Properties

Label 507.2.j.g.316.4
Level $507$
Weight $2$
Character 507.316
Analytic conductor $4.048$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(316,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.316");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.1731891456.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 65x^{4} - 144x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 316.4
Root \(2.21837 + 1.28078i\) of defining polynomial
Character \(\chi\) \(=\) 507.316
Dual form 507.2.j.g.361.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.21837 + 1.28078i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(2.28078 + 3.95042i) q^{4} -0.561553i q^{5} +(-2.21837 + 1.28078i) q^{6} +(-3.08440 + 1.78078i) q^{7} +6.56155i q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(2.21837 + 1.28078i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(2.28078 + 3.95042i) q^{4} -0.561553i q^{5} +(-2.21837 + 1.28078i) q^{6} +(-3.08440 + 1.78078i) q^{7} +6.56155i q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.719224 - 1.24573i) q^{10} +(1.73205 + 1.00000i) q^{11} -4.56155 q^{12} -9.12311 q^{14} +(0.486319 + 0.280776i) q^{15} +(-3.84233 + 6.65511i) q^{16} +(1.28078 + 2.21837i) q^{17} -2.56155i q^{18} +(0.972638 - 0.561553i) q^{19} +(2.21837 - 1.28078i) q^{20} -3.56155i q^{21} +(2.56155 + 4.43674i) q^{22} +(1.00000 - 1.73205i) q^{23} +(-5.68247 - 3.28078i) q^{24} +4.68466 q^{25} +1.00000 q^{27} +(-14.0696 - 8.12311i) q^{28} +(2.84233 - 4.92306i) q^{29} +(0.719224 + 1.24573i) q^{30} +1.56155i q^{31} +(-5.68247 + 3.28078i) q^{32} +(-1.73205 + 1.00000i) q^{33} +6.56155i q^{34} +(1.00000 + 1.73205i) q^{35} +(2.28078 - 3.95042i) q^{36} +(-2.97778 - 1.71922i) q^{37} +2.87689 q^{38} +3.68466 q^{40} +(2.21837 + 1.28078i) q^{41} +(4.56155 - 7.90084i) q^{42} +(0.219224 + 0.379706i) q^{43} +9.12311i q^{44} +(-0.486319 + 0.280776i) q^{45} +(4.43674 - 2.56155i) q^{46} -8.24621i q^{47} +(-3.84233 - 6.65511i) q^{48} +(2.84233 - 4.92306i) q^{49} +(10.3923 + 6.00000i) q^{50} -2.56155 q^{51} +11.6847 q^{53} +(2.21837 + 1.28078i) q^{54} +(0.561553 - 0.972638i) q^{55} +(-11.6847 - 20.2384i) q^{56} +1.12311i q^{57} +(12.6107 - 7.28078i) q^{58} +(-9.63289 + 5.56155i) q^{59} +2.56155i q^{60} +(-6.06155 - 10.4989i) q^{61} +(-2.00000 + 3.46410i) q^{62} +(3.08440 + 1.78078i) q^{63} -1.43845 q^{64} -5.12311 q^{66} +(0.379706 + 0.219224i) q^{67} +(-5.84233 + 10.1192i) q^{68} +(1.00000 + 1.73205i) q^{69} +5.12311i q^{70} +(-12.1244 + 7.00000i) q^{71} +(5.68247 - 3.28078i) q^{72} -1.87689i q^{73} +(-4.40388 - 7.62775i) q^{74} +(-2.34233 + 4.05703i) q^{75} +(4.43674 + 2.56155i) q^{76} -7.12311 q^{77} +9.56155 q^{79} +(3.73720 + 2.15767i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(3.28078 + 5.68247i) q^{82} +9.12311i q^{83} +(14.0696 - 8.12311i) q^{84} +(1.24573 - 0.719224i) q^{85} +1.12311i q^{86} +(2.84233 + 4.92306i) q^{87} +(-6.56155 + 11.3649i) q^{88} +(-11.3649 - 6.56155i) q^{89} -1.43845 q^{90} +9.12311 q^{92} +(-1.35234 - 0.780776i) q^{93} +(10.5616 - 18.2931i) q^{94} +(-0.315342 - 0.546188i) q^{95} -6.56155i q^{96} +(3.84381 - 2.21922i) q^{97} +(12.6107 - 7.28078i) q^{98} -2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 10 q^{4} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{3} + 10 q^{4} - 4 q^{9} + 14 q^{10} - 20 q^{12} - 40 q^{14} - 6 q^{16} + 2 q^{17} + 4 q^{22} + 8 q^{23} - 12 q^{25} + 8 q^{27} - 2 q^{29} + 14 q^{30} + 8 q^{35} + 10 q^{36} + 56 q^{38} - 20 q^{40} + 20 q^{42} + 10 q^{43} - 6 q^{48} - 2 q^{49} - 4 q^{51} + 44 q^{53} - 12 q^{55} - 44 q^{56} - 32 q^{61} - 16 q^{62} - 28 q^{64} - 8 q^{66} - 22 q^{68} + 8 q^{69} + 6 q^{74} + 6 q^{75} - 24 q^{77} + 60 q^{79} - 4 q^{81} + 18 q^{82} - 2 q^{87} - 36 q^{88} - 28 q^{90} + 40 q^{92} + 68 q^{94} - 52 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.21837 + 1.28078i 1.56862 + 0.905646i 0.996330 + 0.0855975i \(0.0272799\pi\)
0.572295 + 0.820048i \(0.306053\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 2.28078 + 3.95042i 1.14039 + 1.97521i
\(5\) 0.561553i 0.251134i −0.992085 0.125567i \(-0.959925\pi\)
0.992085 0.125567i \(-0.0400750\pi\)
\(6\) −2.21837 + 1.28078i −0.905646 + 0.522875i
\(7\) −3.08440 + 1.78078i −1.16579 + 0.673070i −0.952685 0.303959i \(-0.901692\pi\)
−0.213107 + 0.977029i \(0.568358\pi\)
\(8\) 6.56155i 2.31986i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.719224 1.24573i 0.227438 0.393935i
\(11\) 1.73205 + 1.00000i 0.522233 + 0.301511i 0.737848 0.674967i \(-0.235842\pi\)
−0.215615 + 0.976478i \(0.569176\pi\)
\(12\) −4.56155 −1.31681
\(13\) 0 0
\(14\) −9.12311 −2.43825
\(15\) 0.486319 + 0.280776i 0.125567 + 0.0724962i
\(16\) −3.84233 + 6.65511i −0.960582 + 1.66378i
\(17\) 1.28078 + 2.21837i 0.310634 + 0.538034i 0.978500 0.206248i \(-0.0661254\pi\)
−0.667866 + 0.744282i \(0.732792\pi\)
\(18\) 2.56155i 0.603764i
\(19\) 0.972638 0.561553i 0.223138 0.128829i −0.384264 0.923223i \(-0.625545\pi\)
0.607403 + 0.794394i \(0.292211\pi\)
\(20\) 2.21837 1.28078i 0.496043 0.286390i
\(21\) 3.56155i 0.777195i
\(22\) 2.56155 + 4.43674i 0.546125 + 0.945916i
\(23\) 1.00000 1.73205i 0.208514 0.361158i −0.742732 0.669588i \(-0.766471\pi\)
0.951247 + 0.308431i \(0.0998038\pi\)
\(24\) −5.68247 3.28078i −1.15993 0.669686i
\(25\) 4.68466 0.936932
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −14.0696 8.12311i −2.65891 1.53512i
\(29\) 2.84233 4.92306i 0.527807 0.914189i −0.471667 0.881777i \(-0.656348\pi\)
