.401241 + 1.49745i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.0263 + 3.22243i 0.805339 + 0.215790i 0.637927 0.770097i \(-0.279792\pi\)
0.167412 + 0.985887i \(0.446459\pi\)
\(224\) 0 0
\(225\) 12.9904 + 7.50000i 0.866025 + 0.500000i
\(226\) 0 0
\(227\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(228\) −27.1244 + 7.26795i −1.79635 + 0.481332i
\(229\) −21.3923 21.3923i −1.41364 1.41364i −0.726900 0.686743i \(-0.759040\pi\)
−0.686743 0.726900i \(-0.740960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.5000 + 18.1865i 0.682048 + 1.18134i
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0 0
\(241\) −9.36603 + 2.50962i −0.603319 + 0.161659i −0.547533 0.836784i \(-0.684433\pi\)
−0.0557856 + 0.998443i \(0.517766\pi\)
\(242\) 0 0
\(243\) 7.79423 13.5000i 0.500000 0.866025i
\(244\) 15.0000 8.66025i 0.960277 0.554416i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 12.5885 12.5885i 0.792998 0.792998i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 6.44486i 0.400464i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.12436 + 1.12436i 0.0686810 + 0.0686810i
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) −2.45448 + 9.16025i −0.149099 + 0.556446i 0.850439 + 0.526073i \(0.176336\pi\)
−0.999539 + 0.0303728i \(0.990331\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −18.0000 10.3923i −1.08152 0.624413i −0.150210 0.988654i \(-0.547995\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) 0 0
\(279\) 8.59808 + 32.0885i 0.514753 + 1.92109i
\(280\) 0 0
\(281\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(282\) 0 0
\(283\) −21.6506 + 12.5000i −1.28700 + 0.743048i −0.978117 0.208053i \(-0.933287\pi\)
−0.308879 + 0.951101i \(0.599954\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 20.8301 20.8301i 1.22108 1.22108i
\(292\) 6.85641 + 25.5885i 0.401241 + 1.49745i
\(293\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 17.3205 1.00000
\(301\) −4.96410 1.33013i −0.286126 0.0766672i
\(302\) 0 0
\(303\) 0 0
\(304\) −22.9282 + 22.9282i −1.31502 + 1.31502i
\(305\) 0 0
\(306\) 0 0
\(307\) −16.6340 16.6340i −0.949351 0.949351i 0.0494267 0.998778i \(-0.484261\pi\)
−0.998778 + 0.0494267i \(0.984261\pi\)
\(308\) 0 0
\(309\) 23.3827 13.5000i 1.33019 0.767988i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −32.9090 −1.86012 −0.930062 0.367402i \(-0.880247\pi\)
−0.930062 + 0.367402i \(0.880247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 21.0000 + 12.1244i 1.18134 + 0.682048i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) −12.2321 3.27757i −0.676434 0.181250i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.16025 34.1865i −0.503493 1.87906i −0.476011 0.879440i \(-0.657918\pi\)
−0.0274825 0.999622i \(-0.508749\pi\)
\(332\) 0 0
\(333\) 4.60770 + 4.60770i 0.252500 + 0.252500i
\(334\) 0 0
\(335\) 0 0
\(336\) 5.32051 19.8564i 0.290258 1.08326i
\(337\) 29.0000i 1.57973i 0.613280 + 0.789865i \(0.289850\pi\)
−0.613280 + 0.789865i \(0.710150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 10.9019 10.9019i 0.588649 0.588649i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) −1.17949 + 4.40192i −0.0631368 + 0.235630i −0.990282 0.139072i \(-0.955588\pi\)
0.927146 + 0.374701i \(0.122255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(360\) 0 0
\(361\) −40.4545 + 23.3564i −2.12918 + 1.22928i
\(362\) 0 0
