Properties

Label 507.2.k
Level $507$
Weight $2$
Character orbit 507.k
Rep. character $\chi_{507}(80,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $164$
Newform subspaces $11$
Sturm bound $121$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.k (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 11 \)
Sturm bound: \(121\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(507, [\chi])\).

Total New Old
Modular forms 300 244 56
Cusp forms 188 164 24
Eisenstein series 112 80 32

Trace form

\( 164 q + 2 q^{3} + 12 q^{4} + 2 q^{6} + 14 q^{7} + 2 q^{9} + O(q^{10}) \) \( 164 q + 2 q^{3} + 12 q^{4} + 2 q^{6} + 14 q^{7} + 2 q^{9} - 12 q^{10} + 14 q^{15} + 4 q^{16} - 4 q^{18} + 2 q^{19} - 22 q^{21} - 12 q^{22} - 18 q^{24} - 76 q^{27} - 18 q^{30} + 6 q^{31} - 16 q^{33} + 36 q^{34} + 36 q^{36} + 30 q^{37} - 56 q^{40} + 24 q^{42} - 30 q^{43} + 20 q^{45} + 106 q^{48} - 18 q^{49} - 46 q^{54} + 4 q^{55} - 28 q^{57} - 28 q^{58} - 44 q^{60} - 36 q^{61} - 16 q^{63} + 8 q^{67} + 32 q^{70} - 12 q^{72} + 62 q^{73} + 18 q^{75} + 36 q^{76} - 112 q^{79} + 14 q^{81} + 24 q^{82} + 8 q^{84} - 12 q^{85} - 22 q^{87} + 12 q^{88} - 10 q^{93} - 112 q^{94} - 16 q^{96} + 18 q^{97} - 40 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(507, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
507.2.k.a 507.k 39.k $4$ $4.048$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 39.2.k.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{U}(1)[D_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{3})q^{3}+2\zeta_{12}q^{4}+(-1+\cdots)q^{7}+\cdots\)
507.2.k.b 507.k 39.k $4$ $4.048$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 39.2.k.a \(0\) \(0\) \(0\) \(8\) $\mathrm{U}(1)[D_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{3})q^{3}+2\zeta_{12}q^{4}+(1+\zeta_{12}+\cdots)q^{7}+\cdots\)
507.2.k.c 507.k 39.k $4$ $4.048$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 39.2.k.a \(0\) \(0\) \(0\) \(10\) $\mathrm{U}(1)[D_{12}]$ \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+2\zeta_{12}q^{4}+(2+\cdots)q^{7}+\cdots\)
507.2.k.d 507.k 39.k $8$ $4.048$ 8.0.56070144.2 None 39.2.k.b \(0\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{1}-\beta _{2}+\beta _{3}-\beta _{4}+2\beta _{5}+\beta _{7})q^{2}+\cdots\)
507.2.k.e 507.k 39.k $8$ $4.048$ 8.0.56070144.2 None 39.2.k.b \(0\) \(-2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{2}-\beta _{5}-\beta _{7})q^{2}+(-\beta _{2}+\beta _{4})q^{3}+\cdots\)
507.2.k.f 507.k 39.k $8$ $4.048$ 8.0.56070144.2 None 39.2.k.b \(0\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{2}-\beta _{5}-\beta _{7})q^{2}+(\beta _{2}+\beta _{4}-\beta _{5}+\cdots)q^{3}+\cdots\)
507.2.k.g 507.k 39.k $8$ $4.048$ 8.0.56070144.2 \(\Q(\sqrt{-39}) \) 507.2.f.d \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q-\beta _{6}q^{2}+(-\beta _{2}-2\beta _{3})q^{3}+(-2+2\beta _{3}+\cdots)q^{4}+\cdots\)
507.2.k.h 507.k 39.k $8$ $4.048$ 8.0.56070144.2 \(\Q(\sqrt{-39}) \) 507.2.f.d \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+\beta _{5}q^{2}+(2\beta _{2}+\beta _{3})q^{3}+(1+2\beta _{2}+\cdots)q^{4}+\cdots\)
507.2.k.i 507.k 39.k $8$ $4.048$ \(\Q(\zeta_{24})\) None 39.2.f.a \(0\) \(4\) \(0\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}+(\zeta_{24}+\zeta_{24}^{4}-\zeta_{24}^{7})q^{3}+\cdots\)
507.2.k.j 507.k 39.k $8$ $4.048$ \(\Q(\zeta_{24})\) None 39.2.f.a \(0\) \(4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}+(-\zeta_{24}+\zeta_{24}^{4}+\zeta_{24}^{7})q^{3}+\cdots\)
507.2.k.k 507.k 39.k $96$ $4.048$ None 507.2.f.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(507, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(507, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)