0.999475 0.0324124i \(-0.0103190\pi\)
\(30\) 0.719224 + 1.24573i 0.131312 + 0.227438i
\(31\) 1.56155i 0.280463i 0.990119 + 0.140232i \(0.0447847\pi\)
−0.990119 + 0.140232i \(0.955215\pi\)
\(32\) −5.68247 + 3.28078i −1.00453 + 0.579965i
\(33\) −1.73205 + 1.00000i −0.301511 + 0.174078i
\(34\) 6.56155i 1.12530i
\(35\) 1.00000 + 1.73205i 0.169031 + 0.292770i
\(36\) 2.28078 3.95042i 0.380129 0.658403i
\(37\) −2.97778 1.71922i −0.489544 0.282639i 0.234841 0.972034i \(-0.424543\pi\)
−0.724385 + 0.689395i \(0.757876\pi\)
\(38\) 2.87689 0.466694
\(39\) 0 0
\(40\) 3.68466 0.582596
\(41\) 2.21837 + 1.28078i 0.346451 + 0.200024i 0.663121 0.748512i \(-0.269231\pi\)
−0.316670 + 0.948536i \(0.602565\pi\)
\(42\) 4.56155 7.90084i 0.703863 1.21913i
\(43\) 0.219224 + 0.379706i 0.0334313 + 0.0579047i 0.882257 0.470768i \(-0.156023\pi\)
−0.848826 + 0.528673i \(0.822690\pi\)
\(44\) 9.12311i 1.37536i
\(45\) −0.486319 + 0.280776i −0.0724962 + 0.0418557i
\(46\) 4.43674 2.56155i 0.654162 0.377680i
\(47\) 8.24621i 1.20283i −0.798935 0.601417i \(-0.794603\pi\)
0.798935 0.601417i \(-0.205397\pi\)
\(48\) −3.84233 6.65511i −0.554592 0.960582i
\(49\) 2.84233 4.92306i 0.406047 0.703294i
\(50\) 10.3923 + 6.00000i 1.46969 + 0.848528i
\(51\) −2.56155 −0.358689
\(52\) 0 0
\(53\) 11.6847 1.60501 0.802506 0.596645i \(-0.203500\pi\)
0.802506 + 0.596645i \(0.203500\pi\)
\(54\) 2.21837 + 1.28078i 0.301882 + 0.174292i
\(55\) 0.561553 0.972638i 0.0757198 0.131150i
\(56\) −11.6847 20.2384i −1.56143 2.70447i
\(57\) 1.12311i 0.148759i
\(58\) 12.6107 7.28078i 1.65586 0.956013i
\(59\) −9.63289 + 5.56155i −1.25410 + 0.724053i −0.971920 0.235310i \(-0.924389\pi\)
−0.282175 + 0.959363i \(0.591056\pi\)
\(60\) 2.56155i 0.330695i
\(61\) −6.06155 10.4989i −0.776102 1.34425i −0.934173 0.356821i \(-0.883861\pi\)
0.158071 0.987428i \(-0.449473\pi\)
\(62\) −2.00000 + 3.46410i −0.254000 + 0.439941i
\(63\) 3.08440 + 1.78078i 0.388597 + 0.224357i
\(64\) −1.43845 −0.179806
\(65\) 0 0
\(66\) −5.12311 −0.630611
\(67\) 0.379706 + 0.219224i 0.0463885 + 0.0267824i 0.523015 0.852324i \(-0.324807\pi\)
−0.476626 + 0.879106i \(0.658141\pi\)
\(68\) −5.84233 + 10.1192i −0.708486 + 1.22713i
\(69\) 1.00000 + 1.73205i 0.120386 + 0.208514i
\(70\) 5.12311i 0.612328i
\(71\) −12.1244 + 7.00000i −1.43890 + 0.830747i −0.997773 0.0666994i \(-0.978753\pi\)
−0.441123 + 0.897447i \(0.645420\pi\)
\(72\) 5.68247 3.28078i 0.669686 0.386643i
\(73\) 1.87689i 0.219674i −0.993950 0.109837i \(-0.964967\pi\)
0.993950 0.109837i \(-0.0350329\pi\)
\(74\) −4.40388 7.62775i −0.511941 0.886708i
\(75\) −2.34233 + 4.05703i −0.270469 + 0.468466i
\(76\) 4.43674 + 2.56155i 0.508929 + 0.293830i
\(77\) −7.12311 −0.811753
\(78\) 0 0
\(79\) 9.56155 1.07576 0.537879 0.843022i \(-0.319226\pi\)
0.537879 + 0.843022i \(0.319226\pi\)
\(80\) 3.73720 + 2.15767i 0.417831 + 0.241235i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 3.28078 + 5.68247i 0.362301 + 0.627524i
\(83\) 9.12311i 1.00139i 0.865624 + 0.500695i \(0.166922\pi\)
−0.865624 + 0.500695i \(0.833078\pi\)
\(84\) 14.0696 8.12311i 1.53512 0.886303i
\(85\) 1.24573 0.719224i 0.135119 0.0780108i
\(86\) 1.12311i 0.121108i
\(87\) 2.84233 + 4.92306i 0.304730 + 0.527807i
\(88\) −6.56155 + 11.3649i −0.699464 + 1.21151i
\(89\) −11.3649 6.56155i −1.20468 0.695523i −0.243089 0.970004i \(-0.578161\pi\)
−0.961593 + 0.274481i \(0.911494\pi\)
\(90\) −1.43845 −0.151626
\(91\) 0 0
\(92\) 9.12311 0.951150
\(93\) −1.35234 0.780776i −0.140232 0.0809627i
\(94\) 10.5616 18.2931i 1.08934 1.88679i
\(95\) −0.315342 0.546188i −0.0323534 0.0560377i
\(96\) 6.56155i 0.669686i
\(97\) 3.84381 2.21922i 0.390280 0.225328i −0.292002 0.956418i \(-0.594321\pi\)
0.682281 + 0.731090i \(0.260988\pi\)
\(98\) 12.6107 7.28078i 1.27387 0.735469i
\(99\) 2.00000i 0.201008i
\(100\) 10.6847 + 18.5064i 1.06847 + 1.85064i
\(101\) −1.71922 + 2.97778i −0.171069 + 0.296300i −0.938794 0.344479i \(-0.888055\pi\)
0.767725 + 0.640780i \(0.221389\pi\)
\(102\) −5.68247 3.28078i −0.562649 0.324845i
\(103\) 7.56155 0.745062 0.372531 0.928020i \(-0.378490\pi\)
0.372531 + 0.928020i \(0.378490\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 25.9209 + 14.9654i 2.51766 + 1.45357i
\(107\) −4.12311 + 7.14143i −0.398596 + 0.690388i −0.993553 0.113369i \(-0.963836\pi\)
0.594957 + 0.803757i \(0.297169\pi\)
\(108\) 2.28078 + 3.95042i 0.219468 + 0.380129i
\(109\) 17.8078i 1.70567i −0.522177 0.852837i \(-0.674880\pi\)
0.522177 0.852837i \(-0.325120\pi\)
\(110\) 2.49146 1.43845i 0.237552 0.137151i
\(111\) 2.97778 1.71922i 0.282639 0.163181i
\(112\) 27.3693i 2.58616i
\(113\) 7.40388 + 12.8239i 0.696499 + 1.20637i 0.969673 + 0.244406i \(0.0785931\pi\)
−0.273174 + 0.961965i \(0.588074\pi\)
\(114\) −1.43845 + 2.49146i −0.134723 + 0.233347i
\(115\) −0.972638 0.561553i −0.0906990 0.0523651i
\(116\) 25.9309 2.40762
\(117\) 0 0
\(118\) −28.4924 −2.62294
\(119\) −7.90084 4.56155i −0.724269 0.418157i
\(120\) −1.84233 + 3.19101i −0.168181 + 0.291298i
\(121\) −3.50000 6.06218i −0.318182 0.551107i
\(122\) 31.0540i 2.81149i
\(123\) −2.21837 + 1.28078i −0.200024 + 0.115484i
\(124\) −6.16879 + 3.56155i −0.553974 + 0.319837i
\(125\) 5.43845i 0.486430i
\(126\) 4.56155 + 7.90084i 0.406375 + 0.703863i
\(127\) 4.78078 8.28055i 0.424225 0.734780i −0.572122 0.820168i \(-0.693880\pi\)
0.996348 + 0.0853884i \(0.0272131\pi\)
\(128\) 8.17394 + 4.71922i 0.722481 + 0.417124i
\(129\) −0.438447 −0.0386031
\(130\) 0 0