\(363\) 19.0526i 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −15.5000 26.8468i −0.809093 1.40139i −0.913493 0.406855i \(-0.866625\pi\)
0.104399 0.994535i \(-0.466708\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 27.1244 + 27.1244i 1.40633 + 1.40633i
\(373\) −18.1865 + 31.5000i −0.941663 + 1.63101i −0.179364 + 0.983783i \(0.557404\pi\)
−0.762299 + 0.647225i \(0.775929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −16.9904 4.55256i −0.872737 0.233849i −0.205466 0.978664i \(-0.565871\pi\)
−0.667271 + 0.744815i \(0.732538\pi\)
\(380\) 0 0
\(381\) 1.50000 + 0.866025i 0.0768473 + 0.0443678i
\(382\) 0 0
\(383\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.50000 + 2.59808i −0.228748 + 0.132068i
\(388\) 8.80385 32.8564i 0.446948 1.66803i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 27.8923 7.47372i 1.39987 0.375095i 0.521575 0.853206i \(-0.325345\pi\)
0.878300 + 0.478110i \(0.158678\pi\)
\(398\) 0 0
\(399\) 20.8301 36.0788i 1.04281 1.80620i
\(400\) 17.3205 10.0000i 0.866025 0.500000i
\(401\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.918584 3.42820i −0.0454211 0.169514i 0.939490 0.342578i \(-0.111300\pi\)
−0.984911 + 0.173064i \(0.944633\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15.5885 27.0000i 0.767988 1.33019i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.1244 0.593732
\(418\) 0 0
\(419\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) 0 0
\(421\) −27.6865 + 27.6865i −1.34936 + 1.34936i −0.463002 + 0.886357i \(0.653228\pi\)
−0.886357 + 0.463002i \(0.846772\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.65064 + 24.8205i −0.321847 + 1.20115i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(432\) −10.3923 18.0000i −0.500000 0.866025i
\(433\) −30.3109 17.5000i −1.45665 0.840996i −0.457804 0.889053i \(-0.651364\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −14.1244 + 3.78461i −0.676434 + 0.181250i
\(437\) 0 0
\(438\) 0 0
\(439\) 34.5000 19.9186i 1.64660 0.950662i 0.668184 0.743996i \(-0.267072\pi\)
0.978412 0.206666i \(-0.0662612\pi\)
\(440\) 0 0
\(441\) 5.41154i 0.257693i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 7.26795 + 1.94744i 0.344922 + 0.0924215i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −6.14359 22.9282i −0.290258 1.08326i
\(449\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −8.95448 + 33.4186i −0.420718 + 1.57014i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 36.2846 + 9.72243i 1.69732 + 0.454796i 0.972263 0.233890i \(-0.0751456\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(462\) 0 0
\(463\) 22.3660 + 22.3660i 1.03944 + 1.03944i 0.999190 + 0.0402476i \(0.0128147\pi\)
0.0402476 + 0.999190i \(0.487185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −2.35898 −0.108928
\(470\) 0 0
\(471\) −9.52628 16.5000i −0.438948 0.760280i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 39.1506 10.4904i 1.79635 0.481332i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −7.41858 27.6865i −0.336168 1.25460i −0.902597 0.430486i \(-0.858342\pi\)
0.566429 0.824110i \(-0.308325\pi\)
\(488\) 0 0
\(489\) −26.1506 26.1506i −1.18257 1.18257i
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 42.7846 + 11.4641i 1.92109 + 0.514753i
\(497\) 0 0
\(498\) 0 0
\(499\) −0.411543 + 0.411543i −0.0184232 + 0.0184232i −0.716258 0.697835i \(-0.754147\pi\)
0.697835 + 0.716258i \(0.254147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(510\) 0 0
\(511\) −34.0359 19.6506i −1.50566 0.869293i