\(131\) −17.3693 −1.51756 −0.758782 0.651345i \(-0.774205\pi\)
−0.758782 + 0.651345i \(0.774205\pi\)
\(132\) −7.90084 4.56155i −0.687680 0.397032i
\(133\) −2.00000 + 3.46410i −0.173422 + 0.300376i
\(134\) 0.561553 + 0.972638i 0.0485108 + 0.0840231i
\(135\) 0.561553i 0.0483308i
\(136\) −14.5560 + 8.40388i −1.24816 + 0.720627i
\(137\) −1.24573 + 0.719224i −0.106430 + 0.0614474i −0.552270 0.833665i \(-0.686238\pi\)
0.445840 + 0.895113i \(0.352905\pi\)
\(138\) 5.12311i 0.436108i
\(139\) −5.46543 9.46641i −0.463572 0.802930i 0.535564 0.844495i \(-0.320099\pi\)
−0.999136 + 0.0415643i \(0.986766\pi\)
\(140\) −4.56155 + 7.90084i −0.385522 + 0.667743i
\(141\) 7.14143 + 4.12311i 0.601417 + 0.347228i
\(142\) −35.8617 −3.00945
\(143\) 0 0
\(144\) 7.68466 0.640388
\(145\) −2.76456 1.59612i −0.229584 0.132550i
\(146\) 2.40388 4.16365i 0.198947 0.344586i
\(147\) 2.84233 + 4.92306i 0.234431 + 0.406047i
\(148\) 15.6847i 1.28927i
\(149\) 5.68247 3.28078i 0.465526 0.268772i −0.248839 0.968545i \(-0.580049\pi\)
0.714365 + 0.699773i \(0.246716\pi\)
\(150\) −10.3923 + 6.00000i −0.848528 + 0.489898i
\(151\) 15.3693i 1.25074i 0.780329 + 0.625369i \(0.215051\pi\)
−0.780329 + 0.625369i \(0.784949\pi\)
\(152\) 3.68466 + 6.38202i 0.298865 + 0.517650i
\(153\) 1.28078 2.21837i 0.103545 0.179345i
\(154\) −15.8017 9.12311i −1.27334 0.735161i
\(155\) 0.876894 0.0704339
\(156\) 0 0
\(157\) −4.36932 −0.348709 −0.174355 0.984683i \(-0.555784\pi\)
−0.174355 + 0.984683i \(0.555784\pi\)
\(158\) 21.2111 + 12.2462i 1.68746 + 0.974256i
\(159\) −5.84233 + 10.1192i −0.463327 + 0.802506i
\(160\) 1.84233 + 3.19101i 0.145649 + 0.252271i
\(161\) 7.12311i 0.561379i
\(162\) −2.21837 + 1.28078i −0.174292 + 0.100627i
\(163\) 13.6899 7.90388i 1.07228 0.619080i 0.143475 0.989654i \(-0.454172\pi\)
0.928803 + 0.370574i \(0.120839\pi\)
\(164\) 11.6847i 0.912419i
\(165\) 0.561553 + 0.972638i 0.0437168 + 0.0757198i
\(166\) −11.6847 + 20.2384i −0.906905 + 1.57081i
\(167\) 5.40938 + 3.12311i 0.418590 + 0.241673i 0.694474 0.719518i \(-0.255637\pi\)
−0.275884 + 0.961191i \(0.588970\pi\)
\(168\) 23.3693 1.80298
\(169\) 0 0
\(170\) 3.68466 0.282600
\(171\) −0.972638 0.561553i −0.0743795 0.0429430i
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) 1.87689 + 3.25088i 0.142698 + 0.247160i 0.928512 0.371303i \(-0.121089\pi\)
−0.785814 + 0.618463i \(0.787756\pi\)
\(174\) 14.5616i 1.10391i
\(175\) −14.4493 + 8.34233i −1.09227 + 0.630621i
\(176\) −13.3102 + 7.68466i −1.00330 + 0.579253i
\(177\) 11.1231i 0.836064i
\(178\) −16.8078 29.1119i −1.25980 2.18203i
\(179\) −6.56155 + 11.3649i −0.490433 + 0.849456i −0.999939 0.0110115i \(-0.996495\pi\)
0.509506 + 0.860467i \(0.329828\pi\)
\(180\) −2.21837 1.28078i −0.165348 0.0954634i
\(181\) −9.68466 −0.719855 −0.359927 0.932980i \(-0.617199\pi\)
−0.359927 + 0.932980i \(0.617199\pi\)
\(182\) 0 0
\(183\) 12.1231 0.896166
\(184\) 11.3649 + 6.56155i 0.837835 + 0.483724i
\(185\) −0.965435 + 1.67218i −0.0709802 + 0.122941i
\(186\) −2.00000 3.46410i −0.146647 0.254000i
\(187\) 5.12311i 0.374639i
\(188\) 32.5760 18.8078i 2.37585 1.37170i
\(189\) −3.08440 + 1.78078i −0.224357 + 0.129532i
\(190\) 1.61553i 0.117203i
\(191\) 0.438447 + 0.759413i 0.0317249 + 0.0549492i 0.881452 0.472274i \(-0.156567\pi\)
−0.849727 + 0.527223i \(0.823233\pi\)
\(192\) 0.719224 1.24573i 0.0519055 0.0899029i
\(193\) −16.8809 9.74621i −1.21512 0.701548i −0.251247 0.967923i \(-0.580841\pi\)
−0.963869 + 0.266375i \(0.914174\pi\)
\(194\) 11.3693 0.816269
\(195\) 0 0
\(196\) 25.9309 1.85220
\(197\) −9.84612 5.68466i −0.701507 0.405015i 0.106402 0.994323i \(-0.466067\pi\)
−0.807908 + 0.589308i \(0.799400\pi\)
\(198\) 2.56155 4.43674i 0.182042 0.315305i
\(199\) −11.5885 20.0719i −0.821490 1.42286i −0.904573 0.426320i \(-0.859810\pi\)
0.0830828 0.996543i \(-0.473523\pi\)
\(200\) 30.7386i 2.17355i
\(201\) −0.379706 + 0.219224i −0.0267824 + 0.0154628i
\(202\) −7.62775 + 4.40388i −0.536686 + 0.309856i
\(203\) 20.2462i 1.42101i
\(204\) −5.84233 10.1192i −0.409045 0.708486i
\(205\) 0.719224 1.24573i 0.0502328 0.0870057i
\(206\) 16.7743 + 9.68466i 1.16872 + 0.674762i
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) 2.24621 0.155374
\(210\) −4.43674 2.56155i −0.306164 0.176764i
\(211\) −3.65767 + 6.33527i −0.251804 + 0.436138i −0.964023 0.265820i \(-0.914357\pi\)
0.712218 + 0.701958i \(0.247691\pi\)
\(212\) 26.6501 + 46.1593i 1.83034 + 3.17023i
\(213\) 14.0000i 0.959264i
\(214\) −18.2931 + 10.5616i −1.25049 + 0.721973i
\(215\) 0.213225 0.123106i 0.0145418 0.00839573i
\(216\) 6.56155i 0.446457i
\(217\) −2.78078 4.81645i −0.188771 0.326962i
\(218\) 22.8078 39.5042i 1.54474 2.67556i
\(219\) 1.62544 + 0.938447i 0.109837 + 0.0634144i
\(220\) 5.12311 0.345400
\(221\) 0 0
\(222\) 8.80776 0.591138
\(223\) 6.92820 + 4.00000i 0.463947 + 0.267860i 0.713702 0.700449i \(-0.247017\pi\)
−0.249756 + 0.968309i \(0.580350\pi\)
\(224\) 11.6847 20.2384i 0.780714 1.35224i
\(225\) −2.34233 4.05703i −0.156155 0.270469i
\(226\) 37.9309i 2.52312i
\(227\) 0.972638 0.561553i 0.0645563 0.0372716i −0.467374 0.884059i \(-0.654800\pi\)
0.531931 + 0.846788i \(0.321467\pi\)
\(228\) −4.43674 + 2.56155i −0.293830 + 0.169643i
\(229\) 0.246211i 0.0162701i 0.999967 + 0.00813505i \(0.00258949\pi\)
−0.999967 + 0.00813505i \(0.997411\pi\)
\(230\) −1.43845 2.49146i −0.0948484 0.164282i
\(231\) 3.56155 6.16879i 0.234333 0.405877i
\(232\) 32.3029 + 18.6501i 2.12079 + 1.22444i
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −4.63068 −0.302072
\(236\) −43.9409 25.3693i −2.86031 1.65140i
\(237\) −4.78078 + 8.28055i −0.310545 + 0.537879i
\(238\) −11.6847 20.2384i −0.757404 1.31186i
\(239\) 0.630683i 0.0407955i 0.999792 + 0.0203977i \(0.00649326\pi\)
−0.999792 + 0.0203977i \(0.993507\pi\)
\(240\) −3.73720 + 2.15767i −0.241235 + 0.139277i
\(241\) 2.43160 1.40388i 0.156633 0.0904320i −0.419635 0.907693i \(-0.637842\pi\)
0.576268 + 0.817261i \(0.304509\pi\)
\(242\) 17.9309i 1.15264i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 27.6501 47.8914i 1.77012 3.06593i
\(245\) −2.76456 1.59612i −0.176621 0.101972i
\(246\) −6.56155 −0.418349
\(247\) 0 0
\(248\) −10.2462 −0.650635
\(249\) −7.90084 4.56155i −0.500695 0.289077i
\(250\) 6.96543 12.0645i 0.440533 0.763025i
\(251\) −15.3693 26.6204i −0.970103 1.68027i −0.695231 0.718786i \(-0.744698\pi\)
−0.274871 0.961481i \(-0.588635\pi\)
\(252\) 16.2462i 1.02342i
\(253\) 3.46410 2.00000i 0.217786 0.125739i
\(254\) 21.2111 12.2462i 1.33090 0.768396i
\(255\) 1.43845i 0.0900791i
\(256\) 13.5270 + 23.4294i 0.845437 + 1.46434i
\(257\) −8.08854 + 14.0098i −0.504549 + 0.873905i 0.495437 + 0.868644i \(0.335008\pi\)
−0.999986 + 0.00526106i \(0.998325\pi\)
\(258\) −0.972638 0.561553i −0.0605538 0.0349608i
\(259\) 12.2462 0.760943
\(260\) 0 0
\(261\) −5.68466 −0.351872
\(262\) −38.5316 22.2462i −2.38049 1.37438i
\(263\) 7.68466 13.3102i 0.473856 0.820743i −0.525696 0.850673i \(-0.676195\pi\)
0.999552 + 0.0299295i \(0.00952826\pi\)
\(264\) −6.56155 11.3649i −0.403836 0.699464i
\(265\) 6.56155i 0.403073i
\(266\) −8.87348 + 5.12311i −0.544068 + 0.314118i
\(267\) 11.3649 6.56155i 0.695523 0.401561i
\(268\) 2.00000i 0.122169i
\(269\) −1.68466 2.91791i −0.102715 0.177908i 0.810087 0.586310i \(-0.199420\pi\)
−0.912803 + 0.408401i \(0.866086\pi\)
\(270\) 0.719224 1.24573i 0.0437706 0.0758128i
\(271\) 0.925894 + 0.534565i 0.0562441 + 0.0324725i 0.527858 0.849332i \(-0.322995\pi\)
−0.471614 + 0.881805i \(0.656329\pi\)
\(272\) −19.6847 −1.19356
\(273\) 0 0
\(274\) −3.68466 −0.222598
\(275\) 8.11407 + 4.68466i 0.489297 + 0.282496i
\(276\) −4.56155 + 7.90084i −0.274573 + 0.475575i
\(277\) 8.84233 + 15.3154i 0.531284 + 0.920211i 0.999333 + 0.0365086i \(0.0116236\pi\)
−0.468049 + 0.883702i \(0.655043\pi\)
\(278\) 28.0000i 1.67933i
\(279\) 1.35234 0.780776i 0.0809627 0.0467439i
\(280\) −11.3649 + 6.56155i −0.679185 + 0.392128i
\(281\) 2.80776i 0.167497i −0.996487 0.0837486i \(-0.973311\pi\)
0.996487 0.0837486i \(-0.0266893\pi\)
\(282\) 10.5616 + 18.2931i 0.628931 + 1.08934i
\(283\) −0.657671 + 1.13912i −0.0390945 + 0.0677136i −0.884911 0.465761i \(-0.845781\pi\)
0.845816 + 0.533475i \(0.179114\pi\)
\(284\) −55.3059 31.9309i −3.28180 1.89475i
\(285\) 0.630683 0.0373584
\(286\) 0 0
\(287\) −9.12311 −0.538520
\(288\) 5.68247 + 3.28078i 0.334843 + 0.193322i
\(289\) 5.21922 9.03996i 0.307013 0.531762i
\(290\) −4.08854 7.08156i −0.240087 0.415844i
\(291\) 4.43845i 0.260186i
\(292\) 7.41452 4.28078i 0.433902 0.250513i
\(293\) 21.2709 12.2808i 1.24266 0.717451i 0.273026 0.962007i \(-0.411976\pi\)
0.969635 + 0.244556i \(0.0786422\pi\)
\(294\) 14.5616i 0.849247i
\(295\) 3.12311 + 5.40938i 0.181834 + 0.314946i
\(296\) 11.2808 19.5389i 0.655682 1.13567i
\(297\) 1.73205 + 1.00000i 0.100504 + 0.0580259i
\(298\) 16.8078 0.973648
\(299\) 0 0
\(300\) −21.3693 −1.23376
\(301\) −1.35234 0.780776i −0.0779478 0.0450032i
\(302\) −19.6847 + 34.0948i −1.13272 + 1.96194i
\(303\) −1.71922 2.97778i −0.0987668 0.171069i
\(304\) 8.63068i 0.495004i
\(305\) −5.89570 + 3.40388i −0.337587 + 0.194906i
\(306\) 5.68247 3.28078i 0.324845 0.187550i
\(307\) 10.1922i 0.581702i 0.956768 + 0.290851i \(0.0939383\pi\)
−0.956768 + 0.290851i \(0.906062\pi\)
\(308\) −16.2462 28.1393i −0.925714 1.60338i
\(309\) −3.78078 + 6.54850i −0.215081 + 0.372531i
\(310\) 1.94528 + 1.12311i 0.110484 + 0.0637881i
\(311\) 10.8769 0.616772 0.308386 0.951261i \(-0.400211\pi\)
0.308386 + 0.951261i \(0.400211\pi\)
\(312\) 0 0
\(313\) −1.31534 −0.0743475 −0.0371738 0.999309i \(-0.511835\pi\)
−0.0371738 + 0.999309i \(0.511835\pi\)
\(314\) −9.69276 5.59612i −0.546994 0.315807i
\(315\) 1.00000 1.73205i 0.0563436 0.0975900i
\(316\) 21.8078 + 37.7722i 1.22678 + 2.12485i
\(317\) 23.0540i 1.29484i 0.762133 + 0.647420i \(0.224152\pi\)
−0.762133 + 0.647420i \(0.775848\pi\)
\(318\) −25.9209 + 14.9654i −1.45357 + 0.839220i
\(319\) 9.84612 5.68466i 0.551277 0.318280i
\(320\) 0.807764i 0.0451554i
\(321\) −4.12311 7.14143i −0.230129 0.398596i
\(322\) −9.12311 + 15.8017i −0.508411 + 0.880593i
\(323\) 2.49146 + 1.43845i 0.138629 + 0.0800373i
\(324\) −4.56155 −0.253420
\(325\) 0 0
\(326\) 40.4924 2.24267
\(327\) 15.4220 + 8.90388i 0.852837 + 0.492386i
\(328\) −8.40388 + 14.5560i −0.464027 + 0.803718i
\(329\) 14.6847 + 25.4346i 0.809591 + 1.40225i
\(330\) 2.87689i 0.158368i
\(331\) 20.6181 11.9039i 1.13327 0.654297i 0.188518 0.982070i \(-0.439631\pi\)
0.944756 + 0.327773i \(0.106298\pi\)
\(332\) −36.0401 + 20.8078i −1.97796 + 1.14197i
\(333\) 3.43845i 0.188426i
\(334\) 8.00000 + 13.8564i 0.437741 + 0.758189i
\(335\) 0.123106 0.213225i 0.00672598 0.0116497i
\(336\) 23.7025 + 13.6847i 1.29308 + 0.746559i
\(337\) −2.12311 −0.115653 −0.0578265 0.998327i \(-0.518417\pi\)
−0.0578265 + 0.998327i \(0.518417\pi\)
\(338\) 0 0
\(339\) −14.8078 −0.804247
\(340\) 5.68247 + 3.28078i 0.308175 + 0.177925i
\(341\) −1.56155 + 2.70469i −0.0845628 + 0.146467i
\(342\) −1.43845 2.49146i −0.0777823 0.134723i