\(512\) 0 0
\(513\) −10.9019 40.6865i −0.481332 1.79635i
\(514\) 0 0
\(515\) 0 0
\(516\) −3.00000 + 5.19615i −0.132068 + 0.228748i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 4.00000 + 6.92820i 0.174908 + 0.302949i 0.940129 0.340818i \(-0.110704\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) 0 0
\(525\) −18.1699 + 18.1699i −0.792998 + 0.792998i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 48.1051i 2.08562i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −13.1506 13.1506i −0.565390 0.565390i 0.365444 0.930834i \(-0.380917\pi\)
−0.930834 + 0.365444i \(0.880917\pi\)
\(542\) 0 0
\(543\) −10.3923 + 6.00000i −0.445976 + 0.257485i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 41.0000 1.75303 0.876517 0.481371i \(-0.159861\pi\)
0.876517 + 0.481371i \(0.159861\pi\)
\(548\) 0 0
\(549\) 12.9904 + 22.5000i 0.554416 + 0.960277i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −34.7487 + 9.31089i −1.47767 + 0.395939i
\(554\) 0 0
\(555\) 0 0
\(556\) 12.1244 7.00000i 0.514187 0.296866i
\(557\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 18.8827 + 18.8827i 0.792998 + 0.792998i
\(568\) 0 0
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i 0.942293 + 0.334790i \(0.108665\pi\)
−0.942293 + 0.334790i \(0.891335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −20.7846 12.0000i −0.866025 0.500000i
\(577\) 16.0718 16.0718i 0.669078 0.669078i −0.288425 0.957503i \(-0.593132\pi\)
0.957503 + 0.288425i \(0.0931316\pi\)
\(578\) 0 0
\(579\) 45.6506 12.2321i 1.89718 0.508347i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(588\) 3.12436 + 5.41154i 0.128846 + 0.223168i
\(589\) 77.7391 + 44.8827i 3.20318 + 1.84936i
\(590\) 0 0
\(591\) 0 0
\(592\) 8.39230 2.24871i 0.344922 0.0924215i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 29.4449i 1.20510i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −20.7846 36.0000i −0.847822 1.46847i −0.883148 0.469095i \(-0.844580\pi\)
0.0353259 0.999376i \(-0.488753\pi\)
\(602\) 0 0
\(603\) −1.68653 + 1.68653i −0.0686810 + 0.0686810i
\(604\) 10.3397 + 38.5885i 0.420718 + 1.57014i
\(605\) 0 0
\(606\) 0 0
\(607\) 10.0000 17.3205i 0.405887 0.703018i −0.588537 0.808470i \(-0.700296\pi\)
0.994424 + 0.105453i \(0.0336291\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −47.7487 12.7942i −1.92855 0.516754i −0.979396 0.201948i \(-0.935273\pi\)
−0.949156 0.314806i \(-0.898061\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(618\) 0 0
\(619\) 31.8827 + 31.8827i 1.28147 + 1.28147i 0.939829 + 0.341644i \(0.110984\pi\)
0.341644 + 0.939829i \(0.389016\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −19.0526 11.0000i −0.760280 0.438948i
\(629\) 0 0
\(630\) 0 0
\(631\) −33.6244 + 9.00962i −1.33856 + 0.358667i −0.855901 0.517139i \(-0.826997\pi\)
−0.482663 + 0.875806i \(0.660330\pi\)
\(632\) 0 0
\(633\) −22.5000 + 38.9711i −0.894295 + 1.54896i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) 5.11474 + 19.0885i 0.201706 + 0.752775i 0.990429 + 0.138027i \(0.0440759\pi\)
−0.788723 + 0.614749i \(0.789257\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −56.9090 −2.23044
\(652\) −41.2487 11.0526i −1.61542 0.432852i
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −38.3827 + 10.2846i −1.49745 + 0.401241i
\(658\) 0 0
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 11.8205 44.1147i 0.459764 1.71586i −0.213925 0.976850i \(-0.568625\pi\)