\(343\) 4.68466i 0.252948i
\(344\) −2.49146 + 1.43845i −0.134331 + 0.0775559i
\(345\) 0.972638 0.561553i 0.0523651 0.0302330i
\(346\) 9.61553i 0.516934i
\(347\) 6.80776 + 11.7914i 0.365460 + 0.632995i 0.988850 0.148916i \(-0.0475784\pi\)
−0.623390 + 0.781911i \(0.714245\pi\)
\(348\) −12.9654 + 22.4568i −0.695020 + 1.20381i
\(349\) 11.9579 + 6.90388i 0.640090 + 0.369556i 0.784649 0.619940i \(-0.212843\pi\)
−0.144559 + 0.989496i \(0.546176\pi\)
\(350\) −42.7386 −2.28448
\(351\) 0 0
\(352\) −13.1231 −0.699464
\(353\) 15.3154 + 8.84233i 0.815155 + 0.470630i 0.848743 0.528806i \(-0.177360\pi\)
−0.0335881 + 0.999436i \(0.510693\pi\)
\(354\) 14.2462 24.6752i 0.757178 1.31147i
\(355\) 3.93087 + 6.80847i 0.208629 + 0.361356i
\(356\) 59.8617i 3.17267i
\(357\) 7.90084 4.56155i 0.418157 0.241423i
\(358\) −29.1119 + 16.8078i −1.53861 + 0.888318i
\(359\) 15.3693i 0.811162i 0.914059 + 0.405581i \(0.132931\pi\)
−0.914059 + 0.405581i \(0.867069\pi\)
\(360\) −1.84233 3.19101i −0.0970993 0.168181i
\(361\) −8.86932 + 15.3621i −0.466806 + 0.808532i
\(362\) −21.4842 12.4039i −1.12918 0.651934i
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) −1.05398 −0.0551676
\(366\) 26.8935 + 15.5270i 1.40575 + 0.811609i
\(367\) −10.0270 + 17.3673i −0.523404 + 0.906563i 0.476224 + 0.879324i \(0.342005\pi\)
−0.999629 + 0.0272394i \(0.991328\pi\)
\(368\) 7.68466 + 13.3102i 0.400591 + 0.693843i
\(369\) 2.56155i 0.133349i
\(370\) −4.28338 + 2.47301i −0.222682 + 0.128566i
\(371\) −36.0401 + 20.8078i −1.87111 + 1.08029i
\(372\) 7.12311i 0.369316i
\(373\) −1.81534 3.14426i −0.0939948 0.162804i 0.815194 0.579188i \(-0.196630\pi\)
−0.909189 + 0.416384i \(0.863297\pi\)
\(374\) −6.56155 + 11.3649i −0.339290 + 0.587667i
\(375\) 4.70983 + 2.71922i 0.243215 + 0.140420i
\(376\) 54.1080 2.79040
\(377\) 0 0
\(378\) −9.12311 −0.469242
\(379\) 9.79937 + 5.65767i 0.503360 + 0.290615i 0.730100 0.683340i \(-0.239473\pi\)
−0.226740 + 0.973955i \(0.572807\pi\)
\(380\) 1.43845 2.49146i 0.0737908 0.127809i
\(381\) 4.78078 + 8.28055i 0.244927 + 0.424225i
\(382\) 2.24621i 0.114926i
\(383\) −23.1563 + 13.3693i −1.18323 + 0.683140i −0.956760 0.290877i \(-0.906053\pi\)
−0.226473 + 0.974017i \(0.572720\pi\)
\(384\) −8.17394 + 4.71922i −0.417124 + 0.240827i
\(385\) 4.00000i 0.203859i
\(386\) −24.9654 43.2414i −1.27071 2.20093i
\(387\) 0.219224 0.379706i 0.0111438 0.0193016i
\(388\) 17.5337 + 10.1231i 0.890140 + 0.513923i
\(389\) 3.05398 0.154843 0.0774213 0.996998i \(-0.475331\pi\)
0.0774213 + 0.996998i \(0.475331\pi\)
\(390\) 0 0
\(391\) 5.12311 0.259087
\(392\) 32.3029 + 18.6501i 1.63154 + 0.941972i
\(393\) 8.68466 15.0423i 0.438083 0.758782i
\(394\) −14.5616 25.2213i −0.733600 1.27063i
\(395\) 5.36932i 0.270160i
\(396\) 7.90084 4.56155i 0.397032 0.229227i
\(397\) −10.4390 + 6.02699i −0.523921 + 0.302486i −0.738537 0.674213i \(-0.764483\pi\)
0.214617 + 0.976698i \(0.431150\pi\)
\(398\) 59.3693i 2.97591i
\(399\) −2.00000 3.46410i −0.100125 0.173422i
\(400\) −18.0000 + 31.1769i −0.900000 + 1.55885i
\(401\) −16.0748 9.28078i −0.802736 0.463460i 0.0416909 0.999131i \(-0.486726\pi\)
−0.844427 + 0.535671i \(0.820059\pi\)
\(402\) −1.12311 −0.0560154
\(403\) 0 0
\(404\) −15.6847 −0.780341
\(405\) 0.486319 + 0.280776i 0.0241654 + 0.0139519i
\(406\) −25.9309 + 44.9136i −1.28693 + 2.22902i
\(407\) −3.43845 5.95557i −0.170437 0.295206i
\(408\) 16.8078i 0.832108i
\(409\) 15.9083 9.18466i 0.786615 0.454152i −0.0521548 0.998639i \(-0.516609\pi\)
0.838769 + 0.544487i \(0.183276\pi\)
\(410\) 3.19101 1.84233i 0.157593 0.0909862i
\(411\) 1.43845i 0.0709534i
\(412\) 17.2462 + 29.8713i 0.849660 + 1.47165i
\(413\) 19.8078 34.3081i 0.974676 1.68819i
\(414\) −4.43674 2.56155i −0.218054 0.125893i
\(415\) 5.12311 0.251483
\(416\) 0 0
\(417\) 10.9309 0.535287
\(418\) 4.98293 + 2.87689i 0.243723 + 0.140714i
\(419\) 8.87689 15.3752i 0.433665 0.751129i −0.563521 0.826102i \(-0.690554\pi\)
0.997186 + 0.0749725i \(0.0238869\pi\)
\(420\) −4.56155 7.90084i −0.222581 0.385522i
\(421\) 14.7538i 0.719056i −0.933134 0.359528i \(-0.882938\pi\)
0.933134 0.359528i \(-0.117062\pi\)
\(422\) −16.2281 + 9.36932i −0.789973 + 0.456091i
\(423\) −7.14143 + 4.12311i −0.347228 + 0.200472i
\(424\) 76.6695i 3.72340i
\(425\) 6.00000 + 10.3923i 0.291043 + 0.504101i
\(426\) 17.9309 31.0572i 0.868753 1.50473i
\(427\) 37.3924 + 21.5885i 1.80955 + 1.04474i
\(428\) −37.6155 −1.81822
\(429\) 0 0
\(430\) 0.630683 0.0304142
\(431\) −2.49146 1.43845i −0.120010 0.0692876i 0.438794 0.898588i \(-0.355406\pi\)
−0.558803 + 0.829300i \(0.688739\pi\)
\(432\) −3.84233 + 6.65511i −0.184864 + 0.320194i
\(433\) 12.6231 + 21.8639i 0.606628 + 1.05071i 0.991792 + 0.127862i \(0.0408115\pi\)
−0.385164 + 0.922848i \(0.625855\pi\)
\(434\) 14.2462i 0.683840i
\(435\) 2.76456 1.59612i 0.132550 0.0765280i
\(436\) 70.3482 40.6155i 3.36907 1.94513i
\(437\) 2.24621i 0.107451i
\(438\) 2.40388 + 4.16365i 0.114862 + 0.198947i
\(439\) −0.657671 + 1.13912i −0.0313889 + 0.0543672i −0.881293 0.472570i \(-0.843326\pi\)
0.849904 + 0.526937i \(0.176660\pi\)
\(440\) 6.38202 + 3.68466i 0.304251 + 0.175659i
\(441\) −5.68466 −0.270698
\(442\) 0 0
\(443\) 14.7386 0.700254 0.350127 0.936702i \(-0.386138\pi\)
0.350127 + 0.936702i \(0.386138\pi\)
\(444\) 13.5833 + 7.84233i 0.644635 + 0.372180i
\(445\) −3.68466 + 6.38202i −0.174670 + 0.302537i
\(446\) 10.2462 + 17.7470i 0.485172 + 0.840343i
\(447\) 6.56155i 0.310351i
\(448\) 4.43674 2.56155i 0.209616 0.121022i
\(449\) 7.14143 4.12311i 0.337025 0.194581i −0.321931 0.946763i \(-0.604332\pi\)
0.658956 + 0.752182i \(0.270998\pi\)
\(450\) 12.0000i 0.565685i
\(451\) 2.56155 + 4.43674i 0.120619 + 0.208918i
\(452\) −33.7732 + 58.4969i −1.58856 + 2.75146i
\(453\) −13.3102 7.68466i −0.625369 0.361057i
\(454\) 2.87689 0.135019
\(455\) 0 0
\(456\) −7.36932 −0.345100
\(457\) −24.7818 14.3078i −1.15924 0.669289i −0.208120 0.978103i \(-0.566735\pi\)
−0.951122 + 0.308814i \(0.900068\pi\)
\(458\) −0.315342 + 0.546188i −0.0147349 + 0.0255217i
\(459\) 1.28078 + 2.21837i 0.0597815 + 0.103545i
\(460\) 5.12311i 0.238866i
\(461\) 31.8765 18.4039i 1.48463 0.857154i 0.484787 0.874632i \(-0.338897\pi\)
0.999847 + 0.0174778i \(0.00556363\pi\)
\(462\) 15.8017 9.12311i 0.735161 0.424445i
\(463\) 26.6847i 1.24014i −0.784546 0.620071i \(-0.787104\pi\)
0.784546 0.620071i \(-0.212896\pi\)
\(464\) 21.8423 + 37.8320i 1.01400 + 1.75631i
\(465\) −0.438447 + 0.759413i −0.0203325 + 0.0352169i
\(466\) −57.6776 33.3002i −2.67186 1.54260i
\(467\) 26.0000 1.20314 0.601568 0.798821i \(-0.294543\pi\)
0.601568 + 0.798821i \(0.294543\pi\)
\(468\) 0 0
\(469\) −1.56155 −0.0721058
\(470\) −10.2726 5.93087i −0.473838 0.273571i
\(471\) 2.18466 3.78394i 0.100664 0.174355i
\(472\) −36.4924 63.2067i −1.67970 2.90933i
\(473\) 0.876894i 0.0403196i
\(474\) −21.2111 + 12.2462i −0.974256 + 0.562487i
\(475\) 4.55648 2.63068i 0.209065 0.120704i
\(476\) 41.6155i 1.90744i
\(477\) −5.84233 10.1192i −0.267502 0.463327i
\(478\) −0.807764 + 1.39909i −0.0369463 + 0.0639928i
\(479\) 5.40938 + 3.12311i 0.247161 + 0.142698i 0.618463 0.785814i \(-0.287755\pi\)
−0.371303 + 0.928512i \(0.621089\pi\)
\(480\) −3.68466 −0.168181
\(481\) 0 0
\(482\) 7.19224 0.327597
\(483\) −6.16879 3.56155i −0.280690 0.162056i
\(484\) 15.9654 27.6529i 0.725702 1.25695i
\(485\) −1.24621 2.15850i −0.0565875 0.0980125i
\(486\) 2.56155i 0.116194i
\(487\) 0.972638 0.561553i 0.0440744 0.0254464i −0.477801 0.878468i \(-0.658566\pi\)
0.521875 + 0.853022i \(0.325233\pi\)
\(488\) 68.8892 39.7732i 3.11847 1.80045i
\(489\) 15.8078i 0.714852i
\(490\) −4.08854 7.08156i −0.184701 0.319912i
\(491\) −9.87689 + 17.1073i −0.445738 + 0.772041i −0.998103 0.0615613i \(-0.980392\pi\)
0.552365 + 0.833602i \(0.313725\pi\)
\(492\) −10.1192 5.84233i −0.456209 0.263393i
\(493\) 14.5616 0.655819
\(494\) 0 0
\(495\) −1.12311 −0.0504798
\(496\) −10.3923 6.00000i −0.466628 0.269408i
\(497\) 24.9309 43.1815i 1.11830 1.93696i
\(498\) −11.6847 20.2384i −0.523602 0.906905i
\(499\) 28.4924i 1.27550i 0.770245 + 0.637748i \(0.220134\pi\)
−0.770245 + 0.637748i \(0.779866\pi\)
\(500\) 21.4842 12.4039i 0.960801 0.554718i
\(501\) −5.40938 + 3.12311i −0.241673 + 0.139530i
\(502\) 78.7386i 3.51428i
\(503\) 5.87689 + 10.1791i 0.262038 + 0.453863i 0.966783 0.255597i \(-0.0822722\pi\)
−0.704746 + 0.709460i \(0.748939\pi\)
\(504\) −11.6847 + 20.2384i −0.520476 + 0.901491i
\(505\) 1.67218 + 0.965435i 0.0744111 + 0.0429613i
\(506\) 10.2462 0.455500
\(507\) 0 0
\(508\) 43.6155 1.93513
\(509\) 5.89570 + 3.40388i 0.261322 + 0.150874i 0.624938 0.780675i \(-0.285124\pi\)
−0.363615 + 0.931549i \(0.618458\pi\)
\(510\) −1.84233 + 3.19101i −0.0815797 + 0.141300i
\(511\) 3.34233 + 5.78908i 0.147856 + 0.256094i
\(512\) 50.4233i 2.22842i
\(513\) 0.972638 0.561553i 0.0429430 0.0247932i
\(514\) −35.8867 + 20.7192i −1.58290 + 0.913886i
\(515\) 4.24621i 0.187110i
\(516\) −1.00000 1.73205i −0.0440225 0.0762493i
\(517\) 8.24621 14.2829i 0.362668 0.628159i
\(518\) 27.1666 + 15.6847i 1.19363 + 0.689144i
\(519\) −3.75379 −0.164773
\(520\) 0 0
\(521\) −37.9309 −1.66178 −0.830891 0.556436i \(-0.812169\pi\)
−0.830891 + 0.556436i \(0.812169\pi\)
\(522\) −12.6107 7.28078i −0.551954 0.318671i
\(523\) 11.9309 20.6649i 0.521701 0.903612i −0.477981 0.878370i \(-0.658631\pi\)
0.999681 0.0252415i \(-0.00803549\pi\)
\(524\) −39.6155 68.6161i −1.73061 2.99751i
\(525\) 16.6847i 0.728178i
\(526\) 34.0948 19.6847i 1.48661 0.858292i
\(527\) −3.46410 + 2.00000i −0.150899 + 0.0871214i
\(528\) 15.3693i 0.668864i
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) 8.40388 14.5560i 0.365041 0.632270i
\(531\) 9.63289 + 5.56155i 0.418032 + 0.241351i
\(532\) −18.2462 −0.791074
\(533\) 0 0
\(534\) 33.6155 1.45469
\(535\) 4.01029 + 2.31534i 0.173380 + 0.100101i
\(536\) −1.43845 + 2.49146i −0.0621315 + 0.107615i
\(537\) −6.56155 11.3649i −0.283152 0.490433i
\(538\) 8.63068i 0.372095i
\(539\) 9.84612 5.68466i 0.424102 0.244856i
\(540\) 2.21837 1.28078i 0.0954634 0.0551158i
\(541\) 29.7386i 1.27856i −0.768972 0.639282i \(-0.779232\pi\)
0.768972 0.639282i \(-0.220768\pi\)
\(542\) 1.36932 + 2.37173i 0.0588172 + 0.101874i
\(543\) 4.84233 8.38716i 0.207804 0.359927i
\(544\) −14.5560 8.40388i −0.624081 0.360313i
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) −24.9309 −1.06597 −0.532984 0.846126i \(-0.678929\pi\)
−0.532984 + 0.846126i \(0.678929\pi\)
\(548\) −5.68247 3.28078i −0.242743 0.140148i
\(549\) −6.06155 + 10.4989i −0.258701 + 0.448083i
\(550\) 12.0000 + 20.7846i 0.511682 + 0.886259i
\(551\) 6.38447i 0.271988i
\(552\) −11.3649 + 6.56155i −0.483724 + 0.279278i
\(553\) −29.4916 + 17.0270i −1.25411 + 0.724061i
\(554\) 45.3002i 1.92462i
\(555\) −0.965435 1.67218i −0.0409804 0.0709802i
\(556\) 24.9309 43.1815i 1.05730 1.83130i
\(557\) 12.1842 + 7.03457i 0.516262 + 0.298064i 0.735404 0.677629i \(-0.236992\pi\)
−0.219142 + 0.975693i \(0.570326\pi\)
\(558\) 4.00000 0.169334
\(559\) 0 0