0.673690 0.739014i \(-0.264708\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 5.58142 + 20.8301i 0.215790 + 0.805339i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −43.5000 + 25.1147i −1.67680 + 0.968102i −0.713123 + 0.701039i \(0.752720\pi\)
−0.963679 + 0.267063i \(0.913947\pi\)
\(674\) 0 0
\(675\) 25.9808i 1.00000i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 25.2321 + 43.7032i 0.968317 + 1.67717i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(684\) −34.3923 34.3923i −1.31502 1.31502i
\(685\) 0 0
\(686\) 0 0
\(687\) 13.5622 50.6147i 0.517429 1.93107i
\(688\) 6.92820i 0.264135i
\(689\) 0 0
\(690\) 0 0
\(691\) 5.52628 + 1.48076i 0.210230 + 0.0563308i 0.362397 0.932024i \(-0.381959\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −7.67949 + 28.6603i −0.290258 + 1.08326i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 17.6077 0.664087
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 32.6506 8.74871i 1.22622 0.328565i 0.413114 0.910679i \(-0.364441\pi\)
0.813107 + 0.582115i \(0.197775\pi\)
\(710\) 0 0
\(711\) −18.1865 + 31.5000i −0.682048 + 1.18134i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 11.9711 + 44.6769i 0.445829 + 1.66386i
\(722\) 0 0
\(723\) −11.8756 11.8756i −0.441660 0.441660i
\(724\) −6.92820 + 12.0000i −0.257485 + 0.445976i
\(725\) 0 0
\(726\) 0 0
\(727\) 49.0000i 1.81731i −0.417548 0.908655i \(-0.637111\pi\)
0.417548 0.908655i \(-0.362889\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 25.9808 + 15.0000i 0.960277 + 0.554416i
\(733\) 30.3468 30.3468i 1.12088 1.12088i 0.129275 0.991609i \(-0.458735\pi\)
0.991609 0.129275i \(-0.0412651\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −12.4378 + 46.4186i −0.457533 + 1.70754i 0.223001 + 0.974818i \(0.428415\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 15.0000 8.66025i 0.547358 0.316017i −0.200698 0.979653i \(-0.564321\pi\)
0.748056 + 0.663636i \(0.230988\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 29.7846 + 7.98076i 1.08326 + 0.290258i
\(757\) 24.2487 + 42.0000i 0.881334 + 1.52652i 0.849858 + 0.527011i \(0.176688\pi\)
0.0314762 + 0.999505i \(0.489979\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(762\) 0 0
\(763\) 10.8468 18.7872i 0.392680 0.680142i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −27.7128 −1.00000
\(769\) −36.4904 9.77757i −1.31588 0.352588i −0.468445 0.883493i \(-0.655186\pi\)
−0.847432 + 0.530904i \(0.821852\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 38.5885 38.5885i 1.38883 1.38883i
\(773\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(774\) 0 0
\(775\) −39.1506 39.1506i −1.40633 1.40633i
\(776\) 0 0
\(777\) −9.66730 + 5.58142i −0.346812 + 0.200232i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 6.24871 + 3.60770i 0.223168 + 0.128846i
\(785\) 0 0
\(786\) 0 0
\(787\) −51.3827 + 13.7679i −1.83159 + 0.490774i −0.998092 0.0617409i \(-0.980335\pi\)
−0.833503 + 0.552515i \(0.813668\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 17.0000 + 29.4449i 0.602549 + 1.04365i
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −0.712813 + 2.66025i −0.0251390 + 0.0938199i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) 17.3468 17.3468i 0.609128 0.609128i −0.333590 0.942718i \(-0.608260\pi\)
0.942718 + 0.333590i \(0.108260\pi\)
\(812\) 0 0