\(560\) −15.3693 −0.649472
\(561\) −4.43674 2.56155i −0.187319 0.108149i
\(562\) 3.59612 6.22866i 0.151693 0.262740i
\(563\) 0.684658 + 1.18586i 0.0288549 + 0.0499782i 0.880092 0.474803i \(-0.157481\pi\)
−0.851237 + 0.524781i \(0.824147\pi\)
\(564\) 37.6155i 1.58390i
\(565\) 7.20130 4.15767i 0.302961 0.174915i
\(566\) −2.91791 + 1.68466i −0.122649 + 0.0708115i
\(567\) 3.56155i 0.149571i
\(568\) −45.9309 79.5546i −1.92722 3.33804i
\(569\) 20.3693 35.2807i 0.853926 1.47904i −0.0237115 0.999719i \(-0.507548\pi\)
0.877638 0.479325i \(-0.159118\pi\)
\(570\) 1.39909 + 0.807764i 0.0586014 + 0.0338335i
\(571\) −19.3693 −0.810581 −0.405290 0.914188i \(-0.632830\pi\)
−0.405290 + 0.914188i \(0.632830\pi\)
\(572\) 0 0
\(573\) −0.876894 −0.0366328
\(574\) −20.2384 11.6847i −0.844735 0.487708i
\(575\) 4.68466 8.11407i 0.195364 0.338380i
\(576\) 0.719224 + 1.24573i 0.0299676 + 0.0519055i
\(577\) 29.6847i 1.23579i 0.786261 + 0.617894i \(0.212014\pi\)
−0.786261 + 0.617894i \(0.787986\pi\)
\(578\) 23.1563 13.3693i 0.963177 0.556090i
\(579\) 16.8809 9.74621i 0.701548 0.405039i
\(580\) 14.5616i 0.604636i
\(581\) −16.2462 28.1393i −0.674006 1.16741i
\(582\) −5.68466 + 9.84612i −0.235637 + 0.408135i
\(583\) 20.2384 + 11.6847i 0.838190 + 0.483929i
\(584\) 12.3153 0.509612
\(585\) 0 0
\(586\) 62.9157 2.59902
\(587\) 12.6705 + 7.31534i 0.522969 + 0.301936i 0.738149 0.674638i \(-0.235700\pi\)
−0.215179 + 0.976575i \(0.569034\pi\)
\(588\) −12.9654 + 22.4568i −0.534686 + 0.926102i
\(589\) 0.876894 + 1.51883i 0.0361318 + 0.0625821i
\(590\) 16.0000i 0.658710i
\(591\) 9.84612 5.68466i 0.405015 0.233836i
\(592\) 22.8832 13.2116i 0.940495 0.542995i
\(593\) 44.4233i 1.82425i 0.409917 + 0.912123i \(0.365558\pi\)
−0.409917 + 0.912123i \(0.634442\pi\)
\(594\) 2.56155 + 4.43674i 0.105102 + 0.182042i
\(595\) −2.56155 + 4.43674i −0.105013 + 0.181889i
\(596\) 25.9209 + 14.9654i 1.06176 + 0.613008i
\(597\) 23.1771 0.948575
\(598\) 0 0
\(599\) −0.384472 −0.0157091 −0.00785455 0.999969i \(-0.502500\pi\)
−0.00785455 + 0.999969i \(0.502500\pi\)
\(600\) −26.6204 15.3693i −1.08677 0.627450i
\(601\) 17.9654 31.1170i 0.732825 1.26929i −0.222846 0.974854i \(-0.571535\pi\)
0.955671 0.294437i \(-0.0951321\pi\)
\(602\) −2.00000 3.46410i −0.0815139 0.141186i
\(603\) 0.438447i 0.0178549i
\(604\) −60.7153 + 35.0540i −2.47047 + 1.42633i
\(605\) −3.40423 + 1.96543i −0.138402 + 0.0799063i
\(606\) 8.80776i 0.357791i
\(607\) 8.00000 + 13.8564i 0.324710 + 0.562414i 0.981454 0.191700i \(-0.0614000\pi\)
−0.656744 + 0.754114i \(0.728067\pi\)
\(608\) −3.68466 + 6.38202i −0.149433 + 0.258825i
\(609\) −17.5337 10.1231i −0.710503 0.410209i
\(610\) −17.4384 −0.706062
\(611\) 0 0
\(612\) 11.6847 0.472324
\(613\) 19.7988 + 11.4309i 0.799668 + 0.461688i 0.843355 0.537357i \(-0.180577\pi\)
−0.0436871 + 0.999045i \(0.513910\pi\)
\(614\) −13.0540 + 22.6101i −0.526816 + 0.912471i
\(615\) 0.719224 + 1.24573i 0.0290019 + 0.0502328i
\(616\) 46.7386i 1.88315i
\(617\) 9.35980 5.40388i 0.376811 0.217552i −0.299619 0.954059i \(-0.596859\pi\)
0.676430 + 0.736507i \(0.263526\pi\)
\(618\) −16.7743 + 9.68466i −0.674762 + 0.389574i
\(619\) 24.3002i 0.976707i −0.872646 0.488353i \(-0.837598\pi\)
0.872646 0.488353i \(-0.162402\pi\)
\(620\) 2.00000 + 3.46410i 0.0803219 + 0.139122i
\(621\) 1.00000 1.73205i 0.0401286 0.0695048i
\(622\) 24.1290 + 13.9309i 0.967484 + 0.558577i
\(623\) 46.7386 1.87254
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) −2.91791 1.68466i −0.116623 0.0673325i
\(627\) −1.12311 + 1.94528i −0.0448525 + 0.0776868i
\(628\) −9.96543 17.2606i −0.397664 0.688774i
\(629\) 8.80776i 0.351189i
\(630\) 4.43674 2.56155i 0.176764 0.102055i
\(631\) −12.5041 + 7.21922i −0.497779 + 0.287393i −0.727796 0.685794i \(-0.759455\pi\)
0.230017 + 0.973187i \(0.426122\pi\)
\(632\) 62.7386i 2.49561i
\(633\) −3.65767 6.33527i −0.145379 0.251804i
\(634\) −29.5270 + 51.1422i −1.17267 + 2.03112i
\(635\) −4.64996 2.68466i −0.184528 0.106537i
\(636\) −53.3002 −2.11349
\(637\) 0 0
\(638\) 29.1231 1.15299
\(639\) 12.1244 + 7.00000i 0.479632 + 0.276916i
\(640\) 2.65009 4.59010i 0.104754 0.181439i
\(641\) 13.0885 + 22.6700i 0.516966 + 0.895412i 0.999806 + 0.0197030i \(0.00627208\pi\)
−0.482840 + 0.875709i \(0.660395\pi\)
\(642\) 21.1231i 0.833662i
\(643\) −33.3822 + 19.2732i −1.31646 + 0.760061i −0.983158 0.182758i \(-0.941498\pi\)
−0.333306 + 0.942819i \(0.608164\pi\)
\(644\) −28.1393 + 16.2462i −1.10884 + 0.640190i
\(645\) 0.246211i 0.00969456i
\(646\) 3.68466 + 6.38202i 0.144971 + 0.251097i
\(647\) −23.8078 + 41.2363i −0.935980 + 1.62116i −0.163102 + 0.986609i \(0.552150\pi\)
−0.772877 + 0.634555i \(0.781183\pi\)
\(648\) −5.68247 3.28078i −0.223229 0.128881i
\(649\) −22.2462 −0.873240
\(650\) 0 0
\(651\) 5.56155 0.217974
\(652\) 62.4473 + 36.0540i 2.44563 + 1.41198i
\(653\) −7.43845 + 12.8838i −0.291089 + 0.504181i −0.974068 0.226258i \(-0.927351\pi\)
0.682979 + 0.730438i \(0.260684\pi\)
\(654\) 22.8078 + 39.5042i 0.891854 + 1.54474i
\(655\) 9.75379i 0.381112i
\(656\) −17.0474 + 9.84233i −0.665590 + 0.384278i
\(657\) −1.62544 + 0.938447i −0.0634144 + 0.0366123i
\(658\) 75.2311i 2.93281i
\(659\) −7.12311 12.3376i −0.277477 0.480604i 0.693280 0.720668i \(-0.256165\pi\)
−0.970757 + 0.240064i \(0.922831\pi\)
\(660\) −2.56155 + 4.43674i −0.0997083 + 0.172700i
\(661\) −26.3006 15.1847i −1.02297 0.590615i −0.108011 0.994150i \(-0.534448\pi\)
−0.914964 + 0.403535i \(0.867781\pi\)
\(662\) 60.9848 2.37024