\(813\) −15.8660 + 4.25129i −0.556446 + 0.149099i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.63397 + 13.5622i −0.127137 + 0.474481i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(822\) 0 0
\(823\) 21.0000 + 12.1244i 0.732014 + 0.422628i 0.819159 0.573567i \(-0.194441\pi\)
−0.0871445 + 0.996196i \(0.527774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) 45.8993 26.5000i 1.59415 0.920383i 0.601566 0.798823i \(-0.294544\pi\)
0.992584 0.121560i \(-0.0387897\pi\)
\(830\) 0 0
\(831\) 36.0000i 1.24883i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −40.6865 + 40.6865i −1.40633 + 1.40633i
\(838\) 0 0
\(839\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(840\) 0 0
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 51.9615i 1.78859i
\(845\) 0 0
\(846\) 0 0
\(847\) 31.5263 + 8.44744i 1.08326 + 0.290258i
\(848\) 0 0
\(849\) −37.5000 21.6506i −1.28700 0.743048i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 5.88269 + 5.88269i 0.201419 + 0.201419i 0.800608 0.599189i \(-0.204510\pi\)
−0.599189 + 0.800608i \(0.704510\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 57.1577 1.95019 0.975097 0.221777i \(-0.0711857\pi\)
0.975097 + 0.221777i \(0.0711857\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −14.7224 + 25.5000i −0.500000 + 0.866025i
\(868\) −56.9090 + 32.8564i −1.93162 + 1.11522i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 49.2846 + 13.2058i 1.66803 + 0.446948i
\(874\) 0 0
\(875\) 0 0
\(876\) −32.4449 + 32.4449i −1.09621 + 1.09621i
\(877\) 15.0981 + 56.3468i 0.509826 + 1.90270i 0.422095 + 0.906552i \(0.361295\pi\)
0.0877308 + 0.996144i \(0.472038\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 0 0
\(883\) 55.0000i 1.85090i 0.378873 + 0.925449i \(0.376312\pi\)
−0.378873 + 0.925449i \(0.623688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) −2.09808 + 2.09808i −0.0703672 + 0.0703672i
\(890\) 0 0
\(891\) 0 0
\(892\) 17.6077 + 17.6077i 0.589549 + 0.589549i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 15.0000 + 25.9808i 0.500000 + 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) −2.30385 8.59808i −0.0766672 0.286126i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 34.6410 20.0000i 1.15024 0.664089i 0.201291 0.979531i \(-0.435486\pi\)
0.948945 + 0.315442i \(0.102153\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −54.2487 14.5359i −1.79635 0.481332i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −15.6603 58.4449i −0.517429 1.93107i
\(917\) 0 0
\(918\) 0 0
\(919\) 15.5885 27.0000i 0.514216 0.890648i −0.485648 0.874154i \(-0.661416\pi\)
0.999864 0.0164935i \(-0.00525028\pi\)
\(920\) 0 0
\(921\) 10.5455 39.3564i 0.347487 1.29684i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −10.4904 2.81089i −0.344922 0.0924215i
\(926\) 0 0
\(927\) 40.5000 + 23.3827i 1.33019 + 0.767988i
\(928\) 0 0
\(929\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(930\) 0 0
\(931\) 10.3397 + 10.3397i 0.338871 + 0.338871i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −55.4256 −1.81068 −0.905338 0.424691i \(-0.860383\pi\)
−0.905338 + 0.424691i \(0.860383\pi\)
\(938\) 0 0
\(939\) −28.5000 49.3634i −0.930062 1.61092i
\(940\) 0 0
\(941\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(948\) 42.0000i 1.36410i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 91.6218i 2.95554i
\(962\) 0 0
\(963\) 0 0
\(964\) −18.7321 5.01924i −0.603319 0.161659i
\(965\) 0 0
\(966\) 0 0
\(967\) −19.4449 + 19.4449i −0.625305 + 0.625305i −0.946883 0.321578i \(-0.895787\pi\)