\(663\) 0 0
\(664\) −59.8617 −2.32309
\(665\) 1.94528 + 1.12311i 0.0754346 + 0.0435522i
\(666\) −4.40388 + 7.62775i −0.170647 + 0.295569i
\(667\) −5.68466 9.84612i −0.220111 0.381243i
\(668\) 28.4924i 1.10240i
\(669\) −6.92820 + 4.00000i −0.267860 + 0.154649i
\(670\) 0.546188 0.315342i 0.0211011 0.0121827i
\(671\) 24.2462i 0.936015i
\(672\) 11.6847 + 20.2384i 0.450745 + 0.780714i
\(673\) −3.37689 + 5.84895i −0.130170 + 0.225461i −0.923742 0.383016i \(-0.874886\pi\)
0.793572 + 0.608476i \(0.208219\pi\)
\(674\) −4.70983 2.71922i −0.181416 0.104741i
\(675\) 4.68466 0.180313
\(676\) 0 0
\(677\) 25.6155 0.984485 0.492242 0.870458i \(-0.336177\pi\)
0.492242 + 0.870458i \(0.336177\pi\)
\(678\) −32.8491 18.9654i −1.26156 0.728363i
\(679\) −7.90388 + 13.6899i −0.303323 + 0.525371i
\(680\) 4.71922 + 8.17394i 0.180974 + 0.313456i
\(681\) 1.12311i 0.0430375i
\(682\) −6.92820 + 4.00000i −0.265295 + 0.153168i
\(683\) 31.2704 18.0540i 1.19653 0.690816i 0.236749 0.971571i \(-0.423918\pi\)
0.959780 + 0.280755i \(0.0905847\pi\)
\(684\) 5.12311i 0.195887i
\(685\) 0.403882 + 0.699544i 0.0154315 + 0.0267282i
\(686\) 6.00000 10.3923i 0.229081 0.396780i
\(687\) −0.213225 0.123106i −0.00813505 0.00469677i
\(688\) −3.36932 −0.128454
\(689\) 0 0
\(690\) 2.87689 0.109521
\(691\) 1.99202 + 1.15009i 0.0757800 + 0.0437516i 0.537411 0.843320i \(-0.319402\pi\)
−0.461631 + 0.887072i \(0.652736\pi\)
\(692\) −8.56155 + 14.8290i −0.325461 + 0.563716i
\(693\) 3.56155 + 6.16879i 0.135292 + 0.234333i
\(694\) 34.8769i 1.32391i
\(695\) −5.31589 + 3.06913i −0.201643 + 0.116419i
\(696\) −32.3029 + 18.6501i −1.22444 + 0.706930i
\(697\) 6.56155i 0.248537i
\(698\) 17.6847 + 30.6307i 0.669374 + 1.15939i
\(699\) 13.0000 22.5167i 0.491705 0.851658i
\(700\) −65.9114 38.0540i −2.49122 1.43831i
\(701\) −19.3693 −0.731569 −0.365785 0.930700i \(-0.619199\pi\)
−0.365785 + 0.930700i \(0.619199\pi\)
\(702\) 0 0
\(703\) −3.86174 −0.145648
\(704\) −2.49146 1.43845i −0.0939006 0.0542135i
\(705\) 2.31534 4.01029i 0.0872008 0.151036i
\(706\) 22.6501 + 39.2311i 0.852448 + 1.47648i
\(707\) 12.2462i 0.460566i
\(708\) 43.9409 25.3693i 1.65140 0.953437i
\(709\) 22.0771 12.7462i 0.829122 0.478694i −0.0244297 0.999702i \(-0.507777\pi\)
0.853552 + 0.521008i \(0.174444\pi\)
\(710\) 20.1383i 0.755775i
\(711\) −4.78078 8.28055i −0.179293 0.310545i
\(712\) 43.0540 74.5717i 1.61352 2.79469i
\(713\) 2.70469 + 1.56155i 0.101291 + 0.0584806i
\(714\) 23.3693 0.874575
\(715\) 0 0
\(716\) −59.8617 −2.23714
\(717\) −0.546188 0.315342i −0.0203977 0.0117766i
\(718\) −19.6847 + 34.0948i −0.734625 + 1.27241i
\(719\) 0.684658 + 1.18586i 0.0255335 + 0.0442252i 0.878510 0.477724i \(-0.158538\pi\)
−0.852976 + 0.521950i \(0.825205\pi\)
\(720\) 4.31534i 0.160823i
\(721\) −23.3228 + 13.4654i −0.868587 + 0.501479i
\(722\) −39.3508 + 22.7192i −1.46449 + 0.845522i
\(723\) 2.80776i 0.104422i
\(724\) −22.0885 38.2585i −0.820914 1.42187i
\(725\) 13.3153 23.0628i 0.494519 0.856533i
\(726\) 15.5286 + 8.96543i 0.576320 + 0.332738i
\(727\) −39.6695 −1.47126 −0.735630 0.677383i \(-0.763114\pi\)
−0.735630 + 0.677383i \(0.763114\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −2.33811 1.34991i −0.0865372 0.0499623i
\(731\) −0.561553 + 0.972638i −0.0207698 + 0.0359743i
\(732\) 27.6501 + 47.8914i 1.02198 + 1.77012i
\(733\) 53.4924i 1.97579i −0.155131 0.987894i \(-0.549580\pi\)
0.155131 0.987894i \(-0.450420\pi\)
\(734\) −44.4871 + 25.6847i −1.64205 + 0.948038i
\(735\) 2.76456 1.59612i 0.101972 0.0588737i
\(736\) 13.1231i 0.483724i
\(737\) 0.438447 + 0.759413i 0.0161504 + 0.0279733i
\(738\) 3.28078 5.68247i 0.120767 0.209175i
\(739\) 5.40938 + 3.12311i 0.198987 + 0.114885i 0.596183 0.802849i \(-0.296683\pi\)
−0.397196 + 0.917734i \(0.630017\pi\)
\(740\) −8.80776 −0.323780
\(741\) 0 0
\(742\) −106.600 −3.91342
\(743\) −32.3628 18.6847i −1.18728 0.685474i −0.229589 0.973288i \(-0.573738\pi\)
−0.957686 + 0.287814i \(0.907071\pi\)
\(744\) 5.12311 8.87348i 0.187822 0.325318i
\(745\) −1.84233 3.19101i −0.0674977 0.116909i
\(746\) 9.30019i 0.340504i
\(747\) 7.90084 4.56155i 0.289077 0.166898i
\(748\) −20.2384 + 11.6847i −0.739990 + 0.427233i
\(749\) 29.3693i 1.07313i
\(750\) 6.96543 + 12.0645i 0.254342 + 0.440533i
\(751\) −15.0540 + 26.0743i −0.549327 + 0.951463i 0.448993 + 0.893535i \(0.351783\pi\)
−0.998321 + 0.0579278i \(0.981551\pi\)
\(752\) 54.8794 + 31.6847i 2.00125 + 1.15542i
\(753\) 30.7386 1.12018
\(754\) 0 0
\(755\) 8.63068 0.314103
\(756\) −14.0696 8.12311i −0.511708 0.295434i
\(757\) −15.0000 + 25.9808i −0.545184 + 0.944287i 0.453411 + 0.891302i \(0.350207\pi\)
−0.998595 + 0.0529853i \(0.983126\pi\)
\(758\) 14.4924 + 25.1016i 0.526388 + 0.911732i
\(759\) 4.00000i 0.145191i
\(760\) 3.58384 2.06913i 0.129999 0.0750552i
\(761\) −13.3102 + 7.68466i −0.482495 + 0.278569i −0.721456 0.692461i \(-0.756527\pi\)
0.238961 + 0.971029i \(0.423193\pi\)
\(762\) 24.4924i 0.887267i
\(763\) 31.7116 + 54.9262i 1.14804 + 1.98846i
\(764\) −2.00000 + 3.46410i −0.0723575 + 0.125327i
\(765\) −1.24573 0.719224i −0.0450395 0.0260036i
\(766\) −68.4924 −2.47473
\(767\) 0 0
\(768\) −27.0540 −0.976226
\(769\) −15.5885 9.00000i −0.562134 0.324548i 0.191867 0.981421i \(-0.438546\pi\)
−0.754002 + 0.656873i \(0.771879\pi\)
\(770\) −5.12311 + 8.87348i −0.184624 + 0.319778i
\(771\) −8.08854 14.0098i −0.291302 0.504549i
\(772\) 88.9157i 3.20015i
\(773\) 6.71498 3.87689i 0.241521 0.139442i −0.374355 0.927286i \(-0.622136\pi\) <