0.321578 + 0.946883i \(0.395787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 27.0000 15.5885i 0.866025 0.500000i
\(973\) −5.37564 + 20.0622i −0.172335 + 0.643164i
\(974\) 0 0
\(975\) 0 0
\(976\) 34.6410 1.10883
\(977\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −5.67691 21.1865i −0.181250 0.676434i
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −22.0000 38.1051i −0.698853 1.21045i −0.968864 0.247592i \(-0.920361\pi\)
0.270011 0.962857i \(-0.412973\pi\)
\(992\) 0 0
\(993\) 43.3468 43.3468i 1.37557 1.37557i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 29.5000 51.0955i 0.934274 1.61821i 0.158352 0.987383i \(-0.449382\pi\)
0.775923 0.630828i \(-0.217285\pi\)
\(998\) 0 0
\(999\) −2.92116 + 10.9019i −0.0924215 + 0.344922i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.k.a.80.1 4
3.2 odd 2 CM 507.2.k.a.80.1 4
13.2 odd 12 507.2.f.c.437.1 4
13.3 even 3 507.2.f.b.239.1 4
13.4 even 6 39.2.k.a.32.1 yes 4
13.5 odd 4 39.2.k.a.11.1 4
13.6 odd 12 507.2.k.b.488.1 4
13.7 odd 12 inner 507.2.k.a.488.1 4
13.8 odd 4 507.2.k.c.89.1 4
13.9 even 3 507.2.k.c.188.1 4
13.10 even 6 507.2.f.c.239.1 4
13.11 odd 12 507.2.f.b.437.1 4
13.12 even 2 507.2.k.b.80.1 4
39.2 even 12 507.2.f.c.437.1 4
39.5 even 4 39.2.k.a.11.1 4
39.8 even 4 507.2.k.c.89.1 4
39.11 even 12 507.2.f.b.437.1 4
39.17 odd 6 39.2.k.a.32.1 yes 4
39.20 even 12 inner 507.2.k.a.488.1 4
39.23 odd 6 507.2.f.c.239.1 4
39.29 odd 6 507.2.f.b.239.1 4
39.32 even 12 507.2.k.b.488.1 4
39.35 odd 6 507.2.k.c.188.1 4
39.38 odd 2 507.2.k.b.80.1 4
52.31 even 4 624.2.cn.b.401.1 4
52.43 odd 6 624.2.cn.b.305.1 4
65.4 even 6 975.2.bo.c.851.1 4
65.17 odd 12 975.2.bp.a.149.1 4
65.18 even 4 975.2.bp.a.674.1 4
65.43 odd 12 975.2.bp.d.149.1 4
65.44 odd 4 975.2.bo.c.401.1 4
65.57 even 4 975.2.bp.d.674.1 4
156.83 odd 4 624.2.cn.b.401.1 4
156.95 even 6 624.2.cn.b.305.1 4
195.17 even 12 975.2.bp.a.149.1 4
195.44 even 4 975.2.bo.c.401.1 4
195.83 odd 4 975.2.bp.a.674.1 4
195.122 odd 4 975.2.bp.d.674.1 4
195.134 odd 6 975.2.bo.c.851.1 4
195.173 even 12 975.2.bp.d.149.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.k.a.11.1 4 13.5 odd 4
39.2.k.a.11.1 4 39.5 even 4
39.2.k.a.32.1 yes 4 13.4 even 6
39.2.k.a.32.1 yes 4 39.17 odd 6
507.2.f.b.239.1 4 13.3 even 3
507.2.f.b.239.1 4 39.29 odd 6
507.2.f.b.437.1 4 13.11 odd 12
507.2.f.b.437.1 4 39.11 even 12
507.2.f.c.239.1 4 13.10 even 6
507.2.f.c.239.1 4 39.23 odd 6
507.2.f.c.437.1 4 13.2 odd 12
507.2.f.c.437.1 4 39.2 even 12
507.2.k.a.80.1 4 1.1 even 1 trivial
507.2.k.a.80.1 4 3.2 odd 2 CM
507.2.k.a.488.1 4 13.7 odd 12 inner
507.2.k.a.488.1 4 39.20 even 12 inner
507.2.k.b.80.1 4 13.12 even 2
507.2.k.b.80.1 4 39.38 odd 2
507.2.k.b.488.1 4 13.6 odd 12
507.2.k.b.488.1 4 39.32 even 12
507.2.k.c.89.1 4 13.8 odd 4
507.2.k.c.89.1 4 39.8 even 4
507.2.k.c.188.1 4 13.9 even 3
507.2.k.c.188.1 4 39.35 odd 6
624.2.cn.b.305.1 4 52.43 odd 6
624.2.cn.b.305.1 4 156.95 even 6
624.2.cn.b.401.1 4 52.31 even 4
624.2.cn.b.401.1 4 156.83 odd 4
975.2.bo.c.401.1 4 65.44 odd 4
975.2.bo.c.401.1 4 195.44 even 4
975.2.bo.c.851.1 4 65.4 even 6
975.2.bo.c.851.1 4 195.134 odd 6
975.2.bp.a.149.1 4 65.17 odd 12
975.2.bp.a.149.1 4 195.17 even 12
975.2.bp.a.674.1 4 65.18 even 4
975.2.bp.a.674.1 4 195.83 odd 4
975.2.bp.d.149.1 4 65.43 odd 12
975.2.bp.d.149.1 4 195.173 even 12
975.2.bp.d.674.1 4 65.57 even 4
975.2.bp.d.674.1 4 195.122 odd 4